PM2.5 Sink-Source Dichotomy in Urban Clusters: Land Cover Efficiency Gradients and Socio-Meteorological Interactions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Land Use and Land Cover Data
2.2.2. PM2.5 Concentration Data
2.2.3. Wind Speed and Precipitation Data
2.2.4. NDVI-LAI
2.2.5. Socioeconomic Indicators
2.3. Methods
2.3.1. Methods of Estimating Dry Deposition
2.3.2. Evolution of the Landscape Patterns
2.3.3. Spatiotemporal Analysis
3. Results
3.1. Spatial and Temporal Characteristics of PM2.5
3.2. Landscape Mosaic Evolution
3.3. Spatial and Temporal Characteristics of Dry Deposition in Different Land Use Contexts
3.4. PM2.5 Responses to Land Use and Landscape Evolution
3.5. GTWR Model Outputs for PM2.5 Driving Factors
4. Discussion
4.1. Mechanism of PM2.5 Responses to Land Use and Landscape Patterns
4.2. Driving Mechanisms of Natural and Socioeconomic Factors on PM2.5
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, C.; Yu, D. Urban Agglomeration: An Evolving Concept of an Emerging Phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Z.; Niu, F.; Long, Y. An Evaluation of China’s Urban Agglomeration Development from the Spatial Perspective. Spat. Stat. 2017, 21, 475–491. [Google Scholar] [CrossRef]
- Gottmann, J. Megalopolis or the Urbanization of the Northeastern Seaboard. Econ. Geogr. 1957, 33, 189–200. [Google Scholar] [CrossRef]
- Lang, R.; Knox, P.K. The New Metropolis: Rethinking Megalopolis. Reg. Stud. 2009, 43, 789–802. [Google Scholar] [CrossRef]
- Kanemoto, Y.; Tokuoka, K. Proposal for the Standards of Metropolitan Areas of Japan. J. Appl. Reg. Sci. 2002, 7, 1–15. [Google Scholar]
- Zhang, Y.W.; Liu, S.L. China’s Practice, Concept Interpretation and Strategies on Cities’ Integration. Beijing Soc. Sci. 2023, 2, 33–44. [Google Scholar] [CrossRef]
- Ji, X.; Yao, Y.; Long, X. What Causes PM2.5 Pollution? Cross-Economy Empirical Analysis from Socioeconomic Perspective. Energy Policy 2018, 119, 458–472. [Google Scholar] [CrossRef]
- Tian, L.; Cheng, W. Shanxi Starts to Build the Greater Taiyuan Metropolitan Area. People’s Political Consultative Conference Daily, 22 October 2005. [Google Scholar]
- Shanxi Provincial Bureau of Statistics. Shanxi Statistical Yearbook; China Statistics Press: Beijing, China, 2013. [Google Scholar]
- Yang, S.-Y.; Yu, X.-Y.; Zhao, X.-Y.; Li, Y.-Y.; Shun, H.-P.; Tian, Z.-J.; Li, Y.; Wu, S.; Wang, Z.-H. Characteristics of Key Size Spectrum of PM2.5 Affecting Winter Haze Pollution in Taiyuan. Environ. Sci. 2018, 39, 2512–2520. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Zhou, M.; He, G.; Fan, M.; Wang, Z.; Liu, Y.; Ma, J.; Ma, Z.; Liu, J.; Liu, Y.; Wang, L. Smog Episodes, Fine Particulate Pollution and Mortality in China. Environ. Res. 2015, 136, 396–404. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F. High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G. A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Zhou, J.; Ban, J.; Li, T. Estimation of PM2· 5-Associated Disease Burden in China in 2020 and 2030 Using Population and Air Quality Scenarios: A Modelling Study. Lancet Planet. Health 2019, 3, e71–e80. [Google Scholar] [CrossRef]
- Zhang, Q.; He, K.; Huo, H. Cleaning China’s Air. Nature 2012, 484, 161–162. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Sioutas, C.; Malik, S. Potential Role of Ultrafine Particles in Associations between Airborne Particle Mass and Cardiovascular Health. Environ. Health Perspect. 2005, 113, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Zhang, L.; Cao, J.; Zhang, R. A Review of Current Knowledge Concerning PM2.5 Chemical Composition, Aerosol Optical Properties and Their Relationships across China. Atmospheric Chem. Phys. 2017, 17, 9485–9518. [Google Scholar] [CrossRef]
- Lin, Y.; Zou, J.; Yang, W.; Li, C.-Q. A Review of Recent Advances in Research on PM2.5 in China. IJERPH 2018, 15, 438. [Google Scholar] [CrossRef]
- Jiang, N.; Jiang, W.; Zhang, J.; Chen, H. Can National Urban Agglomeration Construction Reduce PM2.5 Pollution? Evidence from a Quasi-Natural Experiment in China. Urban Clim. 2022, 46, 101302. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, C. Temporal and Spatial Heterogeneity of PM2.5 Related to Meteorological and Socioeconomic Factors across China during 2000–2018. Int. J. Environ. Res. Public Health 2022, 19, 707. [Google Scholar] [CrossRef]
- Yun, G.; Zhao, S. The Imprint of Urbanization on PM2.5 Concentrations in China: The Urban-Rural Gradient Study. Sustain. City Soc. 2022, 86, 104103. [Google Scholar] [CrossRef]
- Wang, S.; Wang, D.; Yang, X. Urbanization and Its Impacts on Water Environment in Tumen River Basin. Chin. Geogr. Sci. 2002, 12, 273–281. [Google Scholar] [CrossRef]
- Liu, H.; Ma, W.; Qian, J.; Cai, J.; Ye, X.; Li, J.; Wang, X. Effect of Urbanization on the Urban Meteorology and Air Pollution in Hangzhou. J. Meteorol. Res. 2015, 29, 950–965. [Google Scholar] [CrossRef]
- Mi, Y.; Sun, K.; Li, L.; Lei, Y.; Wu, S.; Tang, W.; Wang, Y.; Yang, J. Spatiotemporal Pattern Analysis of PM2.5 and the Driving Factors in the Middle Yellow River Urban Agglomerations. J. Clean. Prod. 2021, 299, 126904. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Liu, X.; Yu, B. PM2.5 Pollution in Six Major Chinese Urban Agglomerations: Spatiotemporal Variations, Health Impacts, and the Relationships with Meteorological Conditions. Atmosphere 2022, 13, 1696. [Google Scholar] [CrossRef]
- Shan, Y.; Wang, X.; Wang, Z.; Liang, L.; Li, J.; Sun, J. The Pattern and Mechanism of Air Pollution in Developed Coastal Areas of China: From the Perspective of Urban Agglomeration. PLoS ONE 2020, 15, e0237863. [Google Scholar] [CrossRef]
- Guo, X.; Cui, Y.; Wang, K.; He, Q.; Wang, X. Chemical Characteristics of 3-Year Atmospheric Precipitation in Summer, Taiyuan. Huanjing Kexue Environ. Sci. 2015, 36, 388–395. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Chen, F.; He, Y. A Hybrid-Wavelet Model Applied for Forecasting PM2.5 Concentrations in Taiyuan City, China. Atmos. Pollut. Res. 2019, 10, 1884–1894. [Google Scholar] [CrossRef]
- Bai, K.; Li, K.; Ma, M.; Li, K.; Li, Z.; Guo, J.; Chang, N.-B.; Tan, Z.; Han, D. LGHAP: The Long-Term Gap-Free High-Resolution Air Pollutant Concentration Dataset, derived via Tensor-Flow-Based Multimodal Data Fusion. Earth Syst. Sci. Data 2022, 14, 907–927. [Google Scholar] [CrossRef]
- Han, J.; Miao, C.; Gou, J.; Zheng, H.; Zhang, Q.; Guo, X. A New Daily Gridded Precipitation Dataset for the Chinese Mainland Based on Gauge Observations. Earth Syst. Sci. Data 2023, 15, 3147–3161. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_lnd_Nx, tavg1_2d_rad_Nx, tavg1_2d_slv_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Diagnostics V5.12.4 (M2T1NXSLV), Land Surface Diagnostics V5.12.4 (M2T1NXLND), Radiation Diagnostics V5.12.4 (M2T1NXRAD); Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015; Available online: www.xihe-energy.com (accessed on 24 May 2024).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. 2018. ERA5 Hourly Data on Single Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://doi.org/10.24381/cds.adbb2d47 (accessed on 24 May 2024).
- Guo, X.; Wang, R.; Chen, J.M.; Cheng, Z.; Zeng, H.; Miao, G.; Huang, Z.; Guo, Z.; Cao, J.; Niu, J. Synergetic Inversion of Leaf Area Index and Leaf Chlorophyll Content Using Multi-Spectral Remote Sensing Data. Geo-spatial Inf. Sci. 2025, 28, 22–35. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, H. Estimation of LAI with the LiDAR Technology: A Review. Remote. Sens. 2020, 12, 3457. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. The Urban Forest Effects (UFORE) Model: Quantifying Urban Forest Structure and Functions. In Integrated Tools for Natural Resources Inventories in the 21st Century; Gen. Tech. Rep. NC-212; Hansen, M., Burk, T., Eds.; US Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 2000; pp. 714–720. [Google Scholar]
- Ali-Mohamed, A.Y.; Matter, H.A. Determination of Inorganic Particulates:(Cationic, Anionic and Heavy Metals) in the Atmosphere of Some Areas in Bahrain during the Gulf Crisis in 1991. Atmospheric Environ. 1996, 30, 3497–3503. [Google Scholar] [CrossRef]
- Ali-Mohamed, A.Y. Inorganic Chemical Composition of Aerosols Settling in Hamad Town, Bahrain Following Dust Haze Storms. Int. J. Environ. Stud. 2004, 61, 161–171. [Google Scholar] [CrossRef]
- Li, X.; Feng, L.; Huang, C.; Yan, X.; Zhang, X. Chemical Characteristics of Atmospheric Fallout in the South of Xi’an during the Dust Episodes of 2001–2012 (NW China). Atmos. Environ. 2014, 83, 109–118. [Google Scholar] [CrossRef]
- Schaubroeck, T.; Deckmyn, G.; Neirynck, J.; Staelens, J.; Adriaenssens, S.; Dewulf, J.; Muys, B.; Verheyen, K. Multilayered Modeling of Particulate Matter Removal by a Growing Forest over Time, from Plant Surface Deposition to Washoff via Rainfall. Environ. Sci. Technol. 2014, 48, 10785–10794. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Sun, F.; Song, X.; Zhang, Y.; Huang, F.; Yuan, C.; Yu, H.; Zhang, G.; Qi, F. The Relationship between Particulate Matter Retention Capacity and Leaf Surface Micromorphology of Ten Tree Species in Hangzhou, China. Sci. Total. Environ. 2021, 771, 144812. [Google Scholar] [CrossRef] [PubMed]
- Pullman, M. Conifer PM2.5 Deposition and Resuspension in Wind and Rain Events; Cornell University: Ithaca, NY, USA, 2008. [Google Scholar]
- Yao, J.; Wu, S.; Cao, Y.; Wei, J.; Tang, X.; Hu, L.; Wu, J.; Yang, H.; Yang, J.; Ji, X. Dry Deposition Effect of Urban Green Spaces on Ambient Particulate Matter Pollution in China. Sci. Total. Environ. 2023, 900, 165830. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Y.; Jin, H.; Fan, J.-L. Input Characteristics of Dry Deposition of Atmospheric Particulates and Metals in Farmland in the Suburb of Nanjing. Huanjing Kexue Environ. Sci. 2023, 44, 1873–1881. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, W.; Pan, Y.; Gu, M.; Lyu, X.; Ni, X.; He, Y.; Liu, B.; Wang, Y.; Tian, S. Dry Deposition Flux of Atmospheric Heavy Metals and Its Source Apportionment in a Typical Farmland of Hebei Province. Chin. J. Eco-Agric. 2019, 27, 1245–1254. [Google Scholar] [CrossRef]
- Mariraj Mohan, S. An Overview of Particulate Dry Deposition: Measuring Methods, Deposition Velocity and Controlling Factors. Int. J. Environ. Sci. Technol. 2015, 13, 387–402. [Google Scholar] [CrossRef]
- Li, J.; Han, L.; Zhang, Z.; Zhou, W.; Li, W.; Qian, Y. Assessment on the Reduction of Atmospheric PM2.5 by Urban Forest and Its Ratio to the Total PM2.5 Pollutant in the Chinese Major Cities. Acta Ecol. Sin. 2023, 43, 2640–2649. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Jing, X.; Guo, X.; Zhou, J.; Li, R. Characteristics of Dust Haze in Taiyuan and Its Causative Factors. Clim. Environ. Res. 2014, 19, 200–208. [Google Scholar]
- Li, G.; Wei, Q. Impacts of Construction Land Expansion on Landscape Pattern Evolution in China. Dili Xuebao 2019, 74, 2572–2591. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Liu, X.; Sun, S.; Ma, X.; Zuo, Y. Exploring the impact of Spartina alterniflora management on the use of wetlands and landscape pattern in the Yellow River Delta using the random forest and improved CA-Markov model. Acta Ecol. Sin. 2024, 44, 8366–8382. [Google Scholar] [CrossRef]
- Lu, D.; Mao, W.; Yang, D.; Zhao, J.; Xu, J. Effects of Land Use and Landscape Pattern on PM2.5 in Yangtze River Delta, China. Atmospheric Pollut. Res. 2018, 9, 705–713. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and Temporally Weighted Regression for Modeling Spatio-Temporal Variation in House Prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Anselin, L. Specification Tests on the Structure of Interaction in Spatial Econometric Models. Papers Reg. Sci. 1984, 54, 165–182. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Qi, S.; Wang, C.; Niu, Z.; Liu, Z. SVI and VCI Based on NDVI Time-Series Dataset Used to Monitor Vegetation Growth Status and Its Response to Climate Variables. Prog. Geogr. 2004, 23, 91–99. [Google Scholar] [CrossRef]
- Zu, K.; Wang, Z. Research Progress on the Elevational Distribution of Mountain Species in Response to Climate Change. Biodivers. Sci. 2022, 30, 21451. [Google Scholar] [CrossRef]
- Yue, C.; Li, G.; Xi, B.; Cao, Z. Quantitative Comparison of Methods to Assess the Airborne Particulate Matter Retention Capacity of Leaves. Huanjing Kexue Environ. Sci. 2021, 42, 114–126. [Google Scholar]
- The State Council The People’s Republic of China. Guidelines for the Assessment and Acceptance of Cleaner Production Audits. 2018. Available online: https://www.gov.cn/zhengce/zhengceku/2019-10/10/content_5438184.htm (accessed on 12 March 2024).
- Wang, L.; Tai, A.P.; Tam, C.-Y.; Sadiq, M.; Wang, P.; Cheung, K.K. Impacts of Future Land Use and Land Cover Change on Mid-21 St-Century Surface Ozone Air Quality: Distinguishing between the Biogeophysical and Biogeochemical Effects. Atmospheric Chem. Phys. Discuss. 2019, 20, 11349–11369. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y.; Wang, Y.; Zhang, H. Interactions between Fine Particulate Matter (PM2.5) and Vegetation: A Review. Chin. J. Ecol. 2013, 32, 2203. [Google Scholar] [CrossRef]
- Tu, M.; Liu, Z.; He, C.; Fang, Z.; Lu, W. The Relationships between Urban Landscape Patterns and Fine Particulate Pollution in China: A Multiscale Investigation Using a Geographically Weighted Regression Model. J. Clean. Prod. 2019, 237, 117744. [Google Scholar] [CrossRef]
- Wang, L.; Huang, L.; Wan, X.; Zhhang, Y.; Wang, H. Progress on the Regulating Effects of Urban Forest Vegetation on Atmospheric Particulate Matter (Especially PM2.5). J. Nanjing For. Univ. (Nat. Sci. Ed.) 2016, 40, 148. [Google Scholar] [CrossRef]
- McCarty, J.; Kaza, N. Urban Form and Air Quality in the United States. Landsc. Urban. Plan. 2015, 139, 168–179. [Google Scholar] [CrossRef]
- Luan, T.; Guo, X.; Zhang, T.; Guo, L. The Scavenging Process and Physical Removing Mechanism of Pollutant Aerosols by Different Precipitation Intensities. J. Appl. Meteorol. Sci. 2019, 30, 279–291. [Google Scholar] [CrossRef]
- Yu, C.; Deng, X.; Shi, C.; Wu, B.; Zhai, Q.; Yang, G.; Huo, Y. The Scavenging Effect of Precipitation and Wind on PM2.5 and PM10. Acta Sci. Circumstantiae 2018, 38, 4620–4629. [Google Scholar] [CrossRef]
- Taiyuan Municipal Development and Reform Commission. The 11th Five-Year Plan for National Economic and Social Development of Taiyuan City. Taiyuan Municipal Development and Reform Commission Website. 2009. Available online: https://fgw.taiyuan.gov.cn/zxghjjd/20090318/803937.html (accessed on 12 March 2024).
- The People’s Government of Shanxi Province. Notice on Printing and Distributing the ‘12th Five-Year Plan’ for the Development of Forestry in Shanxi Province. People’s Government of Shanxi Province Website. 2013. Available online: http://www.shanxi.gov.cn/zfxxgk/zfxxgkzl/fdzdgknr/lzyj/szfbgtwj/202205/t20220513_5977506.shtml (accessed on 12 March 2024).
- Taiyuan Provincial People’s Government. Taiyuan Urban Greening and Landscape Planning for the 13th Five-Year Plan (2016–2020). Taiyuan Provincial People’s Government Website. 2017. Available online: https://fgw.taiyuan.gov.cn/c/site17/zxghjjd/360597.jhtml (accessed on 16 March 2024).
- Yang, W.; Jiang, X.-L. Interannual Characteristics of Fine Particulate Matter in North China and Its Relationship with Land Use and Land Cover Change. Huanjing Kexue Environ. Sci. 2020, 41, 2995–3003. [Google Scholar] [CrossRef]
- Zhu, J. Transition of Villages during Urbanization as Collective Communities: A Case Study of Kunshan, China. Cities 2018, 72, 320–328. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Xu, Y.; Li, T. Dualities of Semi-Urbanization Villages in Social-Spatial Transition: A Case Study of Zhoucun Village in Suburban Nanjing, China. J. Rural Stud. 2016, 47, 657–664. [Google Scholar] [CrossRef]
- Xu, Y.; Chan, E.H. Community Question in Transitional China, a Case Study of State-Led Urbanization in Shanghai. J. Urban Plann. Dev. 2011, 137, 416–424. [Google Scholar] [CrossRef]
- The People’s Government of Shanxi Province. Official Notification on Intensifying Efforts to Comprehensively Achieve the Pollution Reduction Objectives Set Forth in the Eleventh Five-Year Plan. People’s Government of Shanxi Province Website. 2010. Available online: http://www.shanxi.gov.cn/zfxxgk/zfxxgkzl/fdzdgknr/lzyj/szfwj/202205/t20220513_5975866.shtml (accessed on 12 March 2024).
- Li, Y.; Liao, Q.; Zhao, X.-G.; Bai, Y.; Tao, Y. Influence of PM 2.5 Pollution on Health Burden and Economic Loss in China. Huanjing Kexue Environ. Sci. 2021, 42, 1688–1695. [Google Scholar] [CrossRef]
- Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C. Drivers of PM2.5 Air Pollution Deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Zhang, S.; Zheng, G.; Zheng, H.; Chang, X.; Huang, C.; Wang, S.; Wu, Y.; Hao, J. Vehicular Ammonia Emissions Significantly Contribute to Urban PM2.5 Pollution in Two Chinese Megacities. Environ. Sci. Technol. 2023, 57, 2698–2705. [Google Scholar] [CrossRef]
- Shi, G.; Lu, X.; Deng, Y.; Urpelainen, J.; Liu, L.-C.; Zhang, Z.; Wei, W.; Wang, H. Air Pollutant Emissions Induced by Population Migration in China. Environ. Sci. Technol. 2020, 54, 6308–6318. [Google Scholar] [CrossRef]
- Zhang, K.-K.; Hu, D.-M.; Yan, Y.-L.; Peng, L.; Duan, X.-L.; Yin, H.; Wang, K.; Deng, M.-J. Pollution Characteristics and Influencing Factors of PM 2.5 in Shanxi Province Based on Wavelet Transform. Huanjing Kexue Environ. Sci. 2022, 43, 1226–1234. [Google Scholar] [CrossRef]
- Liang, C.-S.; Duan, F.-K.; He, K.-B.; Ma, Y.-L. Review on Recent Progress in Observations, Source Identifications and Countermeasures of PM2.5. Environ. Int. 2016, 86, 150–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shi, T.; Wang, L.; Zheng, A. Air Pollution, Avoidance Behavior and Household Electricity Consumption—Evidence from Prefecture-Level Cities of China. China Econ. Q. 2023, 23, 1865–1882. [Google Scholar] [CrossRef]
- The Standing Committee of the People’s Congress of Shanxi Province. The Taiyuan City Clean Production Regulations. The Standing Committee of the People’s Congress of Shanxi Province Website. 2016. Available online: https://falvdb.com/law/codex/acts/347016 (accessed on 12 March 2024).
- The Central People’s Government of the People’s Republic of China. Notice on the Issuance of the ‘Twelfth Five-Year Plan’ for the Construction Industry. The Central People’s Government of the People’s Republic of China Website. 2011. Available online: https://www.gov.cn/zwgk/2011-08/18/content_1927995.htm (accessed on 16 March 2024).
Landscape Index | Abbreviat-Ions | Ecological Implications | Formulas | References |
---|---|---|---|---|
Number of Patches | NP | Number of patches | [49] | |
Patch Cohesion Index | COHESION | Aggregation state analysis of patches | ||
Landscape Shape Index | LSI | Complexity of patch morphology | [50] | |
Aggregation Index | AI | Analysis of Connectivity Between Landscape Types | ||
Patch Density | PD | Overall landscape heterogeneity and fragmentation | [51] | |
Edge Density | ED | Extent of landscape fragmentation | ||
Contagion | CONTAG | The degree of aggregation and the trend of extension among patches | ||
Largest Path Index | LPI | Identify dominant landscape types | ||
Shannon’s Diversity Index | SHDI | Trend distribution of patch types across the landscape | ||
Shannon’s Evenness Index | SHEI | Analysis of landscape dominance types and their distribution |
Time Phase | Moran’s I | Z | p |
---|---|---|---|
2000 | 0.54 | 12.469 | <0.001 |
2005 | 0.52 | 12.162 | <0.001 |
2010 | 0.57 | 13.810 | <0.001 |
2015 | 0.60 | 13.250 | <0.001 |
2020 | 0.68 | 15.597 | <0.001 |
Year/Type | ED | CONTAG | SHDI | SHEI | AI |
---|---|---|---|---|---|
2000 | 11.0535 | 67.4035 | 0.9738 | 0.6051 | 98.3522 |
2005 | 19.1381 | 63.9234 | 1.0423 | 0.6476 | 97.1399 |
2010 | 11.1038 | 66.4040 | 1.0038 | 0.6237 | 98.3450 |
2015 | 14.4106 | 64.7912 | 1.0361 | 0.6438 | 97.8493 |
2020 | 12.9671 | 65.2507 | 1.0295 | 0.6397 | 98.0658 |
Year | Month | Monthly Average Settling Velocity (μg/m2) | Days of Dry Deposition | Dry Deposition Value (t) |
---|---|---|---|---|
2000 | 7 | 0.1920 | 15 | 8.3383 |
8 | 0.1926 | 19 | 10.5948 | |
9 | 0.2020 | 16 | 9.3574 | |
2005 | 7 | 0.2593 | 14 | 9.7487 |
8 | 0.2469 | 14 | 9.2825 | |
9 | 0.2652 | 17 | 12.1070 | |
2010 | 7 | 0.3182 | 15 | 9.1670 |
8 | 0.2334 | 16 | 7.1723 | |
9 | 0.2485 | 15 | 7.1590 | |
2015 | 7 | 0.3515 | 22 | 23.4081 |
8 | 0.2012 | 19 | 11.5718 | |
9 | 0.2217 | 17 | 11.4086 | |
2020 | 7 | 0.2142 | 19 | 7.3013 |
8 | 0.1501 | 14 | 3.7699 | |
9 | 0.1734 | 25 | 7.7770 |
Correlation Coefficient Between the Land Use Area and PM2.5 | Construction Lands | Water Areas | Agricultural Lands | Green Areas |
---|---|---|---|---|
0.476 * | 0.282 | −0.425 * | −0.621 * |
Variable | Construction Lands | Water Areas | Agricultural Lands | Green Areas | |
---|---|---|---|---|---|
Type level | NP | 0.316 * | 0.215 | −0.367 * | −0.431 * |
PD | 0.438 * | 0.415 * | −0.451 * | −0.571 * | |
LPI | 0.312 * | 0.271 | −0.317 * | −0.537 * | |
LSI | 0.412 * | 0.239 * | −0.439 * | −0.498 * | |
COHESION | 0.218 | 0.197 | −0.213 | −0.376 * |
Year/Type | ED | CONTAG | SHDI | SHEI | AI |
---|---|---|---|---|---|
2000 | 0.521 * | 0.235 | 0.141 | 0.402 * | −0.409 * |
2005 | 0.437 * | 0.307 * | 0.172 * | 0.513 * | −0.398 * |
2010 | 0.476 * | 0.283 * | 0.210 | 0.569 * | −0.511 * |
2015 | 0.512 * | 0.290 * | 0.153 | 0.607 * | −0.581 * |
2020 | 0.497 * | 0.313 * | 0.107 | 0.524 * | −0.497 * |
(a) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GDP | AVSI | TIOV | |||||||||||||
2000 | 2005 | 2010 | 2015 | 2020 | 2000 | 2005 | 2010 | 2015 | 2020 | 2000 | 2005 | 2010 | 2015 | 2020 | |
DC | −18.66 | −43.97 | −3.81 | −1.13 | −0.51 | 12.26 | −25.89 | 0.27 | −5.09 | −0.63 | −2.72 | 25.30 | 0.99 | 1.87 | −0.05 |
DX | −5.49 | −12.96 | −3.75 | −0.32 | −0.38 | −48.23 | −18.41 | 0.21 | −2.71 | 0.48 | −2.52 | 6.92 | 0.91 | 2.66 | −0.30 |
FS | −17.03 | −45.91 | −3.86 | 4.97 | −0.49 | −4.85 | −55.55 | 0.34 | −16.55 | −0.03 | −2.12 | 27.05 | 1.07 | 2.62 | −0.26 |
GJ | 5.16 | −3.30 | −3.58 | −0.22 | −0.27 | −62.76 | −27.22 | 0.11 | 0.73 | 0.57 | −2.09 | 0.75 | 0.69 | 8.05 | −0.42 |
JCP | 5.31 | −3.77 | −3.63 | −0.19 | −0.28 | −74.58 | −24.58 | 0.13 | 0.49 | 0.59 | −2.19 | 0.69 | 0.76 | 7.11 | −0.40 |
WBL | 6.56 | −3.74 | −3.61 | −0.15 | −0.28 | −72.87 | −25.17 | 0.12 | 0.65 | 0.58 | −2.17 | 1.14 | 0.72 | 8.68 | −0.42 |
WT | −9.77 | −6.37 | −3.81 | −0.64 | −0.52 | −43.87 | −33.96 | 0.27 | −3.44 | 0.57 | −2.31 | −1.88 | 0.99 | 0.35 | −0.38 |
XD | 9.12 | −3.97 | −3.60 | −0.09 | −0.28 | −78.97 | −25.38 | 0.11 | 0.65 | 0.58 | −2.20 | 2.09 | 0.72 | 9.80 | −0.44 |
XF | −4.26 | −5.07 | −3.69 | −0.18 | −0.35 | −50.14 | −26.59 | 0.17 | 0.03 | 0.63 | −2.60 | 1.99 | 0.83 | 5.81 | −0.41 |
XHL | 7.40 | −4.32 | −3.64 | −0.07 | −0.29 | −80.92 | −26.30 | 0.13 | 0.55 | 0.59 | −2.27 | 2.34 | 0.76 | 8.62 | −0.44 |
YQ | 3.04 | −4.62 | −3.67 | −0.09 | −0.33 | −72.67 | −27.23 | 0.14 | 0.35 | 0.61 | −2.42 | 2.10 | 0.89 | 6.66 | −0.42 |
YZ | 8.72 | −3.95 | −3.63 | −0.06 | −0.28 | −82.16 | −26.67 | 0.12 | 0.54 | 0.60 | −2.31 | 2.49 | 0.75 | 8.06 | −0.44 |
YC | 11.98 | −3.38 | −3.62 | −0.05 | −0.27 | −87.94 | −26.09 | 0.12 | 0.59 | 0.61 | −2.31 | 3.42 | 0.74 | 9.00 | −0.45 |
YP | −14.78 | −3.00 | −3.74 | −0.02 | −0.52 | −8.81 | −30.48 | 0.20 | −0.77 | 0.59 | −3.41 | 0.67 | 0.89 | 4.90 | −0.28 |
(b) | |||||||||||||||
NOP | EC | TOC | |||||||||||||
2000 | 2005 | 2010 | 2015 | 2020 | 2000 | 2005 | 2010 | 2015 | 2020 | 2000 | 2005 | 2010 | 2015 | 2020 | |
DC | 0.25 | 47.41 | 11.79 | 18.63 | 17.59 | −550.86 | −78.75 | 10.47 | −314.28 | −126.31 | 126.46 | 1.60 | 0.13 | −1.33 | −0.70 |
DX | −5.71 | 21.47 | 11.57 | 5.73 | 14.67 | −324.27 | −31.74 | 9.74 | −165.50 | −162.4 | 247.44 | 0.65 | 0.11 | −2.57 | −0.88 |
FS | 10.14 | 48.20 | 11.92 | 19.39 | 19.67 | −440.20 | −88.27 | 11.19 | −359.43 | −101.72 | −124.29 | 9.83 | 0.16 | −1.57 | −0.90 |
GJ | −10.95 | 0.15 | 10.88 | −11.18 | 0.44 | 293.24 | −8.30 | 7.36 | −17.56 | 88.34 | 214.42 | −0.32 | 0.02 | −8.57 | −0.29 |
JCP | −11.13 | 1.65 | 11.10 | −9.84 | 2.11 | 67.01 | −7.16 | 8.13 | −3.99 | 47.25 | 260.79 | 0.31 | 0.05 | −7.58 | −0.36 |
WBL | −11.63 | 0.36 | 10.99 | −12.28 | 0.20 | 211.42 | −12.03 | 7.78 | −25.99 | 92.45 | 243.73 | 0.34 | 0.04 | −9.19 | −0.28 |
WT | 1.35 | 16.55 | 11.74 | 8.42 | 11.23 | −325.49 | 23.19 | 10.49 | −310.63 | −129.98 | 123.68 | 1.64 | 0.14 | −0.55 | −0.62 |
XD | −12.44 | −2.55 | 10.95 | −13.88 | −0.50 | 315.75 | −21.97 | 7.74 | −36.11 | 109.71 | 242.97 | 0.71 | 0.04 | −10.31 | −0.27 |
XF | −8.69 | 0.91 | 11.35 | −9.25 | 2.44 | −239.99 | −19.73 | 8.92 | 30.19 | 25.04 | 296.52 | 0.46 | 0.08 | −6.27 | −0.36 |
XHL | −12.03 | −3.59 | 11.10 | −13.55 | −0.60 | 137.35 | −24.97 | 8.18 | 2.27 | 105.07 | 267.96 | 0.81 | 0.06 | −9.13 | −0.27 |
YQ | −10.54 | −2.33 | 11.23 | −12.64 | 0.31 | −44.32 | −23.12 | 8.58 | 70.72 | 78.27 | 285.62 | 0.80 | 0.07 | −7.17 | −0.29 |
YZ | −12.70 | −5.55 | 11.06 | −14.00 | −0.92 | 203.83 | −28.94 | 8.09 | 43.18 | 114.64 | 267.72 | 0.94 | 0.06 | −8.57 | −0.27 |
YC | −13.77 | −8.89 | 10.98 | −14.58 | −1.04 | 371.34 | −40.84 | 7.94 | 20.37 | 122.22 | 256.17 | 1.04 | 0.05 | −9.51 | −0.28 |
YP | −7.52 | −15.42 | 11.52 | −11.29 | 3.63 | −453.94 | −157.54 | 9.47 | 160.28 | −19.22 | 396.71 | 0.48 | 0.10 | −5.31 | −0.29 |
PM2.5 Concentration | PM2.5 Dry Deposition | |
---|---|---|
GDP | 0.851 * | −0.691 * |
AVSI | 0.691 * | −0.655 * |
TIOV | 0.527 * | −0.637 * |
NOP | 0.533 * | −0.505 * |
EC | 0.446 * | −0.218 |
TOC | 0.721 * | −0.741 * |
R2 | 0.849 | 0.859 |
Adjusted R2 | 0.719 | 0.647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Zhao, Y. PM2.5 Sink-Source Dichotomy in Urban Clusters: Land Cover Efficiency Gradients and Socio-Meteorological Interactions. Atmosphere 2025, 16, 1122. https://doi.org/10.3390/atmos16101122
Yao J, Zhao Y. PM2.5 Sink-Source Dichotomy in Urban Clusters: Land Cover Efficiency Gradients and Socio-Meteorological Interactions. Atmosphere. 2025; 16(10):1122. https://doi.org/10.3390/atmos16101122
Chicago/Turabian StyleYao, Jian, and Yaolong Zhao. 2025. "PM2.5 Sink-Source Dichotomy in Urban Clusters: Land Cover Efficiency Gradients and Socio-Meteorological Interactions" Atmosphere 16, no. 10: 1122. https://doi.org/10.3390/atmos16101122
APA StyleYao, J., & Zhao, Y. (2025). PM2.5 Sink-Source Dichotomy in Urban Clusters: Land Cover Efficiency Gradients and Socio-Meteorological Interactions. Atmosphere, 16(10), 1122. https://doi.org/10.3390/atmos16101122