Mercury Pollution in a Coastal City of Northern China Driven by Temperature Re-Emission, Coal Combustion, and Port Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Analysis
2.2.1. Particle-Bound Mercury (PBM, )
2.2.2. Gaseous Elemental Mercury (GEM, )
2.2.3. Routine Monitoring Data of Conventional Pollutants
3. Results and Discussion
3.1. Meteorological Influence and Pollutant Concentrations
3.2. The Variation in Concentrations of PBM and GEM
| Location | Type | Time | GEM (ng m−3) | PBM (pg m−3) | Reference |
|---|---|---|---|---|---|
| Qinhuangdao, China | Urban | September 2022–August 2023 | 2.66 ± 1.08 | : 1.01 ± 0.77 ng m−3 : 1.74 ± 1.20 ng m−3 | This study |
| Xiamen, China | Urban | January 2020 July 2020 | 3.93 1.56 | [18] | |
| Ningbo, China | Urban | July 2013–January 2014 | 3.26 ± 1.63 | 659 ± 931 | [16] |
| Shanghai, China | Suburban | June 2015–May 2016 | 2.77 | 60.8 | [3] |
| Shanghai, China | Suburban | 1 June–31 December 2014 | 4.19 ± 9.13 | 197 ± 877 | [25] |
| Shanghai, China | Suburban | March 2014–February 2017 | 2.12 ± 0.94 | 21.81 ± 30.46 | [28] |
| Shanghai, China | Rural | 2018 | 2.01 ± 0.92 | 50.2 ± 67.2 | [14] |
| Beijing, China | Urban | September 2015–July 2016 | 4.70 ± 3.35 | 85.1 ± 95.3 | [32] |
| Guiyang, China | Urban | August to December 2009 | 9.72 ± 10.2 | 368 ± 276 | [26] |
| Xiamen, China | Urban | March 2012–February 2013 | 3.50 ± 1.61 | 174 ± 280 | [33] |
| Ningbo, China | Urban | 2015–2017 | 2.6 ± 1.0 | 316 ± 377 | [34] |
| Chongming, China | Suburban | 2012–2015 | 2.65 ± 1.73 | 21.5 ± 25.4 | [29] |
| Taiwan, China | Remote | January 2014–December 2016 | 1.54 ± 0.34 | 5.0 ± 12.0 | [30] |
| Qinghai, China | Remote | September 2007–September 2008 | 1.98 ± 0.98 | 19.4 ± 18.0 | [31] |
| Seoul, Korea | Urban | February 2005–Februry 2006 | 23.9 ± 19.6 | [35] | |
| Fukuoka, Japan | Urban | June 2012–May 2013 | 2.33 ± 0.49 | 10 ± 11 | [36] |
| Chicago, USA | Urban | 2007 | 2.5 ± 1.5 | 17 ± 87 | [37] |
| Reno, USA | Suburban | 2007–2009 | 2.0 ± 0.7 | 18 ± 22 | [38] |
| Mt.Pic du Midi, France | Remote | November 2011–November 2012 | 1.86 ± 0.27 | 14.0 ± 10.0 | [39] |
3.3. Diurnal GEM in Urban Coast
3.4. Multiple Regression Analysis of Meteorological and Pollutant Effects on Mercury
3.5. PBM Variation with Wind Speed and Wind Direction
3.6. The Ratios of GEM/CO
3.7. Air Mass Origins and Maritime Influence on Mercury Dynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schroeder, W.H.; Munthe, J. Atmospheric mercury—An overview. Atmos. Environ. 1998, 32, 809–822. [Google Scholar] [CrossRef]
- Yu, B.; Yang, L.; Wang, L.; Liu, H.; Xiao, C.; Liang, Y.; Liu, Q.; Yin, Y.; Hu, L.; Shi, J.; et al. New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes. Atmos. Chem. Phys. 2020, 20, 9713–9723. [Google Scholar] [CrossRef]
- Qin, X.; Wang, X.; Shi, Y.; Yu, G.; Zhao, N.; Lin, Y.; Fu, Q.; Wang, D.; Xie, Z.; Deng, C.; et al. Characteristics of atmospheric mercury in a suburban area of east China: Sources, formation mechanisms, and regional transport. Atmos. Chem. Phys. 2019, 19, 5923–5940. [Google Scholar] [CrossRef]
- Lin, Y.; Vogt, R.; Larssen, T. Environmental mercury in China: A review. Environ. Toxicol. Chem. 2012, 31, 2431–2444. [Google Scholar] [CrossRef]
- Mao, H.; Cheng, I.; Zhang, L. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: A review. Atmos. Chem. Phys. 2016, 16, 12897–12924. [Google Scholar] [CrossRef]
- Obrist, D.; Kirk, J.L.; Zhang, L.; Sunderland, E.M.; Jiskra, M.; Selin, N.E. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018, 47, 116–140. [Google Scholar] [CrossRef]
- Global Mercury Assessment 2018; UN Environment Programme, Chemicals and Health Branch: Geneva, Switzerland, 2018.
- Pacyna, J.M.; Travnikov, O.; De Simone, F.; Hedgecock, I.M.; Sundseth, K.; Pacyna, E.G.; Steenhuisen, F.; Pirrone, N.; Munthe, J.; Kindbom, K. Current and future levels of mercury atmospheric pollution on a global scale. Atmos. Chem. Phys. 2016, 16, 12495–12511. [Google Scholar] [CrossRef]
- Sprovieri, F.; Pirrone, N.; Ebinghaus, R.; Kock, H.; Dommergue, A. A review of worldwide atmospheric mercury measurements. Atmos. Chem. Phys. 2010, 10, 8245–8265. [Google Scholar] [CrossRef]
- Soerensen, A.L.; Jacob, D.J.; Streets, D.G.; Witt, M.L.I.; Ebinghaus, R.; Mason, R.P.; Andersson, M.; Sunderland, E.M. Multi-decadal decline of mercury in the North Atlantic atmosphere explained by changing subsurface seawater concentrations. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Amos, H.M.; Jacob, D.J.; Streets, D.G.; Sunderland, E.M. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycles 2013, 27, 410–421. [Google Scholar] [CrossRef]
- Wang, C.; Ci, Z.; Wang, Z.; Zhang, X.; Guo, J. Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and Yellow Sea. Atmos. Environ. 2016, 131, 360–370. [Google Scholar] [CrossRef]
- Ci, Z.; Zhang, X.; Wang, Z.; Niu, Z. Atmospheric gaseous elemental mercury (GEM) over a coastal/rural site downwind of East China: Temporal variation and long-range transport. Atmos. Environ. 2011, 45, 2480–2487. [Google Scholar] [CrossRef]
- Chen, C.; Qin, X.; Li, H.; Li, H.; Liu, C.; Fu, M.; Wang, X.; Huo, J.; Duan, Y.; Fu, Q.; et al. Atmospheric mercury in a developed region of eastern China: Interannual variation and gas-particle partitioning. Heliyon 2023, 9, e19786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, L.; Wang, S.; Dou, H.; Li, J.; Li, S.; Hao, J. Characteristics and Sources of Speciated Atmospheric Mercury at a Coastal Site in the East China Sea Region. Aerosol Air Qual. Res. 2017, 17, 2913–2923. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, J.; Deng, J.; Tong, L.; Xu, L.; Niu, Z.; Yin, L.; Chen, Y.; Hong, Z. Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta, China. Environ. Pollut. 2016, 218, 259–268. [Google Scholar] [CrossRef]
- Nie, X.; Mao, H.; Li, P.; Li, T.; Zhou, J.; Wu, Y.; Yang, M.; Zhen, J.; Wang, X.; Wang, Y. Total gaseous mercury in a coastal city (Qingdao, China): Influence of sea-land breeze and regional transport. Atmos. Environ. 2020, 235, 117633. [Google Scholar] [CrossRef]
- Shi, J.; Chen, Y.; Xu, L.; Hong, Y.; Li, M.; Fan, X.; Yin, L.; Chen, Y.; Yang, C.; Chen, G.; et al. Measurement report: Atmospheric mercury in a coastal city of Southeast China—Inter-annual variations and influencing factors. Atmos. Chem. Phys. 2022, 22, 11187–11202. [Google Scholar] [CrossRef]
- Lyu, R.; Mu, Y.; Wang, W.; Wu, X.; Ma, Y.; Harrison, R.M. Dynamics of water-soluble inorganic ions in Qinhuangdao: Particle size association and influences of environmental conditions. Urban Climate 2025, 61, 102390. [Google Scholar] [CrossRef]
- GBW07402; Soil Composition Analysis Standards. National Research Center for Certified Reference Materials: Beijing, China. Available online: https://www.ncrm.org.cn/English/CRM/pdf/GBW07404_20160301_135930536_1704880.pdf (accessed on 21 September 2025).
- GB3095-2012; National Ambient Air Quality Standards (NAAQS) of China. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2012.
- Sun, W.; Shao, M.; Granier, C.; Liu, Y.; Ye, C.S.; Zheng, J.Y. Long-Term Trends of Anthropogenic SO, NO, CO, and NMVOCs Emissions in China. Earth’s Future 2018, 6, 1112–1133. [Google Scholar] [CrossRef]
- Wang, W.; Yang, S.; Yin, K.; Zhao, Z.; Ying, N.; Fan, J. Network approach reveals the spatiotemporal influence of traffic on air pollution under COVID-19. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef]
- Duan, L.; Wang, X.; Wang, D.; Duan, Y.; Cheng, N.; Xiu, G. Atmospheric mercury speciation in Shanghai, China. Sci. Total Environ. 2017, 578, 460–468. [Google Scholar] [CrossRef]
- Fu, X.; Feng, X.; Qiu, G.; Shang, L.; Zhang, H. Speciated atmospheric mercury and its potential source in Guiyang, China. Atmos. Environ. 2011, 45, 4205–4212. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, X.; Wang, X.; Feng, X. Measurements and Distribution of Atmospheric Particulate-Bound Mercury: A Review. Bull. Environ. Contam. Toxicol. 2019, 103, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Wang, S.; Wu, Q.; Tang, Y.; Wen, M. Measuring and Regression Modeling of Gas–Particle Partitioning of Atmospheric Oxidized Mercury at a Coastal Site in Shanghai. Atmosphere 2022, 13, 2014. [Google Scholar] [CrossRef]
- Zhang, L.; Lyman, S.; Mao, H.; Lin, C.J.; Gay, D.A.; Wang, S.; Sexauer Gustin, M.; Feng, X.; Wania, F. A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmos. Chem. Phys. 2017, 17, 9133–9144. [Google Scholar] [CrossRef]
- Nguyen, L.S.P.; Sheu, G.-R.; Chang, S.-C.; Lin, N.-H. Effects of temperature and relative humidity on the partitioning of atmospheric oxidized mercury at a high-altitude mountain background site in Taiwan. Atmos. Environ. 2021, 261, 118572. [Google Scholar] [CrossRef]
- Fu, X.W.; Feng, X.; Liang, P.; Deliger; Zhang, H.; Ji, J.; Liu, P. Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China. Atmos. Chem. Phys. 2012, 12, 1951–1964. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Wang, C.; Zhang, X. Concentrations and gas-particle partitioning of atmospheric reactive mercury at an urban site in Beijing, China. Environ. Pollut. 2019, 249, 13–23. [Google Scholar] [CrossRef]
- Xu, L.; Chen, J.; Yang, L.; Niu, Z.; Tong, L.; Yin, L.; Chen, Y. Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere 2015, 119, 530–539. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Tong, L.; Chen, Y.; Zhao, G.; Hong, Y.; Xiao, H.; Chen, J. Gas-particle partitioning of atmospheric reactive mercury and its contribution to particle bound mercury in a coastal city of the Yangtze River Delta, China. Atmos. Environ. 2020, 239, 117744. [Google Scholar] [CrossRef]
- Kim, S.-H.; Han, Y.-J.; Holsen, T.M.; Yi, S.-M. Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea. Atmos. Environ. 2009, 43, 3267–3274. [Google Scholar] [CrossRef]
- Marumoto, K.; Hayashi, M.; Takami, A. Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia. Atmos. Environ. 2015, 117, 147–155. [Google Scholar] [CrossRef]
- Gratz, L.E.; Keeler, G.J.; Marsik, F.J.; Barres, J.A.; Dvonch, J.T. Atmospheric transport of speciated mercury across southern Lake Michigan: Influence from emission sources in the Chicago/Gary urban area. Sci. Total Environ. 2013, 448, 84–95. [Google Scholar] [CrossRef]
- Lyman, S.N.; Gustin, M.S. Determinants of atmospheric mercury concentrations in Reno, Nevada, U.S.A. Sci. Total Environ. 2009, 408, 431–438. [Google Scholar] [CrossRef]
- Fu, X.; Marusczak, N.; Heimbürger, L.E.; Sauvage, B.; Gheusi, F.; Prestbo, E.M.; Sonke, J.E. Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France. Atmos. Chem. Phys. 2016, 16, 5623–5639. [Google Scholar] [CrossRef]
- Chong, X.; Wang, Y.; Liu, R.; Zhang, Y.; Zhang, Y.; Zheng, W. Pollution characteristics and source difference of gaseous elemental mercury between haze and non-haze days in winter. Sci. Total Environ. 2019, 678, 671–680. [Google Scholar] [CrossRef]
- Osawa, T.; Ueno, T.; Fu, F. Sequential variation of atmospheric mercury in Tokai-mura, seaside area of eastern central Japan. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Chong, X.; Wang, Y.; Zhang, Y.; Liu, R.; Zhang, Y.; Zheng, W.; Zeng, Y. Variation characteristics and source differences of gaseous elemental mercury over four seasons in Qingdao: Influence of weather processes. Atmos. Environ. 2020, 222, 117118. [Google Scholar] [CrossRef]
- Denis, M.S.; Song, X.; Lu, J.Y.; Feng, X. Atmospheric gaseous elemental mercury in downtown Toronto. Atmos. Environ. 2006, 40, 4016–4024. [Google Scholar] [CrossRef]
- Choi, H.-D.; Huang, J.; Mondal, S.; Holsen, T.M. Variation in concentrations of three mercury (Hg) forms at a rural and a suburban site in New York State. Sci. Total Environ. 2013, 448, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, S.; Qiu, G.; Hou, Y.; Tang, S. Total gaseous mercury emissions from soil in Guiyang, Guizhou, China. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Lee, D.S.; Dollard, G.J.; Pepler, S. Gas-phase mercury in the atmosphere of the United Kingdom. Atmos. Environ. 1998, 32, 855–864. [Google Scholar] [CrossRef]
- Jiskra, M.; Wiederhold, J.G.; Skyllberg, U.; Kronberg, R.-M.; Hajdas, I.; Kretzschmar, R. Mercury Deposition and Re-emission Pathways in Boreal Forest Soils Investigated with Hg Isotope Signatures. Environ. Sci. Technol. 2015, 49, 7188–7196. [Google Scholar] [CrossRef]
- Landis, M.S.; Lewis, C.W.; Stevens, R.K.; Keeler, G.J.; Dvonch, J.T.; Tremblay, R.T. Ft. McHenry tunnel study: Source profiles and mercury emissions from diesel and gasoline powered vehicles. Atmos. Environ. 2007, 41, 8711–8724. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Wang, L.; Wu, Y.; Duan, L.; Wu, Q.; Wang, F.; Yang, M.; Yang, H.; Hao, J.; et al. Updated Emission Inventories for Speciated Atmospheric Mercury from Anthropogenic Sources in China. Environ. Sci. Technol. 2015, 49, 3185–3194. [Google Scholar] [CrossRef]
- Pacyna, E.G.; Pacyna, J.M.; Steenhuisen, F.; Wilson, S. Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 2006, 40, 4048–4063. [Google Scholar] [CrossRef]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- Lin, C.-J.; Pongprueksa, P.; Lindberg, S.E.; Pehkonen, S.O.; Byun, D.; Jang, C. Scientific uncertainties in atmospheric mercury models I: Model science evaluation. Atmos. Environ. 2006, 40, 2911–2928. [Google Scholar] [CrossRef]
- Subir, M.; Ariya, P.A.; Dastoor, A.P. A review of uncertainties in atmospheric modeling of mercury chemistry I. Uncertainties in existing kinetic parameters—Fundamental limitations and the importance of heterogeneous chemistry. Atmos. Environ. 2011, 45, 5664–5676. [Google Scholar] [CrossRef]
- Sakata, M.; Marumoto, K. Formation of atmospheric particulate mercury in the Tokyo metropolitan area. Atmos. Environ. 2002, 36, 239–246. [Google Scholar] [CrossRef]
- Han, D.; Zhang, J.; Hu, Z.; Ma, Y.; Duan, Y.; Han, Y.; Chen, X.; Zhou, Y.; Cheng, J.; Wang, W. Particulate mercury in ambient air in Shanghai, China: Size-specific distribution, gas–particle partitioning, and association with carbonaceous composition. Environ. Pollut. 2018, 238, 543–553. [Google Scholar] [CrossRef]
- Pacyna, E.G.; Pacyna, J.M. Global Emission of Mercury from Anthropogenic Sources in 1995. Water Air Soil Pollut. 2002, 137, 149–165. [Google Scholar] [CrossRef]
- Weigelt, A.; Slemr, F.; Ebinghaus, R.; Pirrone, N.; Bieser, J.; Bödewadt, J.; Esposito, G.; van Velthoven, P.F.J. Mercury emissions of a coal-fired power plant in Germany. Atmos. Chem. Phys. 2016, 16, 13653–13668. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Zhang, X. Two years measurement of speciated atmospheric mercury in a typical area of the north coast of China: Sources, temporal variations, and influence of regional and long-range transport. Atmos. Environ. 2020, 228, 117235. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.; Zheng, J.; Zheng, Y.; Yuan, D.; Chen, W. Mercury concentration and isotopic composition on different atmospheric particles (PM10 and PM2. 5) in the subtropical coastal suburb of Xiamen Bay, Southern China. Atmos. Environ. 2021, 261, 118604. [Google Scholar] [CrossRef]
- Duan, L.; Cheng, N.; Xiu, G.; Wang, F.; Chen, Y. Characteristics and source appointment of atmospheric particulate mercury over East China Sea: Implication on the deposition of atmospheric particulate mercury in marine environment. Environ. Pollut. 2017, 224, 26–34. [Google Scholar] [CrossRef]
- Fang, G.; Zhang, L.; Huang, C. Measurements of size-fractionated concentration and bulk dry deposition of atmospheric particulate bound mercury. Atmos. Environ. 2012, 61, 371–377. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Yuan, X.; Zeng, G.; León, T.; Liang, J.; Chen, G.; Yuan, X. Characteristics of Particulate Pollution (PM2.5 and PM10) and Their Spacescale-Dependent Relationships with Meteorological Elements in China. Sustainability 2017, 9, 2330. [Google Scholar] [CrossRef]
- Won, J.H.; Park, J.Y.; Lee, T.G. Mercury emissions from automobiles using gasoline, diesel, and LPG. Atmos. Environ. 2007, 41, 7547–7552. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations. Environ. Pollut. 2016, 218, 1209–1221. [Google Scholar] [CrossRef]
- Friedli, H.R.; Radke, L.F.; Lu, J.Y. Mercury in smoke from biomass fires. Geophys. Res. Lett. 2001, 28, 3223–3226. [Google Scholar] [CrossRef]
- Thy, P.; Jenkins, B.M. Mercury in Biomass Feedstock and Combustion Residuals. Water Air Soil Pollut. 2010, 209, 429–437. [Google Scholar] [CrossRef]
- Gao, S.; Luo, T.-C.; Zhang, B.-R.; Zhang, H.-F.; Han, Y.-w.; Zhao, Z.-D.; Hu, Y.-K. Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta 1998, 62, 1959–1975. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 3, pp. 1–64. [Google Scholar]
- Shaw, D.M.; Dostal, J.; Keays, R.R. Additional estimates of continental surface Precambrian shield composition in Canada. Geochim. Cosmochim. Acta 1976, 40, 73–83. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Tian, Z.; Lehmann, B.; Deng, C.; Luo, A.; Zhang, X.; Moynier, F.; Yin, R. Mercury abundance and isotopic composition in granitic rocks: Implications for Hg cycling in the upper continental crust. Geochim. Cosmochim. Acta 2023, 361, 200–209. [Google Scholar] [CrossRef]
- Hans Wedepohl, K. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Aleku, D.L.; Lazareva, O.; Pichler, T. Mercury in groundwater—Source, transport and remediation. Appl. Geochem. 2024, 170, 106060. [Google Scholar] [CrossRef]
- Fu, X.; Feng, X.; Zhang, G.; Xu, W.; Li, X.; Yao, H.; Liang, P.; Li, J.; Sommar, J.; Yin, R.; et al. Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Weiss-Penzias, P.S.; Williams, E.J.; Lerner, B.M.; Bates, T.S.; Gaston, C.; Prather, K.; Vlasenko, A.; Li, S.M. Shipboard measurements of gaseous elemental mercury along the coast of Central and Southern California. J. Geophys. Res. Atmos. 2013, 118, 208–219. [Google Scholar] [CrossRef]
- Zhang, H.; Lindberg, S.E. Processes influencing the emission of mercury from soils: A conceptual model. J. Geophys. Res. Atmos. 1999, 104, 21889–21896. [Google Scholar] [CrossRef]
- Feng, X.; Tang, S.; Shang, L.; Yan, H.; Sommar, J.; Lindqvist, O. Total gaseous mercury in the atmosphere of Guiyang, PR China. Sci. Total Environ. 2003, 304, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.W.; Zhang, H.; Lin, C.J.; Feng, X.B.; Zhou, L.X.; Fang, S.X. Correlation slopes of GEM/CO, GEM/CO2, and GEM/CH4 and estimated mercury emissions in China, South Asia, the Indochinese Peninsula, and Central Asia derived from observations in northwestern and southwestern China. Atmos. Chem. Phys. 2015, 15, 1013–1028. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, T.; Talbot, R.; Mao, H.; Hall, C.B.; Yang, X.; Fu, C.; Zhuang, B.; Li, S.; Han, Y.; et al. Characteristics of atmospheric Total Gaseous Mercury (TGM) observed in urban Nanjing, China. Atmos. Chem. Phys. 2012, 12, 12103–12118. [Google Scholar] [CrossRef]
- GB13223-2011; Emission Standard of Air Pollutants for Thermal Power Plants. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2011.
- Wang, W.; Zhou, H.; Lyu, R.; Li, W.; Zhao, Z.; Zhou, X.; Shao, L. Chemical evaluation of aerosol particles in an intense Asian dust storm in a coastal city: Direct vs. reverse transport stages. J. Environ. Sci. 2025, 155, 193–204. [Google Scholar] [CrossRef]
- Chen, X.; Balasubramanian, R.; Zhu, Q.; Behera, S.N.; Bo, D.; Huang, X.; Xie, H.; Cheng, J. Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai. Atmos. Environ. 2016, 131, 400–408. [Google Scholar] [CrossRef]
- Mason, R.P.; Fitzgerald, W.F. The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1993, 40, 1897–1924. [Google Scholar] [CrossRef]
- Andersson, M.E.; Sommar, J.; Gårdfeldt, K.; Jutterström, S. Air–sea exchange of volatile mercury in the North Atlantic Ocean. Mar. Chem. 2011, 125, 1–7. [Google Scholar] [CrossRef]
- Sheu, G.-R.; Lin, N.-H. Mercury in cloud water collected on Mt. Bamboo in northern Taiwan during the northeast monsoon season. Atmos. Environ. 2011, 45, 4454–4462. [Google Scholar] [CrossRef]









| Standardized Regression Coefficients (β) | |||
|---|---|---|---|
| GEM | |||
| RH | −0.128 (*) | −0.135 (*) | −0.262 (***) |
| T | −0.597 (***) | −0.278 (*) | 0.715 (***) |
| PRES | 0.011 (ns) | 0.007 (ns) | −0.037 (ns) |
| WS | 0.186 (*) | 0.540 (**) | 0.054 (ns) |
| PM2.5 | 0.077 (ns) | / | 0.361 (***) |
| SO2 | −0.238 (**) | 0.270 (***) | 0.431 (***) |
| CO | 0.148 (ns) | −0.176 (ns) | −0.223 (**) |
| NO2 | 0.155 (*) | −0.026 (ns) | 0.123 (*) |
| O3 | −0.009 (ns) | 0.044 (ns) | 0.161 (**) |
| R2 | 0.502 | 0.776 | 0.613 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, R.; Xue, L.; Wu, X.; Mu, Y.; Cheng, J.; Zhou, L.; Wang, Y.; Harrison, R.M. Mercury Pollution in a Coastal City of Northern China Driven by Temperature Re-Emission, Coal Combustion, and Port Activities. Atmosphere 2025, 16, 1121. https://doi.org/10.3390/atmos16101121
Lyu R, Xue L, Wu X, Mu Y, Cheng J, Zhou L, Wang Y, Harrison RM. Mercury Pollution in a Coastal City of Northern China Driven by Temperature Re-Emission, Coal Combustion, and Port Activities. Atmosphere. 2025; 16(10):1121. https://doi.org/10.3390/atmos16101121
Chicago/Turabian StyleLyu, Ruihe, Liyuan Xue, Xuefang Wu, Ye Mu, Jie Cheng, Liqiu Zhou, Yuhan Wang, and Roy M. Harrison. 2025. "Mercury Pollution in a Coastal City of Northern China Driven by Temperature Re-Emission, Coal Combustion, and Port Activities" Atmosphere 16, no. 10: 1121. https://doi.org/10.3390/atmos16101121
APA StyleLyu, R., Xue, L., Wu, X., Mu, Y., Cheng, J., Zhou, L., Wang, Y., & Harrison, R. M. (2025). Mercury Pollution in a Coastal City of Northern China Driven by Temperature Re-Emission, Coal Combustion, and Port Activities. Atmosphere, 16(10), 1121. https://doi.org/10.3390/atmos16101121

