A Machine Learning-Based Thermospheric Density Model with Uncertainty Quantification
Abstract
1. Introduction
2. Data and Methodology
2.1. Satellite Data
2.2. Sparse Principal Component Analysis
2.3. Neural Network Modeling
2.3.1. Data Preprocessing
2.3.2. Neural Network
3. Results and Discussion
3.1. Model Performance
3.2. Uncertainty Quantification
3.3. Geomagnetic Storm Evaluation
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emmert, J.T. Thermospheric Mass Density: A Review. Adv. Space Res. 2015, 56, 773–824. [Google Scholar] [CrossRef]
- Liu, H.; Lühr, H. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res. Space Phys. 2005, 110, A9. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues. J. Geophys. Res. Space Phys. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Bowman, B.R.; Tobiska, W.K.; Marcos, F.A.; Huang, C.; Lin, C.; Burke, W. A New Empirical Thermospheric Density Model JB2008 Using New Solar and Geomagnetic Indices; American Institute of Aeronautics and Astronautics: Honolulu, HI, USA, 2008. [Google Scholar]
- Bruinsma, S. The Dtm-2013 Thermosphere Model. J. Space Weather Space Clim. 2015, 5, A1. [Google Scholar] [CrossRef]
- Newman, C.J.; Williamson, M. Space Sustainability: Reframing the Debate. Space Policy 2018, 46, S0265964617300462. [Google Scholar] [CrossRef]
- Park, J.; Evans, J.S.; Eastes, R.W.; Lumpe, J.D.; Ijssel, J.v.D.; Englert, C.R.; Stevens, M.H. Exospheric Temperature Measured by Nasa-Gold under Low Solar Activity: Comparison with Other Data Sets. J. Geophys. Res. Space Phys. 2022, 127. [Google Scholar] [CrossRef]
- Doornbos, E.; Klinkrad, H.; Visser, P. Atmospheric density calibration using satellite drag observations. Adv. Space Res. 2005, 36, 515–521. [Google Scholar] [CrossRef]
- Sutton, E.K. Normalized Force Coefficients for Satellites with Elongated Shapes. J. Spacecr. Rocket. 2009, 46, 112–116. [Google Scholar] [CrossRef]
- Siemes, C.; de Teixeira da Encarnação, J.; Doornbos, E.; Ijssel, J.v.D.; Kraus, J.; Pereštý, R.; Grunwaldt, L.; Apelbaum, G.; Flury, J.; Olsen, P.E.H. Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities. Earth Planets Space 2016, 68, 1–18. [Google Scholar] [CrossRef]
- Zesta, E.; Oliveira, D.M. Thermospheric Heating and Cooling Times During Geomagnetic Storms, Including Extreme Events. Geophys. Res. Lett. 2019, 46, 12739–12746. [Google Scholar] [CrossRef]
- Pan, Q.; Xiong, C.; Lühr, H.; Smirnov, A.; Huang, Y.; Xu, C.; Yang, X.; Zhou, Y.; Hu, Y. Machine learning based modeling of the thermospheric mass density. Space Weather 2024, 22, e2023SW003844. [Google Scholar] [CrossRef]
- Turner, H.; Zhang, M.; Gondelach, D.; Linares, R. Machine Learning Algorithms for Improved Thermospheric Density Modeling. In Dynamic Data Driven Applications Systems; DDDAS 2020. Lecture Notes in Computer Science; Darema, F., Blasch, E., Ravela, S., Aved, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 12312. [Google Scholar] [CrossRef]
- Licata, R.J.; Mehta, P.M.; Tobiska, W.K.; Huzurbazar, S. Machine learned HASDM thermospheric mass density model with uncertainty quantification. Space Weather 2022, 20, e2021SW002915. [Google Scholar] [CrossRef]
- Licata, R.J.; Mehta, P.M.; Weimer, D.R.; Tobiska, W.K. Improved Neutral Density Predictions through Machine Learning Enabled Exospheric Temperature Model. Space Weather 2021, 19, e2021SW002918. [Google Scholar] [CrossRef]
- Lei, J.; Matsuo, T.; Dou, X.; Sutton, E.; Luan, X. Annual and Semiannual Variations of Thermospheric Density: Eof Analysis of Champ and Grace Data. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Yiğit, E.; Knížová, P.K.; Georgieva, K.; Ward, W. A review of vertical coupling in the atmosphere-ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity. J. Atmos. Sol.-Terr. Phys. 2016, 141, 1–12. [Google Scholar] [CrossRef]
- Weimer, D.R.; Tobiska, W.K.; Mehta, P.M.; Licata, R.J.; Drob, D.P.; Yoshii, J. Comparison of a Neutral Density Model with the Set Hasdm Density Database. Space Weather 2021, 19, e2021SW002888. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, X.; Weng, L.; Yang, S. A New Exospheric Temperature Model Based on CHAMP and GRACE Measurements. Remote Sens. 2022, 14, 5198. [Google Scholar] [CrossRef]
- Weng, L.; Lei, J.; Sutton, E.; Dou, X.; Fang, H. An Exospheric Temperature Model from Champ Thermospheric Density. Space Weather 2017, 15, 343–351. [Google Scholar] [CrossRef]
- Ruan, H.; Lei, J.; Dou, X.; Liu, S.; Aa, E. An Exospheric Temperature Model Based on Champ Observations and Tiegcm Simulations. Space Weather 2018, 16, 147–156. [Google Scholar] [CrossRef]
- Matsuo, T.; Richmond, A.D.; Nychka, D.W. Modes of High-Latitude Electric Field Variability Derived from De-2 Measurements: Empirical Orthogonal Function (Eof) Analysis. Geophys. Res. Lett. 2002, 29, 7. [Google Scholar] [CrossRef]
- Yuan, L.; Jin, S.; Calabia, A. Distinct thermospheric mass density variations following the September 2017 geomagnetic storm from GRACE and Swarm. J. Atmos. Sol.-Terr. Phys. 2019, 184, 30–36. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Sidorenko, K.A.; Kondratyev, A.N. Improving the ionospheric model accuracy using artificial neural network. J. Atmos. Sol.-Terr. Phys. 2020, 211, 105453. [Google Scholar] [CrossRef]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the ICML Workshop on Deep Learning for Speech and NLP, Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Gal, Y.; Ghahramani, Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning (ICML), New York, NY, USA, 19–24 June 2016. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
Geomagnetic Conditions | Error | Coverage Rate | ||
---|---|---|---|---|
MSIS-00 | MSIS-UN | MSIS-UN(1σ) | MSIS-UN(1σ) | |
Ap ≤ 30 | 44.5% | 23.7% | 8.4% | 50.0% |
30 < Ap ≤ 50 | 34.8% | 22.6% | 7.9% | 51.9% |
Ap > 50 | 30.9% | 20.4% | 7.7% | 57.7% |
Total | 44.1% | 23.7% | 8.4% | 50.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ning, X.; Wang, Y. A Machine Learning-Based Thermospheric Density Model with Uncertainty Quantification. Atmosphere 2025, 16, 1120. https://doi.org/10.3390/atmos16101120
Li J, Ning X, Wang Y. A Machine Learning-Based Thermospheric Density Model with Uncertainty Quantification. Atmosphere. 2025; 16(10):1120. https://doi.org/10.3390/atmos16101120
Chicago/Turabian StyleLi, Junzhi, Xin Ning, and Yong Wang. 2025. "A Machine Learning-Based Thermospheric Density Model with Uncertainty Quantification" Atmosphere 16, no. 10: 1120. https://doi.org/10.3390/atmos16101120
APA StyleLi, J., Ning, X., & Wang, Y. (2025). A Machine Learning-Based Thermospheric Density Model with Uncertainty Quantification. Atmosphere, 16(10), 1120. https://doi.org/10.3390/atmos16101120