Climate-Related Risks and Agricultural Yield Assessment in the Senegalese Groundnut Basin
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Model Estimation
2.3. Data Collection
- = value of the x-variable in a sample.
- = mean of the value of the x-variable.
- = values of the y-variable in a sample.
- = mean of the values of the y-variable.
3. Results and Discussion
3.1. Analyses of Spatial and Inter-Annual Rainfall Variabilities
3.2. Variability of Standardized Precipitation Index (SPI)
3.3. Evolution of the Simple Daily Intensity Index (SDII)
3.4. Evolution of Occurrences of Rainy and Dry Days
3.5. Evolution of Start Dates (Onset) and End Dates (Offset) of Seasons
3.6. Evolution of Temperatures
3.7. Inter-Annual Variation in Crop Yields in the Groundnut Basin (1991–2020 Period)
3.7.1. Analysis of Relationships between Climatic Variables and Crop Yields
3.7.2. Analysis of the Impact of Climate on Yields
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Groundnut Basin | R5 × Days | TSP | SDII | CDD | CWD | R20 mm | Offset | Onset | Tmax | Tmin | |
---|---|---|---|---|---|---|---|---|---|---|---|
North | Mean | 76.9 | 433.9 | 11.4 | 22 | 5 | 4 | 271 | 199 | 32.2 | 21.6 |
Standard deviation (SD) | 14.6 | 88.3 | 1.5 | 5 | 1.3 | 2 | 6.5 | 12.5 | 0.44 | 0.36 | |
Tau of Mann–Kendall | 0.12 | 0.28 | 0.17 | 0.13 | 0.07 | 0.21 | 0.09 | −0.10 | 0.34 | 0.09 | |
p-value | 0.33 | 0.02 | 0.18 | 0.3 | 0.56 | 0.10 | 0.46 | 0.42 | 0.008 | 0.45 | |
South | Mean | 79.4 | 568.8 | 11.7 | 14 | 6 | 6 | 278 | 184 | 33.12 | 22.7 |
Standard deviation (SD) | 11.9 | 91.2 | 1.19 | 4 | 1.08 | 2 | 6 | 9.6 | 0.48 | 0.32 | |
Tau of Mann–Kendall | 0.08 | 0.17 | 0.11 | 0.11 | 0.13 | 0.14 | −0.04 | 0.04 | 0.51 | 0.11 | |
p-value | 0.49 | 0.18 | 0.39 | 0.37 | 0.32 | 0.26 | 0.72 | 0.72 | 6.432 × 10−5 | 0.37 |
References
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What is sustainable agriculture? A systematic review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef]
- Hernández, C.M.; Faye, A.; Ly, M.O.; Stewart, Z.P.; Vara Prasad, P.V.; Bastos, L.M.; Nieto, L.; Carcedo, A.J.P.; Ciampitti, I.A. Soil and climate characterization to define environments for summer crops in Senegal. Sustainability 2021, 13, 11739. [Google Scholar] [CrossRef]
- Arif, M.A.R.; Waheed, M.Q.; Lohwasser, U.; Shokat, S.; Alqudah, A.M.; Volkmar, C.; Börner, A. Genetic Insight Into the Insect Resistance in Bread Wheat Exploiting the Untapped Natural Diversity. Front. Genet. 2022, 13, 828905. [Google Scholar] [CrossRef] [PubMed]
- Trisos, C.H.; Adelekan, I.O.; Totin, E. IPCC_AR6_WGII_FinalDraft_Chapter09. 2022, pp. 1–225. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 18 May 2024).
- Barry, A.A.; Caesar, J.; Klein Tank, A.M.G.; Aguilar, E.; McSweeney, C.; Cyrille, A.M.; Nikiema, M.P.; Narcisse, K.B.; Sima, F.; Stafford, G.; et al. West Africa climate extremes and climate change indices. Int. J. Climatol. 2018, 38, e921–e938. [Google Scholar] [CrossRef]
- Greenfacts Consensus Scientifique sur Rapport Technique du GIEC 2022 sur le Changement Climatique. 2022, pp. 1–17. Available online: https://www.greenfacts.org/fr/changement-climatique-re6-impacts/index.htm (accessed on 18 May 2024).
- Arce, C.; Arias, D. Paraguay Agricultural Sector Risk Assessment; No. 93943; World Bank Group Agricuture: Washington, DC, USA, 2015. [Google Scholar]
- Faye, A.; Dièye, M.; Diakhaté, P.B.; Bèye, A.; Sall, M.; Diop, M. Senegal-Land, climate, energy, agriculture and development: A study in the Sudano-Sahel Initiative for Regional Development, Jobs, and Food Security. In ZEF Working Paper Series; Zentrum für Entwicklungsforschung (ZEF) Center for Development Research Genscherallee 3 D: Bonn, Germany, 2021; ISSN 1864-6638. [Google Scholar]
- Ouikotan, B.; Van der Kwast, J.; Mynett, A.; Afouda, A. Gaps and challenges of flood risk management in West African coastal cities. In Proceedings of the 16th International Water Resnurces Assnciation (IWRA), Cancun, Mexico, 29 May–3 June 2017; pp. 1–12. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2018. Building Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2018. [Google Scholar]
- World Food Program. Global Report on Food Crises 2018, Executive Summary; Food Security Information Network (FSIN): 2018. Available online: https://www.fsinplatform.org/sites/default/files/resources/files/GRFC_2018_Full_report_EN_Low_resolution.pdf (accessed on 18 May 2024).
- Poverty, E. Climate change: Exacerbating poverty and inequality. In World Social Report 2020; United Nations Publication: New York, NY, USA, 2020; pp. 81–106. [Google Scholar] [CrossRef]
- Ilboudo Nébié, E.K.; Ba, D.; Giannini, A. Food security and climate shocks in Senegal: Who and where are the most vulnerable households? Glob. Food Sec. 2021, 29, 100513. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Wang, Y. Farmers’ adaptation to extreme weather events through farm management and its impacts on the mean and risk of rice yield in China. Am. J. Agric. Econ. 2015, 97, 602–617. [Google Scholar] [CrossRef]
- Georges, N.; Fang, S.Y.; Beckline, M.; Wu, Y. Potentials of the Groundnut Sector towards Achieving Food Security in Senegal. Open Access Libr. J. 2016, 3, e2991. [Google Scholar] [CrossRef]
- Guo, H.; Xia, Y.; Jin, J.; Pan, C. The impact of climate change on the efficiency of agricultural production in the world’s main agricultural regions. Environ. Impact Assess. Rev. 2022, 97, 106891. [Google Scholar] [CrossRef]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef]
- Beye, G. Actualisation du Découpage et de la Caractérisation Des Zones Eco Géographiques du Sénégal. National Report from Ecologycal Center of Monitoring (CSE), 2015; 93, not published online. [Google Scholar]
- Sall, M. Les Exploitations Agricoles Familiales Face aux Risques Agricoles et Climatiques: Stratégies Développées et Assurances Agricoles. Economies et Finances. Université Toulouse le Mirail—Toulouse II, 2015. Français. ⟨NNT: 2015TOU20063⟩. ⟨tel-01342523⟩. 2015. Available online: https://theses.hal.science/tel-01342523 (accessed on 20 June 2024).
- Traore, V.B.; Ndiaye, M.L.; Diallo, S.; Ndiaye, R.M.; Diouf, R.; Sow, M.L. Characterization of climatic aridity in the groundnut basin, Senegal. Alger. J. Environ. Sci. Technol. 2021, 10, 1–13. [Google Scholar]
- ANSD. Enquête Harmonisée sur les Conditions de Vie des Ménages (EHCVM) au Sénégal. Am. Econ. Rev. 2001, 91, 1369–1401. [Google Scholar]
- Faye, N.F.; Sall, M.; Affholder, F.; Gerard, F. Inégalités de Revenu en Milieu Rural Dans le Bassin Arachidier du Sénégal, Papiers de Recherche AFD, 2019, n° 115, Octobre. Available online: https://www.afd.fr/fr/ressources/inegalites-de-revenu-en-milieu-rural-dans-le-bassin-arachidier-du-senegal (accessed on 20 June 2024).
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. J. R. Stat. Soc. Ser. D Stat. 2003, 52, 691. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data. 2010. Available online: https://www.jstor.org/stable/j.ctt5hhcfr (accessed on 18 May 2024).
- Belford, C.; Delin, H.; Ceesay, E.K.; Gambia, T.; Nasr, Y. Climate change effects on economic growth: Mixed empirical evidence. Int. J. Hum. Cap. Urban Manag. 2020, 5, 99–110. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Faour, G.; Mhawej, M.; Fayad, A. Detecting changes in vegetation trends in the middle east and north Africa (MENA) region using spot vegetation. CyberGeo Eur. J. Geogr. 2016, 2016. [Google Scholar] [CrossRef]
- Pettitt, A.A.N.; Journal, S.; Statistical, R.; Series, S.; Statistics, C.A. A Non-parametric Approach to the Change-point Problem. R. Stat. Soc. 2024, 28, 126–135. [Google Scholar] [CrossRef]
- Merega, O. Changements Socio-Environnementaux et Évolution des Pratiques Agropastorales en Afrique Sahélienne: Étude Comparée Entre le Ferlo (Sénégal), le Gourma (Mali) et le Fakara (Niger). No. Paris 7. 2016, p. 356. Available online: https://theses.hal.science/tel-01783159v1 (accessed on 18 May 2024).
- Fall, A. Le Ferlo Sénégalais: Approche Géographique de la Vulnérabilité des Anthroposystèmes Sahéliens. Ababacar Fall to Cite This Version: HAL Id: Tel-01622314 Le Ferlo Sénégalais: Approche Géographique de la Vulnérabilité des Anthroposystèmes Sahéliens Sous. Thése de doctorat en Géographie. Université Paris 13—Sorbonne Paris Cité, 2014. 2017, p. 380. Available online: https://hal.science/tel-01622314 (accessed on 18 May 2024).
- Sagna, P.; Ndiaye, O.; Diop, C.; Niang, A.D.; Sambou, P.C. Les variations récentes du climat constatées au Sénégal sont-elles en phase avec les descriptions données par les scénarios du GIEC? Pollut. Atmosphérique 2015, 227, 1–17. [Google Scholar] [CrossRef]
- Bodian, A. Caractérisation de la variabilité temporelle récente des précipitations annuelles au Sénégal (Afrique de l’Ouest). Physio-Géo 2014, 8, 297–312. [Google Scholar] [CrossRef]
- Mbaye, M.L.; Bodian, A.; Kimambo, O.N.; Rouamba, F.I.; Gaveta, E. Analyses of Past Extremes Precipitation–Evapotranspiration Indices Over Sub-Saharan Countries. J. Extrem. Events 2021, 8, 2250002. [Google Scholar] [CrossRef]
- Didi Sacré Regis, M.; Mouhamed, L.; Kouakou, K.; Adeline, B.; Arona, D.; Saint, C.H.J.; Claude, K.K.A.; Jean, C.T.H.; Salomon, O.; Issiaka, S. Using the CHIRPS dataset to investigate historical changes in precipitation extremes in West Africa. Climate 2020, 8, 84. [Google Scholar] [CrossRef]
- Balliet, R.; Saley, M.B.; Anowa Eba, E.L.; Sorokoby, M.V.; N’Guessan Bi, H.V.; N’Dri, A.O.; Djè, B.K.; Biémi, J. Évolution Des Extrêmes Pluviométriques Dans La Région Du Gôh (Centre-Ouest De La Côte d’Ivoire). Eur. Sci. J. 2016, 12, 74. [Google Scholar] [CrossRef]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Roudier, P.; Kane, C.; Leblois, A.; Sultan, B.; Weber, S. Deux Exemples de Stratégies de Gestion du Risque Agricole enAfrique de L’OUEST: Services Climatiques et Assurancesindicielles. No. January 2019. Available online: https://www.researchgate.net/profile/Antoine-Leblois/publication/330141690_Deux_exemples_de_strategies_de_gestion_du_risque_agricole_en_Afrique_de_l’Ouest_services_climatiques_et_assurances_indicielles/links/5c2f623a299bf12be3ac5faf/Deux-exemples-de-strat (accessed on 20 June 2024).
- Salack, S.; Giannini, A.; Diakhaté, M.; Gaye, A.T.; Muller, B. Oceanic influence on the sub-seasonal to interannual timing and frequency of extreme dry spells over the West African Sahel. Clim. Dyn. 2014, 42, 189–201. [Google Scholar] [CrossRef]
- Faye, M.; Fall, A.; Faye, G.; Van Hecke, E. «La Variabilité Pluviométrique et ses Incidences sur les Rendements Agricoles Dans la Région des Terres Neuves du Sénégal oriental», Belgeo [En ligne], 1 | 2018, mis en Ligne le 20 juin 2018, Consulté le 09 Octobre 2024. Available online: http://journals.openedition.org/belgeo/22083 (accessed on 20 June 2024).
- Noufe, D.; Kouadio, Z.A.; Soro, G.E.; Wayou, T.P.; Goula, B.T.A.; Savane, I. Impact de la variabilité climatique sur la production du maïs et de l’igname en Zones Centre et Nord de la Côte d’Ivoire. Agron. Afr. 2015, 27, 241–255. [Google Scholar]
- Noufé, D.; Lidon, B.; Mahé, G.; Servat, E.; Yao, T.B.; Zueli, K.B.; Chaléard, J.L. Climate variability and rainfed maize production in the eastern Ivory Coast: Variabilité climatique et production de maïs en culture pluviale dans l’est ivoirien. Hydrol. Sci. J. 2011, 56, 152–167. [Google Scholar] [CrossRef]
Variables | Definition | Unit | Expected Sign |
---|---|---|---|
Agro-climatic | Total seasonal precipitation (TSP) Seasonal total precipitation in wet days (PR ≥ 1 mm) | mm | + |
Simple daily rainfall intensity index (SDII) Average daily PR intensity = annual total PR divided by the number of wet days (when total PR ≥ 1.0 mm) | mm | + | |
Max 5-day precipitation (RX5 days) Maximum 5-day PR total | mm | + | |
Number of very heavy rain days (R20 mm) Number of days when PR ≥ 20 mm | day | + | |
Consecutive wet day (CWD) Maximum seasonal number of consecutive wet days with PR > 1 mm | day | + | |
Consecutive dry days (CDDs) or length of dry days Maximum seasonal number of consecutive dry days with PR < 1 mm | day | - | |
Seasonal maximum mean temperature (Tmax) | °C | - | |
Seasonal minimum mean temperature (Tmin) | °C | + | |
Seasonal start date (onset) | Julien day | - | |
Seasonal end date (offset) | Julien day | - | |
Agricultural | Crop yields (maize, millet, and groundnut) | kg/ha |
Products Name | Variable | Temporal Resolution | Spatial Resolution | Source | Time Coverage |
---|---|---|---|---|---|
CHIRPS | Precipitation | Daily | 0.05° | CHC-UCSB | 1991–2020 |
ERA5 | Temperature | Hourly | 0.31° | Climate Data Store (CDS) | 1991–2020 |
Groundnut Basin | Maize | Groundnut | Millet | |
---|---|---|---|---|
North | Mean | 982 | 591 | 489.3 |
Standard error (SE) | 52.5 | 42.4 | 30.8 | |
Tau Mann–Kendall | 0.51 | 0.31 | 0.32 | |
p-value | 6.432 × 10−5 | 0.01 | 0.01 | |
South | Mean | 1153 | 952 | 813.2 |
Standard error (SE) | 41.5 | 44.6 | 30.4 | |
Tau Mann–Kendall | 0.08 | 0.22 | 0.33 | |
p-value | 0.49 | 0.08 | 0.09 |
Northern Zone | Southern Zone | |||||
---|---|---|---|---|---|---|
Groundnut | Millet | Maize | Groundnut | Millet | Maize | |
TSP | 0.941 *** (0.251) | 0.655 *** (0.170) | - | 0.329 (0.207) | 0.422 ** (0.153) | 0.857 *** (0.186) |
RX5 days | 0.381 * (0.227) | - | 0.482 (0.299) | 0.292 (0.189) | - | - |
CWD | - | - | −0.272 (0.204) | - | −0.224 (0.156) | |
CDD | 0.420 *** (0.158) | - | - | 0.386 (0.243) | 0.501 *** (0.189) | - |
SDII | - | - | −1.253 ** (0.549) | - | - | - |
R20 mm | −0.647 ** (0.279) | - | 0.999 * (0.504) | - | 0.273 * (0.154) | - |
Onset | - | - | - | −0.436 * (0.235) | −0.465 ** (0.184) | 0.385 ** (0.168) |
Offset | - | - | - | - | 0.180 (0.135) | −0.381 ** (0.164) |
Tmx | 0.499 *** (0.176) | 0.466 ** (0.193) | - | 0.398 * (0.208) | 0.601 *** (0.165) | 0.318 ** (0.146) |
Tmn | −0.369 * (0.199) | −0.444 ** (0.210) | - | −0.269 (0.207) | −0.222 (0.164) | - |
R-squared | 0.563 | 0.404 | 0.219 | 0.388 | 0.642 | 0.513 |
Adjusted R-squared | 0.449 | 0.335 | 0.094 | 0.228 | 0.529 | 0.411 |
p-value | 0.002 | 0.003 | 0.169 | 0.058 | 0.001 | 0.003 |
Number of parameters | 6 | 3 | 4 | 6 | 7 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faye, A.; Abbey, G.A.; Ndiaye, A.; Diop, M. Climate-Related Risks and Agricultural Yield Assessment in the Senegalese Groundnut Basin. Atmosphere 2024, 15, 1246. https://doi.org/10.3390/atmos15101246
Faye A, Abbey GA, Ndiaye A, Diop M. Climate-Related Risks and Agricultural Yield Assessment in the Senegalese Groundnut Basin. Atmosphere. 2024; 15(10):1246. https://doi.org/10.3390/atmos15101246
Chicago/Turabian StyleFaye, Adama, Georges A. Abbey, Amadou Ndiaye, and Mbaye Diop. 2024. "Climate-Related Risks and Agricultural Yield Assessment in the Senegalese Groundnut Basin" Atmosphere 15, no. 10: 1246. https://doi.org/10.3390/atmos15101246
APA StyleFaye, A., Abbey, G. A., Ndiaye, A., & Diop, M. (2024). Climate-Related Risks and Agricultural Yield Assessment in the Senegalese Groundnut Basin. Atmosphere, 15(10), 1246. https://doi.org/10.3390/atmos15101246