Methods, Progress and Challenges in Global Monitoring of Carbon Emissions from Biomass Combustion
Abstract
:1. Introduction
2. Analysis of the Current Situation and Limitations of Bottom-Up Monitoring Methods
2.1. Land Ecosystem Process Modeling
2.2. Emission Inventory Method
2.3. Fire Radiation Power Method
3. Analysis of the Current Situation and Limitations of Top-Down Monitoring Methods
3.1. Gaussian Plume Model
3.2. Lagrange Particle Diffusion Model
3.3. GEOS-Chem Model Inversion
4. Trends and Prospects of Carbon Emission Research on Biomass Combustion
4.1. High Precision of Data and Multi-Source Fusion
4.2. Model Optimization and Introduction of New Algorithms
4.3. Detailed Regional Studies and Applications on a Global Scale
4.4. Assimilation Technology and Dynamic Monitoring
4.5. Interdisciplinary Cooperation and International Collaboration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Der Werf, G.R.; Randerson, J.T.; Giglio, L.; Van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; Van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global Fire Emissions Estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- Su, M.; Shi, Y.; Yang, Y.; Guo, W. Impacts of Different Biomass Burning Emission Inventories: Simulations of Atmospheric CO2 Concentrations Based on GEOS-Chem. Sci. Total Environ. 2023, 876, 162825. [Google Scholar] [CrossRef] [PubMed]
- Institute of Applied Ecology, CAS.; Institute of Earth Environment, CAS.; Institute of Atmospheric Physics, CAS. Blue Book on Forest Fire Carbon Emissions Research (2023); Chinese Academy of Sciences: Beijing, China, 2023. [Google Scholar]
- MacCarthy, J.; Tyukavina, A.; Weisse, M.J.; Harris, N.; Glen, E. Extreme Wildfires in Canada and Their Contribution to Global Loss in Tree Cover and Carbon Emissions in 2023. Glob. Chang. Biol. 2024, 30, e17392. [Google Scholar] [CrossRef]
- Gao, Z.; Zhou, X. A Review of the CAMx, CMAQ, WRF-Chem and NAQPMS Models: Application, Evaluation and Uncertainty Factors. Environ. Pollut. 2024, 343, 123183. [Google Scholar] [CrossRef]
- Bovensmann, H.; Buchwitz, M.; Burrows, J.P.; Reuter, M.; Krings, T.; Gerilowski, K.; Schneising, O.; Heymann, J.; Tretner, A.; Erzinger, J. A Remote Sensing Technique for Global Monitoring of Power Plant CO2 Emissions from Space and Related Applications. Atmos. Meas. Tech. 2010, 3, 781–811. [Google Scholar] [CrossRef]
- Heymann, J.; Reuter, M.; Buchwitz, M.; Schneising, O.; Bovensmann, H.; Burrows, J.P.; Massart, S.; Kaiser, J.W.; Crisp, D. CO2 Emission of Indonesian Fires in 2015 Estimated from Satellite-Derived Atmospheric CO2 Concentrations. Geophys. Res. Lett. 2017, 44, 1537–1544. [Google Scholar] [CrossRef]
- Kiel, M.; Eldering, A.; Roten, D.D.; Lin, J.C.; Feng, S.; Lei, R.; Lauvaux, T.; Oda, T.; Roehl, C.M.; Blavier, J.F.; et al. Urban-Focused Satellite CO2 Observations from the Orbiting Carbon Observatory-3: A First Look at the Los Angeles Megacity. Remote Sens. Environ. 2021, 258, 112314. [Google Scholar] [CrossRef]
- Guo, W.; Shi, Y.; Liu, Y.; Su, M. CO2 Emissions Retrieval from Coal-Fired Power Plants Based on OCO-2/3 Satellite Observations and a Gaussian Plume Model. J. Clean Prod. 2023, 397, 136525. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; Van Der Werf, G.R.; Kasibhatla, P.S.; Collatz, G.J.; Morton, D.C.; Defries, R.S. Assessing Variability and Long-Term Trends in Burned Area by Merging Multiple Satellite Fire Products. Remote Sens. Environ. 2010, 7, 251–269. [Google Scholar] [CrossRef]
- Ito, A.; Penner, J.E. Global Estimates of Biomass Burning Emissions Based on Satellite Imagery for the Year 2000. J. Geophys. Res. D Atmos. 2004, 109, D14203. [Google Scholar] [CrossRef]
- Shi, Y.; Sasai, T.; Yamaguchi, Y. Spatio-Temporal Evaluation of Carbon Emissions from Biomass Burning in Southeast Asia during the Period 2001–2010. Ecol. Model. 2014, 272, 98–115. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, A.; Matsunaga, T.; Yamaguchi, Y.; Zang, S.; Li, Z.; Yu, T.; Gu, X. High-Resolution Inventory of Mercury Emissions from Biomass Burning in Tropical Continents during 2001–2017. Sci. Total Environ. 2019, 653, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Scarpa, C.; Bacciu, V.; Ascoli, D.; Costa-Saura, J.M.; Salis, M.; Sirca, C.; Marchetti, M.; Spano, D. Estimating Annual GHG and Particulate Matter Emissions from Rural and Forest Fires Based on an Integrated Modelling Approach. Sci. Total Environ. 2024, 907, 167960. [Google Scholar] [CrossRef]
- Gong, S.; Shi, Y. Evaluation of Comprehensive Monthly-Gridded Methane Emissions from Natural and Anthropogenic Sources in China. Sci. Total Environ. 2021, 784, 147116. [Google Scholar] [CrossRef]
- De Moura, F.R.; Machado, P.D.W.; Ramires, P.F.; Tavella, R.A.; Carvalho, H.; da Silva, F.M.R., Jr. In the Line of Fire: Analyzing Burning Impacts on Air Pollution and Air Quality in an Amazonian City, Brazil. Atmos. Pollut. Res. 2024, 15, 102033. [Google Scholar] [CrossRef]
- Fu, Y.; Gao, H.; Liao, H.; Tian, X. Spatiotemporal Variations and Uncertainty in Crop Residue Burning Emissions over North China Plain: Implication for Atmospheric CO2 Simulation. Remote Sens. 2021, 13, 3880. [Google Scholar] [CrossRef]
- Ruecker, G.; Leimbach, D.; Tiemann, J. Estimation of Byram’s Fire Intensity and Rate of Spread from Spaceborne Remote Sensing Data in a Savanna Landscape. Fire 2021, 4, 65. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Zhao, B.; Lang, J.; Xia, X.; Chen, D.; Cheng, S. Estimating Air Pollutant Emissions from Crop Residue Open Burning through a Calculation of Open Burning Proportion Based on Satellite-Derived Fire Radiative Energy. Environ. Pollut. 2021, 286, 117477. [Google Scholar] [CrossRef]
- Lv, Z.; Shi, Y.; Guo, D.; Zhu, Y.; Man, H.; Zhang, Y.; Zang, S. High-Resolution Daily Emission Inventory of Biomass Burning in the Amur-Heilong River Basin Based on MODIS Fire Radiative Energy Data. Remote Sens. 2022, 14, 4087. [Google Scholar] [CrossRef]
- Wan, N.; Xiong, X.; Kluitenberg, G.J.; Hutchinson, J.M.S.; Aiken, R.; Zhao, H.; Lin, X. Estimation of Biomass Burning Emission of NO2 and CO from 2019-2020 Australia Fires Based on Satellite Observations. Atmos. Chem. Phys. 2023, 23, 711–724. [Google Scholar] [CrossRef]
- Zhou, M.; Ni, Q.; Cai, Z.; Langerock, B.; Nan, W.; Yang, Y.; Che, K.; Yang, D.; Wang, T.; Liu, Y.; et al. CO2 in Beijing and Xianghe Observed by Ground-Based FTIR Column Measurements and Validation to OCO-2/3 Satellite Observations. Remote Sens. 2022, 14, 3769. [Google Scholar] [CrossRef]
- Nassar, R.; Mastrogiacomo, J.P.; Bateman-Hemphill, W.; McCracken, C.; MacDonald, C.G.; Hill, T.; O’Dell, C.W.; Kiel, M.; Crisp, D. Advances in Quantifying Power Plant CO2 Emissions with OCO-2. Remote Sens. Environ. 2021, 264, 112579. [Google Scholar] [CrossRef]
- Krings, T.; Neininger, B.; Gerilowski, K.; Krautwurst, S.; Buchwitz, M.; Burrows, J.P.; Lindemann, C.; Ruhtz, T.; Schüttemeyer, D.; Bovensmann, H. Airborne Remote Sensing and in Situ Measurements of Atmospheric CO2 to Quantify Point Source Emissions. Atmos. Meas. Tech. 2018, 11, 721–739. [Google Scholar] [CrossRef]
- Zheng, B.; Chevallier, F.; Ciais, P.; Broquet, G.; Wang, Y.; Lian, J.; Zhao, Y. Observing Carbon Dioxide Emissions over China’s Cities and Industrial Areas with the Orbiting Carbon Observatory-2. Atmos. Chem. Phys. 2020, 20, 8501–8510. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Wu, D.; Lin, J.; Fasoli, B.; Oda, T.; Ye, X.; Lauvaux, T.; Yang, E.; Kort, E. A Lagrangian Approach towards Extracting Signals of Urban CO2 Emissions from Satellite Observations of Atmospheric Column CO2 (X CO2): X-Stochastic Time-Inverted Lagrangian Transport Model (“X-STILT v1”). Geosci. Model Dev. 2018, 11, 4843–4871. [Google Scholar] [CrossRef]
- Roten, D.; Wu, D.; Fasoli, B.; Oda, T.; Lin, J.C. An Interpolation Method to Reduce the Computational Time in the Stochastic Lagrangian Particle Dispersion Modeling of Spatially Dense XCO2 Retrievals. Earth Space Sci. 2021, 8, e2020EA001343. [Google Scholar] [CrossRef]
- Wu, K.; Palmer, P.I.; Wu, D.; Jouglet, D.; Feng, L.; Oda, T. Theoretical Assessment of the Ability of the Micro-Carb Satellite City-Scan Observing Mode to Estimate Urban CO2 Emissions. Atmos. Meas. Tech. 2023, 16, 581–602. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, Y.; Liang, R.; Chen, W.; Zhang, P.; Wang, X.; Zhou, Y.; Cheng, Y.; Liu, J. Wintertime Heavy Haze Episodes in Northeast China Driven by Agricultural Fire Emissions. Environ. Sci. Technol. Lett. 2024, 11, 150–157. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Zhang, X.-Y.; Guo, L.-F.; Zhong, J.-T.; Wang, D.-Y.; Miao, C.-H.; Gao, X.; Zhang, X.-L. An Inversion Model Based on GEOS-Chem for Estimating Global and China’s Terrestrial Carbon Fluxes in 2019. Adv. Clim. Chang. Res. 2023, 14, 49–61. [Google Scholar] [CrossRef]
- Dong, X.; Zhu, Q.; Fu, J.S.; Huang, K.; Tan, J.; Tipton, M. Evaluating Recent Updated Black Carbon Emissions and Revisiting the Direct Radiative Forcing in Arctic. Geophys. Res. Lett. 2019, 46, 3560–3570. [Google Scholar] [CrossRef]
- Lutsch, E.; Strong, K.; Jones, D.B.A.; Ortega, I.; Hannigan, J.W.; Dammers, E.; Shephard, M.W.; Morris, E.; Murphy, K.; Evans, M.J.; et al. Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic from the 2017 Canadian Wildfires. J. Geophys. Res. Atmos. 2019, 124, 8178–8202. [Google Scholar] [CrossRef]
- Palmer, P.I.; Feng, L.; Lunt, M.F.; Parker, R.J.; Bösch, H.; Lan, X.; Lorente, A.; Borsdorff, T. The Added Value of Satellite Observations of Methane for Understanding the Contemporary Methane Budget. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20210106. [Google Scholar] [CrossRef]
- Bie, N.; Lei, L.; He, Z.; Zeng, Z.; Liu, L.; Zhang, B.; Cai, B. Specific Patterns of XCO2 Observed by GOSAT during 2009–2016 and Assessed with Model Simulations over China. Sci. China Earth Sci. 2020, 63, 384–394. [Google Scholar] [CrossRef]
- Chen, L.; Gao, Y.; Ma, M.; Wang, L.; Wang, Q.; Guan, S.; Yao, X.; Gao, H. Striking Impacts of Biomass Burning on PM2.5 Concentrations in Northeast China through the Emission Inventory Improvement. Environ. Pollut. 2023, 318, 120835. [Google Scholar] [CrossRef]
- Liu, L.Y.; Chen, L.F.; Liu, Y.; Yang, D.X.; Zhang, X.Y.; Lu, N.M.; Ju, W.M.; Jiang, F.; Yin, Z.S.; Liu, G.H.; et al. Satellite Remote Sensing for Global Stocktaking: Methods, Progress and Perspectives. Natl. Remote Sens. Bull. 2022, 26, 243–267. [Google Scholar] [CrossRef]
- Mao, H.; Zhang, Y.; Fang, Q.; Zhang, L. Biomass Burning Emission Estimation Based on Satellite Remote Sensing: Research Progress. J. Atmos. Environ. Opt. 2016, 11, 1–14. [Google Scholar] [CrossRef]
- Fu, S.; Zhou, Y.; Lei, J.; Zhou, N. Changes in the Spatiotemporal of Net Primary Productivity in the Conventional Lake Chad Basin between 2001 and 2020 Based on CASA Model. Atmosphere 2023, 14, 232. [Google Scholar] [CrossRef]
- Xu, D.; Chen, J.; Wu, Q.; Wang, Z. Research on a Real-Time Monitoring System for Campus Woodland Fires via Deep Learning. Forests 2024, 15, 24–39. [Google Scholar] [CrossRef]
- Farahmand, A.; Stavros, E.N.; Reager, J.T.; Behrangi, A. Introducing Spatially Distributed Fire Danger from Earth Observations (FDEO) Using Satellite-Based Data in the Contiguous United States. Remote Sens. 2020, 12, 1252. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Kimura, Y.; Mcdonald-Buller, E.C.; Emmons, L.K.; Buchholz, R.R.; Tang, W.; Seto, K.; Joseph, M.B.; Barsanti, K.C.; Carlton, A.G.; et al. The Fire Inventory from NCAR Version 2.5: An Updated Global Fire Emissions Model for Climate and Chemistry Applications. Geosci. Model Dev. 2023, 16, 3873–3891. [Google Scholar] [CrossRef]
- Liousse, C.; Penner, J.; Chuang, C.; Walton, J.; Eddleman, H.; Cachier, H.; Penner, J.E.; Walton, J.J. A Global Three-Dimensional Model Study of Carbonaceous Aerosols. J. Geophys. Res. Atmos. 1996, 101, 411–430. [Google Scholar] [CrossRef]
- He, H.; Wang, H.; Guan, Z.; Chen, H.; Fu, Q.; Wang, M.; Dong, X.; Cui, C.; Wang, L.; Wang, B.; et al. Facilitating International Collaboration on Climate Change Research. Bull. Am. Meteorol. Soc. 2020, 101, E650–E654. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, G.; Shi, Y.; Yang, Y.; Wu, W.; Zhou, Z. Methods, Progress and Challenges in Global Monitoring of Carbon Emissions from Biomass Combustion. Atmosphere 2024, 15, 1247. https://doi.org/10.3390/atmos15101247
Qu G, Shi Y, Yang Y, Wu W, Zhou Z. Methods, Progress and Challenges in Global Monitoring of Carbon Emissions from Biomass Combustion. Atmosphere. 2024; 15(10):1247. https://doi.org/10.3390/atmos15101247
Chicago/Turabian StyleQu, Ge, Yusheng Shi, Yongliang Yang, Wen Wu, and Zhitao Zhou. 2024. "Methods, Progress and Challenges in Global Monitoring of Carbon Emissions from Biomass Combustion" Atmosphere 15, no. 10: 1247. https://doi.org/10.3390/atmos15101247
APA StyleQu, G., Shi, Y., Yang, Y., Wu, W., & Zhou, Z. (2024). Methods, Progress and Challenges in Global Monitoring of Carbon Emissions from Biomass Combustion. Atmosphere, 15(10), 1247. https://doi.org/10.3390/atmos15101247