Air Temperature Variability of the Northern Mountains in the Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. The study Area
2.2. Meteorological Stations
2.3. Data and Methods
3. Results
3.1. Mean, Maximal and Minimal Air Temperatures
3.2. Comparison of Normal Periods
3.3. Spatial Temperature Variability
3.4. Vysoká Hole Station
4. Discussion
4.1. Comparison with Other Mountain Ranges
4.2. Czech Mountains in the Light of 20-Year Moving Trends
4.3. Context of Temperature Variability to Local Factors
5. Conclusions
- The annual and summer/winter half-year TAVG series revealed a statistically significant increase in 10-year trends in 1961–2020. The strongest trend prevailed in most cases at the highest analyzed station (Praděd) and the summer half-year was becoming warmer faster than the winter half-year.
- Statistically significant increasing trends of seasonal TAVG (except for SON at the Paprsek and Šerák stations) were found, strongest for JJA and weakest for SON. Except for a very low increase or even decrease in temperature in October (statistically insignificant), increasing temperature trends were revealed in all other months.
- Annual TAVG, TMAX and TMIN increased (statistically significantly) between the 1961–1990 and 1991–2020 periods. The highest differences between both normal periods were recorded for TMAX, followed by TMIN and TAVG. Nevertheless, the highest annual differences did not always correspond to the station altitude.
- Climate conditions were becoming warmer more in the higher elevations of the investigated region than in the lower ones in the 1991–2020 period, opposite the 1961–1990 period. That differs from previous studies concerning the CR, indicating slower temperature increase at higher elevations.
- The mean annual number of arctic, ice and frost days decreased in 1991–2020 at all stations (statistically significant decline in the number of ice and frost days). The highest decrease was always observed at the highest altitudes and downsized with decreasing elevation.
- The temperature conditions of the Vysoká hole station were comparable to the stations at similar altitudes. The Vysoká hole station temperature series are representative enough and comparable with measurements of meteorological stations included in the CHMI network.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Station | Altitude (m a.s.l.) | Coordinates | Surface Characteristics | Mountains |
---|---|---|---|---|
Rýchory | 1.002 | 50°39′38″, 15°51′01″ | forest | Giant Mts. |
Churáňov | 1.117 | 49°04′05″, 13°36′55″ | forest | Bohemian Forest |
Bučina | 1.152 | 48°58′02″, 13°35′33″ | forest | Bohemian Forest |
Vysoký Stolec | 1.250 | 48°59′14″, 13°36′33″ | forest | Bohemian Forest |
Labská bouda | 1.320 | 50°46′11″, 15°32′41″ | alpine grassland | Giant Mts. |
Plechý | 1.344 | 48°46′16″, 13°51 05″ | alpine grassland | Bohemian Forest |
Luční bouda | 1.413 | 50°44′07″, 15°41′52″ | alpine grassland | Giant Mts. |
Sněžka | 1.602 | 50°44′08″, 15°44′25″ | alpine grassland | Giant Mts. |
Appendix C
Appendix D
Appendix E
References
- Kliment, Z.; Matoušková, M.; Ledvinka, O.; Královec, V. Hodnocení trendů v hydro-klimatických řadách na příkladu vybraných horských povodí (Evaluation of trends in hydro-climatic long-term data series for selected mountains catchments). In Proceedings of the Mikroklima a Mezoklima Krajinných Struktur a Antropogenních Prostředí, Skalní mlýn, Blansko, Česká republika, 2–4 February 2011; Volume 2, p. 52. [Google Scholar]
- Čermák, P.; Mikita, T.; Kadavý, J.; Trnka, M. Evaluating Recent and Future Climatic Suitability for the Cultivation of Norway Spruce in the Czech Republic in Comparison with Observed Tree Cover Loss between 2001 and 2020. Forests 2021, 12, 1687. [Google Scholar] [CrossRef]
- Trnka, M.; Balek, J.; Brázdil, R.; Dubrovský, M.; Eitzinger, J.; Hlavinka, P.; Chuchma, F.; Možný, M.; Prášil, I.; Růžek, P.; et al. Observed changes in the agroclimatic zones in the Czech Republic between 1961 and 2019. Plant Soil Environ. 2021, 67, 154–163. [Google Scholar] [CrossRef]
- Krug, A.; Fenner, D.; Mücke, H.-G.; Scherer, D. The contribution of air temperature and ozone to mortality rates during hot weather episodes in eight German cities during the years 2000 and 2017. Nat. Hazards Earth Syst. Sci. 2020, 20, 3083–3097. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Scovronick, N.; Sera, F.; Royé, D.; Schneider, R.; Tobias, A.; Astrom, C.; Guo, Y.; Honda, Y.; Hondula, D.M.; et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Chang. 2021, 11, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Petkova, E.P.; Dimitrova, L.K.; Sera, F.; Gasparrini, A. Mortality attributable to heat and cold among the elderly in Sofia, Bulgaria. Int. J. Biometeorol. 2021, 65, 865–872. [Google Scholar] [CrossRef]
- Lynas, M.; Houlton, B.Z.; Perry, S. Greater than 99% consensus on human caused climate change in the peer-reviewed scientific literature. Environ. Res. Lett. 2021, 16, 114005. [Google Scholar] [CrossRef]
- World Meteorological Organization. State of the Global Climate 2021 (WMO-No.1290). Available online: https://library.wmo.int/doc_num.php?explnum_id=11178 (accessed on 13 June 2022).
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; p. 3949. [Google Scholar]
- Viterbi, R.; Cerrato, C.; Bionda, R.; Provenzale, A. Effects of Temperature Rise on Multi-Taxa Distributions in Mountain Ecosystems. Diversity 2020, 12, 210. [Google Scholar] [CrossRef]
- Mihăilă, D.; Bistricean, P.-I.; Horodnic, V.-D. Drivers of Timberline Dynamics in Rodna Montains, Northern Carpathians, Romania, Over the Last 131 Years. Sustainability 2021, 13, 2089. [Google Scholar] [CrossRef]
- Notarnicola, C. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote. Sens. Environ. 2020, 243. [Google Scholar] [CrossRef]
- Pepin, N.C.; Lundquist, J.D. Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett. 2008, 35, L14701. [Google Scholar] [CrossRef] [Green Version]
- Tashilova, A.A.; Kesheva, L.A.; Teunova, N.V.; Taubekova, Z.A. Analysis of temperature variability in the mountain regions of the North Caucasus in 1961–2013. Russ. Meteorol. Hydrol. 2016, 41, 601–609. [Google Scholar] [CrossRef]
- Navarro-Serrano, F.; López-Moreno, J.I.; Azorin-Molina, C.; Alonso-González, E.; Aznarez-Balta, M.; Buisán, S.T.; Revuelto, J. Elevation Effects on Air Temperature in a Topographically Complex Mountain Valley in the Spanish Pyrenees. Atmosphere 2020, 11, 656. [Google Scholar] [CrossRef]
- Weber, R.O.; Talkner, P.; Auer, I.; Böhm, R.; Gajič-Čapka, M.; Zaninovič, K.; Brázdil, R.; Faško, P. 20th-century changes on temperature in the mountain regions of central Europe. Clim. Change 1997, 36, 327–344. [Google Scholar] [CrossRef]
- Jurczak, K.; Kedzia, S. Air temperature in high-altitude areas as exemplified by the Tatra Mountains. Meteorol. Hydrol. Water Manag. 2021, 9, 13. [Google Scholar] [CrossRef]
- Brázdil, R.; Chromá, K.; Dobrovolný, P.; Tolasz, R. Climate fluctuations in the Czech Republic during the period 1961–2005. Int. J. Clim 2009, 29, 223–242. [Google Scholar] [CrossRef]
- Křížová, M. Anomálie Teploty Vzduchu na Území Česka (Air Temperature Anomalies in Czechia). Geogr.-Sb. CGS 2016, 121, 79–98. [Google Scholar]
- Zahradníček, P.; Brázdil, R.; Štěpánek, P.; Trnka, M. Reflections of global warming in trends of temperature characteristics in the Czech Republic, 1961–2019. Int. J. Clim. 2021, 41, 1211–1229. [Google Scholar] [CrossRef]
- Štěpánek, P.; Trnka, M.; Meitner, J.; Dubrovský, M.; Zahradníček, P.; Lhotka, O.; Skalák, P.; Kyselý, J.; Farda, A.; Semerádová, D. Očekávané Klimatické Podmínky v České Republice Část I. Změna Základních Parametrů (Expected Climatic Conditions in the Czech Republic Part I. Change in Basic Parameters); Ústav výzkumu globální změny AV ČR, v.v.i.: Brno, Czech Republic, 2019. [Google Scholar]
- Jůza, P.; Starostová, M.; Sklenář, K. Nameřená minima teploty vzduchu na vybraných horských stanicíh v Čechách (Minimal air temperatures at some mountain stations in Bohemia). Meteorol. Zprávy 2011, 64, 10–17. [Google Scholar]
- Jůza, P. Denní minima teploty vzduchu v Jizerských horách (Daily minimum air temperatures in Jizerské hory). Meteorol. Zprávy 2012, 65, 121–126. [Google Scholar]
- Coufal, L.; Šebek, O. Příroda Krkonošského národního parku (Nature of the Giant Mountains National Park). In Příroda Krkonošského Národního Parku; Fanta, J., Ed.; Státní Zemědělské Nakladatelství: Praha, Czech Republic, 1969; Volume 1, pp. 88–101. [Google Scholar]
- Kliegrová, S.; Metelka, L.; Materna, J. Mění se klima Krkonoš? (Is the climate of the Giant Mountains changing?). Krkonoše-Jizerské Hory 2009, 42, 24–25. [Google Scholar]
- Kliegrová, S.; Kašičková, L. Změny teploty vzduchu a úhrnů srážek v období 1961–2016 v Krkonoších (Changes in air temperature and precipitation in the period 1961–2016 in the Giant Mountains). Meteorol. Zprávy 2019, 72, 88–93. [Google Scholar]
- Tejnská, S.; Tejnský, J. Klimatické poměry Pradědu (Climatic conditions of Praděd). Campanula 1972, 3, 53–60. [Google Scholar]
- Lednický, V.; Pivoňová, E.; Ujházy, F. Teplota vzduchu na Pradědu (Air temperature at Praděd). Campanula 1973, 4, 175–202. [Google Scholar]
- Lednický, V. Zhodnocení klimatických poměrů vrcholových partií Hrubého Jeseníku na příkladu Pradědu pro potřeby rekreace (Evaluation of climatic conditions of the summit parts of the Hrubý Jeseník Mountains on the example of Praděd for recreational purposes). In Proceedings of the Sborník Referátů z Vědecké Pracovní Konference Člověk a Horská Příroda ve 20. stol., Špindlerův mlýn-Svatý Petr, Česká republika; 1977; pp. 175–184. [Google Scholar]
- Lednický, V. Podnebí Pradědu (Climate of Praděd). Sev. Morava 1985, 44–48. [Google Scholar]
- Zahradník, D.; Banaš, M.; Zeidler, M.; Misiaček, R. Klimatická charakteristika alpínského prostředí v nejvyšších partiích Vysokých Sudet (Climatic characteristics of the alpine environment in the highest parts of the High Sudetes). In Proceedings of the Konference ke 40. Výročí Chráněné Krajinné Oblasti Jeseníky (1969–2009), Karlova Studánka, Czech Republic, 11–12 November 2010; pp. 123–126. [Google Scholar]
- Formánek, T. Tisícovky. Hrubý Jeseník (Thousands. The Hrubý Jeseník Mountains). Available online: http://www.tisicovky.cz/cs/hory/hruby-jesenik/ (accessed on 20 August 2021).
- Demek, J.; Mackovčin, P.; Balatka, B.; Buček, A.; Cibulková, P.; Culek, M.; Čermák, P.; Dobiáš, D.; Havlíček, M.; Hrádek, M.; et al. Hory a Nížiny. Zeměpisný Lexikon ČR (Mountains and Lowlands. Geographical Lexicon of the Czech Republic); AOPK ČR: Brno, Czech Republic, 2006; Volume 2, p. 544. [Google Scholar]
- Brázdil, R.; Zahradníček, P.; Dobrovolný, P.; Štěpánek, P.; Trnka, M. Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019. Int. J. Clim. 2021, 41, 3881–3902. [Google Scholar] [CrossRef]
- Řehoř, J.; Brázdil, R.; Lhotka, O.; Trnka, M.; Balek, J.; Štěpánek, P.; Zahradníček, P. Precipitation in the Czech Republic in Light of Subjective and Objective Classifications of Circulation Types. Atmosphere 2021, 12, 1536. [Google Scholar] [CrossRef]
- Rulfová, Z.; Beranová, R.; Kyselý, J. Charakteristiky konvekčních a vrstevnatých srážek na stanicích v České republice v letech 1982–2016 (Characteristics of convective and stratiform precipitation at stations in the Czech Republic over 1982–2016 period). Meteorol. Zprávy 2019, 72, 11–18. [Google Scholar]
- Tolasz, R.; Brázdil, R.; Bulíř, O.; Dobrovolný, P.; Dubrovský, M.; Hájková, L.; Halásová, O.; Hostýnek, J.; Janouch, M.; Kohut, M.; et al. Atlas Podnebí Česka (Climate Atlas of Czechia), 1st ed.; Český Hydrometeorologický Ústav; Univerzita Palackého v Olomouci: Praha, Olomouc, 2007; p. 255. [Google Scholar]
- Lipina, P. Synoptické a klimatologické meteorologické stanice a měření ve vrcholových partiích Jeseníků (Synoptic and climatological stations and measurements on the peaks of the Jeseníky Mountains). Meteorol. Zprávy 2017, 70, 149–155. [Google Scholar]
- Štěpánek, P.; Zahradníček, P.; Brázdil, R.; Tolasz, R. Metodologie Kontroly a Homogenizace Časových Řad v Klimatologii (Methodology of Data Quality Control and Homogenization of Time Series in Climatology); Český Hydrometeorologický Ústav: Praha, Czech Republic, 2011; p. 118. [Google Scholar]
- Štěpánek, P.; Zahradníček, P.; Farda, A. Experiences with data quality control and homogenization of daily records of various meteorological elements in the Czech Republic in the period 1961−2010. Idojárás 2013, 117, 123–141. [Google Scholar]
- Lipina, P. Členění meteorologické staniční sítě ČHMÚ a horské meteorologické stanice v Česku (Classification of the CHMI station network and mountain meteorological stations in the Czech Republic). Meteorol. Zprávy 2017, 70, 134–142. [Google Scholar]
- Coufal, L.; Tolasz, R. Klimatologická databáze CLIDATA—Datový model a jeho aplikace (Climatological database CLIDATA–Data model and its application). Meteorol. Zprávy 2001, 54, 83–93. [Google Scholar]
- World Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation; World Meteorological Organization: Geneva, Switzerland, 2008; Volume 7, p. 681.
- Štěpánek, P.; Zahradníček, P.; Huth, R. Interpolation techniques used for data quality control and calculation of technical series: An example of Central European daily time series. Idojárás 2011, 115, 87–98. [Google Scholar]
- Czech Meteorological Society. Electronic Meteorological Glosary (eMS). Available online: http://slovnik.cmes.cz/ (accessed on 30 June 2022).
- Csagoly, P. Carpathians’ Environment Outlook 2007; United Nations Environment Programme, Division of Early Warning and Assessment–Europe: Geneva, Switzerland, 2007; pp. 89–188. [Google Scholar]
- Ohmura, A. Enhanced temperature variability in high-altitude climate change. Theor. Appl. Clim. 2012, 110, 499–508. [Google Scholar] [CrossRef]
- Micu, D.M.; Dumitrescu, A.; Cheval, S.; Nita, I.A.; Birsan, M.V. Temperature changes and elevation-warming relationships in the Carpathian Mountains. Int. J. Clim. 2021, 41, 2154–2172. [Google Scholar] [CrossRef]
- Casty, C.; Wanner, H.; Luterbacher, J.; Esper, J.; Bohm, R. Temperature and precipitation variability in the european Alps since 1500. Int. J. Clim. 2005, 25, 1855–1880. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Tolasz, R. Klima horských oblastí v Česku (Climate of mountain regions in the Czech Republic). In Proceedings of the 120 Let Meteorologických Měření a Pozorování na Lysé Hoře. Sborník Příspěvků z Konference Pořádané Českým Hydrometeorologickým Ústavem a Českou Meteorologickou Společností Konané na Lysá Hoře ve Dnech, Lysá hora, Czech Republic, 14–15 June 2017; pp. 145–149. [Google Scholar]
- Průša, J. Atlas Podnebí ČSR. Textová A Tabulková Část (Atlas of the Climate of the Czechoslovakia. Text and Tabular Part); Ústřední správa Geodézie a Kartografie: Praha, Czech Republic, 1958. [Google Scholar]
- Culek, M. Vliv borovice kleče na klima, hydrické a nivální procesy (Influence of dwarf pine on climate, hydric and alluvial processes). In Kleč v horské krajině Hrubého Jeseníku. Geobiocenologické spisy, svazek č. 16; Ústav lesnické botaniky, dendrologie a geobiocenologie, Lesnická a dřevařská fakulta Mendelovy univerzity v Brně. Akademické nakladatelství CERM: Brno, Czech Republic, 2012; pp. 69–168. [Google Scholar]
- Krška, K.; Šamaj, M. Dějiny Meteorologie v Českých Zemích a na Slovensku (The History of Meteolrology in the Czech Lands and in Slovakia); Karolinum: Praha, Czech Republic, 2001. [Google Scholar]
- Šenfeldr, M.; Maděra, P.; Buček, A.; Roštínský, P.; Špinlerová, Z.; Culek, M.; Friedl, M.; Štykar, J.; Vavříček, D.; Pecháček, J.; et al. Kleč v Horské Krajině Hrubého Jeseníku (Dwarf Pine in the Mountain Landscape of the Hrubý Jeseník Mountains). Geobiocenologické Spisy, Svazek č. 16; Ústav Lesnické Botaniky, Dendrologie a Geobiocenologie, Lesnická a Dřevařská Fakulta Mendelovy Univerzity v Brně. Akademické Nakladatelství CERM: Brno, Czech Republic, 2012; p. 236. [Google Scholar]
- Cheval, S.; Birsan, M.-V.; Dumitrescu, A. Climate variability in the Carpathian Mountains Region over 1961–2010. Glob. Planet. Chang. 2014, 118, 85–96. [Google Scholar] [CrossRef]
- Lapin, M.; Štastný, P.; Chmelík, M. Detection of climate change in the Slovak mountains. Hrvat. Meteoroloski Cas. 2005, 40, 101–104. [Google Scholar]
- Řehoř, J.; Brázdil, R.; Trnka, M.; Lhotka, O.; Balek, J.; Možný, M.; Štěpánek, P.; Zahradníček, P.; Mikulová, K.; Turňa, M. Soil drought and circulation types in a longitudinal transect over central Europe. Int. J. Clim. 2021, 41, E2834–E2850. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradníček, P.; Dobrovolný, P.; Řehoř, J.; Trnka, M.; Lhotka, O.; Štěpánek, P. Circulation and Climate Variability in the Czech Republic between 1961 and 2020: A Comparison of Changes for Two Normal Periods. Atmosphere 2022, 13, 137. [Google Scholar] [CrossRef]
- Błaś, M.; Sobik, M. Mgla w Karkonoszach i wybranych masivach górskich Europy. Opera Corcon. 2000, 37, 35–46. [Google Scholar]
- Lhotka, O.; Trnka, M.; Kyselý, J.; Markonis, Y.; Balek, J.; Možný, M. Atmospheric Circulation as a Factor Contributing to Increasing Drought Severity in Central Europe. J. Geophys. Res. Atmos. 2020, 125, e2019JD032269. [Google Scholar] [CrossRef]
Station | Period (Original/ Reconstructed Series) | Altitude (m a.s.l.) | Coordinates | Surface Characteristics | Mountains |
---|---|---|---|---|---|
Paprsek | 2010–2021/1961–2009 | 1.006 | 50°12′33″, 16°59′20″ | forest | Králický Sněžník |
Slaměnka | 2011–2021/1961–2010 | 1.100 | 50°09′04″, 16°49′58″ | forest | Králický Sněžník |
Šerák | 2004–2021/1961–2003 | 1.328 | 50°11′15″, 17°06′29″ | forest | Hrubý Jeseník |
Vysoká hole | 2017–2021/- | 1.464 | 50°03′35″, 17°13′53″ | alpine grassland | Hrubý Jeseník |
Praděd | 1961–1997/1998–2021 | 1.492 | 50°04′59″, 17°13′55″ | alpine grassland | Hrubý Jeseník |
Station | Paprsek | Slaměnka | Šerák | Praděd |
---|---|---|---|---|
Month | ||||
January | 0.28 | 0.33 | 0.24 | 0.38 |
February | 0.19 | 0.24 | 0.17 | 0.27 |
March | 0.24 | 0.29 | 0.22 | 0.35 |
April | 0.37 | 0.45 | 0.35 | 0.46 |
May | 0.29 | 0.38 | 0.27 | 0.37 |
June | 0.34 | 0.43 | 0.32 | 0.40 |
July | 0.46 | 0.56 | 0.42 | 0.50 |
August | 0.49 | 0.57 | 0.42 | 0.51 |
September | 0.08 | 0.14 | 0.03 | 0.19 |
October | 0.01 | 0.03 | −0.04 | 0.17 |
November | 0.31 | 0.38 | 0.34 | 0.52 |
December | 0.35 | 0.41 | 0.38 | 0.48 |
Season | ||||
MAM | 0.30 | 0.37 | 0.28 | 0.39 |
JJA | 0.43 | 0.52 | 0.39 | 0.47 |
SON | 0.13 | 0.18 | 0.11 | 0.29 |
DJF | 0.29 | 0.34 | 0.28 | 0.40 |
Summer half-year | 0.34 | 0.42 | 0.30 | 0.41 |
Winter half-year | 0.24 | 0.29 | 0.23 | 0.37 |
Year | 0.28 | 0.35 | 0.26 | 0.38 |
Station | Paprsek | Slaměnka | Šerák | Praděd | ||
---|---|---|---|---|---|---|
Temp. Char. | Period | Mean of All Stations | ||||
1961–1990 | 4.09 | 3.49 | 2.39 | 1.02 | 2.75 | |
TAVG | 1991–2020 | 4.95 | 4.52 | 3.16 | 2.02 | 3.66 |
diff | 0.86 | 1.03 | 0.77 | 1.00 | 0.92 | |
1961–1990 | 7.98 | 6.99 | 5.56 | 3.95 | 6.12 | |
TMAX | 1991–2020 | 9.08 | 8.29 | 6.53 | 5.28 | 7.29 |
diff | 1.10 | 1.29 | 0.97 | 1.33 | 1.17 | |
1961–1990 | 0.62 | 0.35 | −0.39 | −1.44 | −0.22 | |
TMIN | 1991–2020 | 1.55 | 1.41 | 0.32 | −0.38 | 0.73 |
diff | 0.93 | 1.06 | 0.71 | 1.06 | 0.95 |
Station | Paprsek | Slaměnka | Šerák | Praděd | ||
---|---|---|---|---|---|---|
Temp. Char. | Season/Half-Year Diff | Mean of All Stations | ||||
MAM | 0.90 | 1.07 | 0.84 | 1.04 | 0.96 | |
JJA | 1.54 | 1.77 | 1.37 | 1.46 | 1.53 | |
SON | 0.33 | 0.46 | 0.24 | 0.71 | 0.44 | |
TAVG | DJF | 0.66 | 0.81 | 0.63 | 0.83 | 0.73 |
Summer half-year | 1.17 | 1.38 | 1.04 | 1.20 | 1.20 | |
Winter half-year | 0.54 | 0.68 | 0.50 | 0.82 | 0.64 | |
MAM | 1.34 | 1.52 | 1.15 | 1.46 | 1.37 | |
JJA | 1.90 | 2.15 | 1.74 | 2.08 | 1.97 | |
SON | 0.40 | 0.60 | 0.36 | 0.61 | 0.49 | |
TMAX | DJF | 0.77 | 0.90 | 0.63 | 1.17 | 0.87 |
Summer half-year | 1.56 | 1.80 | 1.40 | 1.67 | 1.61 | |
Winter half-year | 0.64 | 0.79 | 0.54 | 0.99 | 0.74 | |
MAM | 0.85 | 0.97 | 0.66 | 1.11 | 0.90 | |
JJA | 1.50 | 1.69 | 1.25 | 1.45 | 1.47 | |
SON | 0.64 | 0.72 | 0.37 | 0.77 | 0.62 | |
TMIN | DJF | 0.76 | 0.87 | 0.57 | 0.91 | 0.78 |
Summer half-year | 1.16 | 1.32 | 0.91 | 1.22 | 1.15 | |
Winter half-year | 0.72 | 0.80 | 0.51 | 0.90 | 0.73 |
Station | Paprsek | Slaměnka | Šerák | Praděd | |
---|---|---|---|---|---|
Day | Period | ||||
1961–1990 | 2.9 | 3.2 | 5.3 | 13.1 | |
Arctic | 1991–2020 | 1.4 | 1.6 | 4.2 | 7.9 |
diff | −1.4 | −1.6 | −1.1 | −5.2 | |
1961–1990 | 78.5 | 91.2 | 103.3 | 128.4 | |
Ice | 1991–2020 | 68.6 | 78.1 | 94.2 | 108.5 |
diff | −9.9 | −13.1 | −9.1 | −19.9 | |
1961–1990 | 163.8 | 168.9 | 181.7 | 198.7 | |
Frost | 1991–2020 | 153.1 | 156.2 | 172.2 | 182.4 |
diff | −10.7 | −12.7 | −9.5 | −16.3 | |
1961–1990 | 3.1 | 1.2 | 0.2 | 0.0 | |
Summer | 1991–2020 | 9.2 | 6.6 | 1.2 | 0.3 |
diff | 6.2 | 5.3 | 1.0 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolák, L.; Řehoř, J.; Láska, K.; Štěpánek, P.; Zahradníček, P. Air Temperature Variability of the Northern Mountains in the Czech Republic. Atmosphere 2023, 14, 1063. https://doi.org/10.3390/atmos14071063
Dolák L, Řehoř J, Láska K, Štěpánek P, Zahradníček P. Air Temperature Variability of the Northern Mountains in the Czech Republic. Atmosphere. 2023; 14(7):1063. https://doi.org/10.3390/atmos14071063
Chicago/Turabian StyleDolák, Lukáš, Jan Řehoř, Kamil Láska, Petr Štěpánek, and Pavel Zahradníček. 2023. "Air Temperature Variability of the Northern Mountains in the Czech Republic" Atmosphere 14, no. 7: 1063. https://doi.org/10.3390/atmos14071063
APA StyleDolák, L., Řehoř, J., Láska, K., Štěpánek, P., & Zahradníček, P. (2023). Air Temperature Variability of the Northern Mountains in the Czech Republic. Atmosphere, 14(7), 1063. https://doi.org/10.3390/atmos14071063