Evaluation of Filtration Efficiency of Various Filter Media in Addressing Wildfire Smoke in Indoor Environments: Importance of Particle Size and Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filter Media
2.2. Instrumentation and Measurements
2.2.1. Filtration Efficiency Test Setup
2.2.2. Data Collection and Analysis
2.2.3. Independent Lab Testing
2.3. Filter Media Characterization
3. Results and Discussion
3.1. Generation of Pine Needle (PN) Smoke Particles and Their Size Distribution
3.2. Characterization of Initial Filtration Efficiency of Pine Needle Smoke
3.3. Effect of Smoke Loading on the Filtration Efficiency and Morphology of the Filter Media—Aging Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wilmot, T.Y.; Hallar, A.G.; Lin, J.C.; Mallia, D.V. Expanding number of Western US urban centers face declining summertime air quality due to enhanced wildland fire activity. Environ. Res. Lett. 2021, 16, 054036. [Google Scholar] [CrossRef]
- Jaffe, D.A.; O’Neill, S.M.; Larkin, N.K.; Holder, A.L.; Peterson, D.L.; Halofsky, J.E.; Rappold, A.G. Wildfire and prescribed burning impacts on air quality in the United States. J. Air Waste Manag. Assoc. 2020, 70, 583–615. [Google Scholar] [CrossRef] [PubMed]
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167–19170. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.E.; Fu, J.S.; Liu, Y.; Dong, X.; Liu, Y. Projections of future wildfires impacts on air pollutants and air toxics in a changing climate over the western United States. Environ. Pollut. 2022, 304, 119213. [Google Scholar] [CrossRef]
- Kabeshita, L.; Sloat, L.L.; Fischer, E.V.; Kampf, S.; Magzamen, S.; Schultz, C.; Wilkins, M.J.; Kinnebrew, E.; Mueller, N.D. Pathways framework identifies wildfire impacts on agriculture. Nat. Food 2023, 4, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.; Yu, W.; Luglio, D. An Evaluation of the Asthma Impact of the June 2023 New York City Wildfire Air Pollution Episode. Am. J. Respir. Crit. Care Med. 2023, 208, 898–900. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.; Driscoll, A.; Heft-Neal, S.; Xue, J.; Burney, J.; Wara, M. The changing risk and burden of wildfire in the United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2011048118. [Google Scholar] [CrossRef]
- Aurell, J.; Gullett, B.K. Emission Factors from Aerial and Ground Measurements of Field and Laboratory Forest Burns in the Southeastern U.S.: PM2.5, Black and Brown Carbon, VOC, and PCDD/PCDF. Environ. Sci. Technol. 2013, 47, 8443–8452. [Google Scholar] [CrossRef]
- Sparks, T.L.; Wagner, J. Composition of particulate matter during a wildfire smoke episode in an urban area. Aerosol Sci. Technol. 2021, 55, 734–747. [Google Scholar] [CrossRef]
- Revised Air Quality Standards For Particle Pollution And Updates To The Air Quality Index (Aqi). Available online: https://www.epa.gov/sites/default/files/2016-04/documents/2012_aqi_factsheet.pdf (accessed on 10 November 2023).
- Krittanawong, C.; Qadeer, Y.K.; Hayes, R.B.; Wang, Z.; Thurston, G.D.; Virani, S.; Lavie, C.J. PM2.5 and cardiovascular diseases: State-of-the-Art review. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 19, 200217. [Google Scholar] [CrossRef]
- Wei, Y.; Danesh Yazdi, M.; Ma, T.; Castro, E.; Liu, C.S.; Qiu, X.; Healy, J.; Vu, B.N.; Wang, C.; Shi, L.; et al. Additive effects of 10-year exposures to PM(2.5) and NO(2) and primary cancer incidence in American older adults. Environ. Epidemiol. 2023, 7, e265. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, J.; Yang, X.; Zhang, Y.; Chen, Z. The Role and Potential Pathogenic Mechanism of Particulate Matter in Childhood Asthma: A Review and Perspective. J. Immunol. Res. 2020, 2020, 8254909. [Google Scholar] [CrossRef] [PubMed]
- Meek, H.C.; Bush, K. Notes from the Field: Asthma-Associated Emergency Department Visits During a Wildfire Smoke Event —New York, June 2023. Morb. Mortal Wkly. Rep. 2023, 72, 933–935. [Google Scholar] [CrossRef] [PubMed]
- Møller, P.; Danielsen, P.H.; Karottki, D.G.; Jantzen, K.; Roursgaard, M.; Klingberg, H.; Jensen, D.M.; Christophersen, D.V.; Hemmingsen, J.G.; Cao, Y.; et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat. Res. Rev. Mutat. Res. 2014, 762, 133–166. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Utell, M.J.; Frampton, M.W. Acute health effects of ambient air pollution: The ultrafine particle hypothesis. J. Aerosol Med. 2000, 13, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Wichmann, H.E.; Tuch, T.; Heinrich, J.; Heyder, J. Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care Med. 1997, 155, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Georas, S.; Alexis, N.; Fritz, P.; Xia, T.; Williams, M.A.; Horner, E.; Nel, A. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J. Allergy Clin. Immunol. 2016, 138, 386–396. [Google Scholar] [CrossRef]
- Kumar, P.; Kalaiarasan, G.; Porter, A.E.; Pinna, A.; Kłosowski, M.M.; Demokritou, P.; Chung, K.F.; Pain, C.; Arvind, D.K.; Arcucci, R.; et al. An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments. Sci. Total Environ. 2021, 756, 143553. [Google Scholar] [CrossRef]
- Johnston, F.; Hanigan, I.; Henderson, S.; Morgan, G.; Bowman, D. Extreme air pollution events from bushfires and dust storms and their association with mortality in Sydney, Australia 1994–2007. Environ. Res. 2011, 111, 811–816. [Google Scholar] [CrossRef]
- Haikerwal, A.; Akram, M.; Del Monaco, A.; Smith, K.; Sim, M.R.; Meyer, M.; Tonkin, A.M.; Abramson, M.J.; Dennekamp, M. Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes. J. Am. Heart Assoc. 2015, 4, e001653. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Reid Colleen, E.; Brauer, M.; Johnston Fay, H.; Jerrett, M.; Balmes John, R.; Elliott Catherine, T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef]
- Laing, J.R.; Jaffe, D.A.; Hee, J.R. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory. Atmos. Chem. Phys. 2016, 16, 15185–15197. [Google Scholar] [CrossRef]
- Sakamoto, K.M.; Allan, J.D.; Coe, H.; Taylor, J.W.; Duck, T.J.; Pierce, J.R. Aged boreal biomass-burning aerosol size distributions from BORTAS 2011. Atmos. Chem. Phys. 2015, 15, 1633–1646. [Google Scholar] [CrossRef]
- Sinha, A.; Saleh, R.; Robinson, E.S.; Ahern, A.T.; Tkacik, D.S.; Presto, A.A.; Sullivan, R.C.; Robinson, A.L.; Donahue, N.M. Mass accommodation coefficients of fresh and aged biomass-burning emissions. Aerosol Sci. Technol. 2018, 52, 300–309. [Google Scholar] [CrossRef]
- Buysse, C.E.; Kaulfus, A.; Nair, U.; Jaffe, D.A. Relationships between Particulate Matter, Ozone, and Nitrogen Oxides during Urban Smoke Events in the Western US. Environ. Sci. Technol. 2019, 53, 12519–12528. [Google Scholar] [CrossRef]
- Fang, T.; Hwang, B.C.H.; Kapur, S.; Hopstock, K.S.; Wei, J.; Nguyen, V.; Nizkorodov, S.A.; Shiraiwa, M. Wildfire particulate matter as a source of environmentally persistent free radicals and reactive oxygen species. Environ. Sci. Atmos. 2023, 3, 581–594. [Google Scholar] [CrossRef]
- Li, J.; Link, M.F.; Pandit, S.; Webb, M.H.; Mayer, K.J.; Garofalo, L.A.; Rediger, K.L.; Poppendieck, D.G.; Zimmerman, S.M.; Vance, M.E.; et al. The persistence of smoke VOCs indoors: Partitioning, surface cleaning, and air cleaning in a smoke-contaminated house. Sci. Adv. 2023, 9, eadh8263. [Google Scholar] [CrossRef]
- Ghetu, C.C.; Rohlman, D.; Smith, B.W.; Scott, R.P.; Adams, K.A.; Hoffman, P.D.; Anderson, K.A. Wildfire Impact on Indoor and Outdoor PAH Air Quality. Environ. Sci. Technol. 2022, 56, 10042–10052. [Google Scholar] [CrossRef] [PubMed]
- Kobziar, L.N.; Thompson, G.R. Wildfire smoke, a potential infectious agent. Science 2020, 370, 1408–1410. [Google Scholar] [CrossRef] [PubMed]
- Kobziar, L.N.; Vuono, D.; Moore, R.; Christner, B.C.; Dean, T.; Betancourt, D.; Watts, A.C.; Aurell, J.; Gullett, B. Wildland fire smoke alters the composition, diversity, and potential atmospheric function of microbial life in the aerobiome. ISME Commun. 2022, 2, 8. [Google Scholar] [CrossRef]
- Li, C.; Hu, Y.; Chen, J.; Ma, Z.; Ye, X.; Yang, X.; Wang, L.; Wang, X.; Mellouki, A. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity. Atmos. Environ. 2016, 140, 94–105. [Google Scholar] [CrossRef]
- Kwon, H.-S.; Ryu, M.H.; Carlsten, C. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 2020, 52, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Kodros, J.K.; Volckens, J.; Jathar, S.H.; Pierce, J.R. Ambient Particulate Matter Size Distributions Drive Regional and Global Variability in Particle Deposition in the Respiratory Tract. GeoHealth 2018, 2, 298–312. [Google Scholar] [CrossRef]
- Bischof, O.F. Recent Developments in the Measurement of Low Particulate Emissions from Mobile Sources: A Review of Particle Number Legislations. Emiss. Control Sci. Technol. 2015, 1, 203–212. [Google Scholar] [CrossRef]
- Henderson, D.E.; Milford, J.B.; Miller, S.L. Prescribed burns and wildfires in Colorado: Impacts of mitigation measures on indoor air particulate matter. J. Air Waste Manag. Assoc. 2005, 55, 1516–1526. [Google Scholar] [CrossRef]
- Xiang, J.; Huang, C.-H.; Shirai, J.; Liu, Y.; Carmona, N.; Zuidema, C.; Austin, E.; Gould, T.; Larson, T.; Seto, E. Field measurements of PM2.5 infiltration factor and portable air cleaner effectiveness during wildfire episodes in US residences. Sci. Total Environ. 2021, 773, 145642. [Google Scholar] [CrossRef]
- Liang, Y.; Sengupta, D.; Campmier, M.J.; Lunderberg, D.M.; Apte, J.S.; Goldstein, A.H. Wildfire smoke impacts on indoor air quality assessed using crowdsourced data in California. Proc. Natl. Acad. Sci. USA 2021, 118, e2106478118. [Google Scholar] [CrossRef]
- May, N.W.; Dixon, C.; Jaffe, D.A. Impact of Wildfire Smoke Events on Indoor Air Quality and Evaluation of a Low-cost Filtration Method. Aerosol Air Qual. Res. 2021, 21, 210046. Available online: https://aaqr.org/articles/aaqr-21-03-tn-0046 (accessed on 10 November 2023). [CrossRef]
- Reisen, F.; Powell, J.C.; Dennekamp, M.; Johnston, F.H.; Wheeler, A.J. Is remaining indoors an effective way of reducing exposure to fine particulate matter during biomass burning events? J. Air Waste Manag. Assoc. 2019, 69, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Dev, S.; Barnes, D.; Kadir, A.; Betha, R.; Aggarwal, S. Outdoor and indoor concentrations of size-resolved particulate matter during a wildfire episode in interior Alaska and the impact of ventilation. Air Qual. Atmos. Health 2022, 15, 149–158. [Google Scholar] [CrossRef]
- Carmona, N.; Seto, E.; Gould, T.R.; Rasyid, E.; Shirai, J.H.; Cummings, B.; Hayward, L.; Larson, T.V.; Austin, E. Indoor Air Quality Intervention in Schools: Effectiveness of a Portable HEPA Filter Deployment in Five Schools Impacted by Roadway and Aircraft Pollution Sources. Atmosphere 2022, 13, 1623. [Google Scholar] [CrossRef]
- O’Dell, K.; Ford, B.; Burkhardt, J.; Magzamen, S.; Anenberg, S.C.; Bayham, J.; Fischer, E.V.; Pierce, J.R. Outside in: The relationship between indoor and outdoor particulate air quality during wildfire smoke events in western US cities. Environ. Res. Health 2023, 1, 015003. [Google Scholar] [CrossRef]
- Wheeler, A.J.; Allen, R.W.; Lawrence, K.; Roulston, C.T.; Powell, J.; Williamson, G.J.; Jones, P.J.; Reisen, F.; Morgan, G.G.; Johnston, F.H. Can Public Spaces Effectively Be Used as Cleaner Indoor Air Shelters during Extreme Smoke Events? Int. J. Environ. Res. Public Health 2021, 18, 4085. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, D.A.; Autenrieth, D.A.; Hart, J.F.; Capoccia, S. Control of wildfire-sourced PM2.5 in an office setting using a commercially available portable air cleaner. J. Occup. Env. Hyg. 2020, 17, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Cao, Q.; Zhou, J.; Yang, B.; Chang, V.W.C.; Nazaroff, W.W. Indoor and outdoor particles in an air-conditioned building during and after the 2013 haze in Singapore. Build. Environ. 2016, 99, 73–81. [Google Scholar] [CrossRef]
- ASHRAE 52.2-2017; Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size (ANSI Approved). ASHRAE: Peachtree Corners, GA, USA, 2017. Available online: https://www.techstreet.com/ashrae/standards/ashrae-52-2-2017?product_id=1942059 (accessed on 25 October 2023).
- EN 779:2002; Particulate Air Filters for General Ventilation—Determination of the Filtration Performance. BSI: London, UK, 2002. Available online: https://standards.iteh.ai/catalog/standards/cen/c2ca45a4-fdd8-40d4-a751-ba7c04de7ebb/en-779-2002 (accessed on 25 October 2023).
- Japuntich, D.A.; Franklin, L.M.; Pui, D.Y.; Kuehn, T.H.; Kim, S.C.; Viner, A.S. A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometers. J. Nanoparticle Res. 2007, 9, 93–107. [Google Scholar] [CrossRef]
- Chang, D.-Q.; Chen, S.-C.; Fox, A.R.; Viner, A.S.; Pui, D.Y.H. Penetration of Sub-50 nm Nanoparticles Through Electret HVAC Filters Used in Residence. Aerosol Sci. Technol. 2015, 49, 966–976. [Google Scholar] [CrossRef]
- Chen, C.; Ji, W.; Zhao, B. Size-dependent efficiencies of ultrafine particle removal of various filter media. Build. Environ. 2019, 160, 106171. [Google Scholar] [CrossRef]
- Wu, J.; Chen, J.; Olfert, J.S.; Zhong, L. Filter evaluation and selection for heating, ventilation, and air conditioning systems during and beyond the COVID-19 pandemic. Indoor Air 2022, 32, e13099. [Google Scholar] [CrossRef]
- Fazli, T.; Zeng, Y.; Stephens, B. Fine and ultrafine particle removal efficiency of new residential HVAC filters. Indoor Air 2019, 29, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Karjalainen, P.; Saari, S.; Kuuluvainen, H.; Kalliohaka, T.; Taipale, A.; Rönkkö, T. Performance of ventilation filtration technologies on characteristic traffic related aerosol down to nanocluster size. Aerosol Sci. Technol. 2017, 51, 1398–1408. [Google Scholar] [CrossRef]
- Schumacher, S.; Spiegelhoff, D.; Schneiderwind, U.; Finger, H.; Asbach, C. Performance of New and Artificially Aged Electret Filters in Indoor Air Cleaners. Chem. Eng. Technol. 2018, 41, 27–34. [Google Scholar] [CrossRef]
- Myers, D.L.; Arnold, B.D. Electret Media for HVAC Filtration Applications. Int. Nonwovens J. 2003, 4, 43–54. [Google Scholar] [CrossRef]
- Heo, K.J.; Lee, G.D.; Doh, S.J.; Jung, J.H. Effect of cigarette smoke on the lifetime of electret air filters. Sci. Total Environ. 2022, 807, 150754. [Google Scholar] [CrossRef]
- He, W.; Guo, Y.; Liu, J.; Yue, Y.; Wang, J. Filtration Performance Degradation of In-Use Masks by Vapors from Alcohol-Based Hand Sanitizers and the Mitigation Solutions. Glob. Chall. 2021, 5, 2100015. [Google Scholar] [CrossRef]
- Holder, A.L.; Halliday, H.S.; Virtaranta, L. Impact of do-it-yourself air cleaner design on the reduction of simulated wildfire smoke in a controlled chamber environment. Indoor Air 2022, 32, e13163. [Google Scholar] [CrossRef]
- Raynor, P.C.; Chae, S.J. The long-term performance of electrically charged filters in a ventilation system. J. Occup. Env. Hyg. 2004, 1, 463–471. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Xu, M.; Shi, Y.; Wang, H.; Yang, X.; Ying, H.; Zhang, Q. Polymer electrets and their applications. J. Appl. Polym. Sci. 2021, 138, 50406. [Google Scholar] [CrossRef]
- Thakur, R.; Das, D.; Das, A. Electret Air Filters. Sep. Purif. Rev. 2012, 42, 87–129. [Google Scholar] [CrossRef]
- MarketsandMarkets. HVAC Filters Market—Global Forecast to 2026. Markets and Markets 2022. Available online: https://www.marketsandmarkets.com/Market-Reports/hvac-filter-market-205419850.html#:~:text=The%20global%20HVAC%20filters%20market,5.0%25%20from%202021%20to%202026 (accessed on 25 October 2023).
- Cai, R.-R.; Lu, H.; Zhang, L.-Z. Mechanisms of performance degradation and efficiency improvement of electret filters during neutral particle loading. Powder Technol. 2021, 382, 133–143. [Google Scholar] [CrossRef]
- Elliott, C.; Rideout, K.; Keefe, P. Evidence review: Filtration in institutional settings during wildfire smoke events. In Wildfire and Smoke Guidelines; British Columbia Centre for Disease: Vancouver, BC, USA, 2014. [Google Scholar]
- Brochot, C.B.; Abdolghader, P.; Haghighat, F. Performance of mechanical filters used in general ventilation against nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2019, 609, 032044. [Google Scholar] [CrossRef]
- Hanley, J.T.; Ensor, D.S.; Smith, D.D.; Sparks, L.E. Fractional Aerosol Filtration Efficiency of In-Duct Ventilation Air Cleaners. Indoor Air 1994, 4, 169–178. [Google Scholar] [CrossRef]
- Rivers, R.D., Jr. Air filter performance under variable air volume conditions. ASHRAE Trans. 2000, 106, 4380. [Google Scholar]
- Kim, Y.H.; Warren, S.H.; Krantz, T.; King, C.; Jaskot, R.; Preston, W.T.; George, B.J.; Hays, M.D.; Landis, M.S.; Higuchi, M.; et al. Mutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires. Environ Health Perspect 2018, 126, 017011. [Google Scholar] [CrossRef]
- Mustafa, B.; Mat Kiah, M.H.B.; Andrews, G.; Phylaktou, R.; Li, H. Smoke Particle Size Distribution in Pine Wood Fires; Saint-Petersburg Polytechnic University Press: Saint-Petersburg, Russia, 2019; pp. 930–939. [Google Scholar]
- Ordou, N.; Agranovski, I.E. Contribution of Fine Particles to Air Emission at Different Phases of Biomass Burning. Atmosphere 2019, 10, 278. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.; Wu, Z.; Huang, D.; Wang, H.; Chen, J.; Chen, J.; Zong, T.; Fang, X.; Tan, T.; et al. The particle phase state during the biomass burning events. Sci. Total Environ. 2021, 792, 148035. [Google Scholar] [CrossRef]
- Johnson, T.J.; Olfert, J.S.; Cabot, R.; Treacy, C.; Yurteri, C.U.; Dickens, C.; McAughey, J.; Symonds, J.P.R. Steady-state measurement of the effective particle density of cigarette smoke. J. Aerosol Sci. 2014, 75, 9–16. [Google Scholar] [CrossRef]
- EPA United State Environmental Protection Agency. Wildfire Smoke Resources to Protect Your Health. 2023. Available online: https://www.epa.gov/smoke-ready-toolbox-wildfires/wildfire-smoke-resources-protect-your-health (accessed on 25 October 2023).
- Azimi, P.; Zhao, D.; Stephens, B. Estimates of HVAC filtration efficiency for fine and ultrafine particles of outdoor origin. Atmos. Environ. 2014, 98, 337–346. [Google Scholar] [CrossRef]
- Stephens, B.; Siegel, J.A. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters. Indoor Air 2013, 23, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Hecker, R.; Hofacre, K.C.; EPA United States Environmental Protection Agency. Development of Performance Data for Common Building Air Cleaning Devices. 2008. Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NHSRC&dirEntryID=188373 (accessed on 2 November 2023).
- Vandergrift, G.; Lata, N.; Mathai, S.; Ijaz, A.; Cheng, Z.; Shrivastava, M.; Zhang, J.; Shawon, A.S.M.; Kulkarni, G.; Mazzoleni, L.; et al. Case study evaluation of size-resolved molecular composition and phase state of carbonaceous particles in wildfire influenced smoke from the Pacific Northwest. Environ. Sci. Atmos. 2023, 3, 1251–1261. [Google Scholar] [CrossRef]
- Kamiński, M.; Gac, J.M.; Sobiech, P.; Kozikowski, P.; Jakubiak, S.; Jankowski, T. Filtration of Submicron Soot Particles, Oil Droplets, and their Mixtures on Single- and Multi-layer Fibrous Filters. Aerosol Air Qual. Res. 2022, 22, 210258. [Google Scholar] [CrossRef]
- Motyl, E. Effect of Air Humidity on Charge Decay and Lifetime of PP Electret Nonwovens. Fibres Text. East. Eur. 2006, 14, 39–42. [Google Scholar]
- Tang, M.; Thompson, D.; Chen, S.-C.; Liang, Y.; Pui, D.Y.H. Evaluation of different discharging methods on HVAC electret filter media. Build. Environ. 2018, 141, 206–214. [Google Scholar] [CrossRef]
- Straube, C.; Meyer, J.; Dittler, A. Identification of Deposited Oil Structures on Thin Porous Oil Mist Filter Media Applying µ-CT Imaging Technique. Separations 2021, 8, 193. [Google Scholar] [CrossRef]
Media Type | Vendor Specs | ASHRAE MERV Rating c (PM2.5 Range) | |||||
---|---|---|---|---|---|---|---|
MERV | Type | Basis Weight (g/m2) | Thickness (mm) | Air Flow Resistance a (Pa) | Efficiency b (%) | ||
A | 11 | Polymer electret | 100 ± 14 | 0.6 ± 0.2 | 8.8 | 70 | 0.3–1.0 ≤ 20% 1.0–3.0 ≤ 65% 3.0–10.0 ≤ 85% |
B | 11 | Polymer electret | 120 ± 14 | 0.7 ± 0.2 | 5 | 70 | 0.3–1.0 ≤ 20% 1.0–3.0 ≤ 65% 3.0–10.0 ≤ 85% |
C | 12 | Fiberglass | 78 ± 6 | 0.4 ± 0.0 | 15 | 30 | 0.3–1.0 ≤ 35% 1.0–3.0 ≤ 80% 3.0–10.0 ≤ 90% |
D | 13 | Fiberglass | 78 ± 6 | 0.4 ± 0.0 | 20 | 45 | 0.3–1.0 ≤ 50% 1.0–3.0 ≤ 85% 3.0–10.0 ≤ 90% |
E | 14 | Fiberglass | 78 ± 6 | 0.4 ± 0.0 | 35 | 55 | 0.3–1.0 ≤ 75% 1.0–3.0 ≤ 90% 3.0–10.0 ≤ 95% |
F | 15 | Fiberglass | 78 ± 7 | 0.4 ± 0.1 | 113 | 93 | 0.3–1.0 ≤ 85% 1.0–3.0 ≤ 90% 3.0–10.0 ≤ 95% |
G | 15 | Fiberglass | 78 ± 7 | 0.4 ± 0.1 | 120 | 94 | 0.3–1.0 ≤ 85% 1.0–3.0 ≤ 90% 3.0–10.0 ≤ 95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirman, T.; Shirman, E.; Liu, S. Evaluation of Filtration Efficiency of Various Filter Media in Addressing Wildfire Smoke in Indoor Environments: Importance of Particle Size and Composition. Atmosphere 2023, 14, 1729. https://doi.org/10.3390/atmos14121729
Shirman T, Shirman E, Liu S. Evaluation of Filtration Efficiency of Various Filter Media in Addressing Wildfire Smoke in Indoor Environments: Importance of Particle Size and Composition. Atmosphere. 2023; 14(12):1729. https://doi.org/10.3390/atmos14121729
Chicago/Turabian StyleShirman, Tanya, Elijah Shirman, and Sissi Liu. 2023. "Evaluation of Filtration Efficiency of Various Filter Media in Addressing Wildfire Smoke in Indoor Environments: Importance of Particle Size and Composition" Atmosphere 14, no. 12: 1729. https://doi.org/10.3390/atmos14121729
APA StyleShirman, T., Shirman, E., & Liu, S. (2023). Evaluation of Filtration Efficiency of Various Filter Media in Addressing Wildfire Smoke in Indoor Environments: Importance of Particle Size and Composition. Atmosphere, 14(12), 1729. https://doi.org/10.3390/atmos14121729