Anthropogenic Influence on the Antarctic Mesospheric Cooling Observed during the Southern Hemisphere Minor Sudden Stratospheric Warming
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. KSSMR Temperature
2.2.2. Residual Mean Meridional Circulation
2.2.3. Wavelet Spectral Analysis
3. Results and Discussions
3.1. Antarctic Mesosphere Response to the 2019 SSW
3.2. Plausible Physical Mechanisms Responsible for Mesospheric Cooling
3.2.1. Chemical Species-Induced Mesospheric Cooling
3.2.2. Planetary Wave Propagation: Mesospheric Cooling
3.2.3. Residual Mean and Wave-Induced Eddy Meridional Circulation: Mesospheric Cooling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, S.M.; Thurairajah, B.; Hervig, M.E.; Siskind, D.E.; Russell, J.M.; Gordley, L.L. Trends in the Polar Summer Mesosphere Temperature and Pressure Altitude from Satellite Observations. J. Atmos. Sol.-Terr. Phys. 2021, 220, 105650. [Google Scholar] [CrossRef]
- Scherhag, R. Die explosionsartige Stratospharenerwarmung des Spatwinters 1951–1952. Ber. Dtsch. Wetterd. 1952, 6, 51–53. [Google Scholar]
- Pedatella, N.; Chau, J.; Schmidt, H.; Goncharenko, L.; Stolle, C.; Hocke, K.; Harvey, V.; Funke, B.; Siddiqui, T. How Sudden Stratospheric Warming Affects the Whole Atmosphere; Eos: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Ayarzagüena, B.; Birner, T.; Butchart, N.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.V.; Garfinkel, C.I.; Garny, H.; Gerber, E.P.; et al. Sudden Stratospheric Warmings. Rev. Geophys. 2021, 59, e2020RG000708. [Google Scholar] [CrossRef]
- van Loon, H.; Jenne, R.L.; Labitzke, K. Zonal Harmonic Standing Waves. J. Geophys. Res. 1973, 78, 4463–4471. [Google Scholar] [CrossRef]
- Krüger, K.; Naujokat, B.; Labitzke, K. The Unusual Midwinter Warming in the Southern Hemisphere Stratosphere 2002: A Comparison to Northern Hemisphere Phenomena. J. Atmos. Sci. 2005, 62, 603–613. [Google Scholar] [CrossRef]
- Liu, H.L.; Roble, R.G. Dynamical Coupling of the Stratosphere and Mesosphere in the 2002 Southern Hemisphere Major Stratospheric Sudden Warming. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Eswaraiah, S.; Kim, Y.H.; Hong, J.; Kim, J.H.; Ratnam, M.V.; Chandran, A.; Rao, S.V.B.; Riggin, D. Mesospheric Signatures Observed during 2010 Minor Stratospheric Warming at King Sejong Station (62°S, 59°W). J. Atmos. Sol.-Terr. Phys. 2016, 140, 55–64. [Google Scholar] [CrossRef]
- Eswaraiah, S.; Kim, J.H.; Lee, W.; Hwang, J.; Kumar, K.N.; Kim, Y.H. Unusual Changes in the Antarctic Middle Atmosphere During the 2019 Warming in the Southern Hemisphere. Geophys. Res. Lett. 2020, 47, e2020GL089199. [Google Scholar] [CrossRef]
- Lim, E.P.; Hendon, H.H.; Butler, A.H.; Thompson, D.W.J.; Lawrence, Z.D.; Scaife, A.A.; Shepherd, T.G.; Polichtchouk, I.; Nakamura, H.; Kobayashi, C.; et al. The 2019 Southern Hemisphere Stratospheric Polar Vortex Weakening and Its Impacts. Bull. Am. Meteorol. Soc. 2021, 102, E1150–E1171. [Google Scholar] [CrossRef]
- Lee, W.; Song, I.S.; Kim, J.H.; Kim, Y.H.; Jeong, S.H.; Eswaraiah, S.; Murphy, D.J. The Observation and SD-WACCM Simulation of Planetary Wave Activity in the Middle Atmosphere During the 2019 Southern Hemispheric Sudden Stratospheric Warming. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029094. [Google Scholar] [CrossRef]
- Eswaraiah, S.; Lee, C.; Lee, W.; Kim, Y.H.; Kumar, K.N.; Medineni, V.R. Temperature Tele-Connections between the Tropical and Polar Middle Atmosphere in the Southern Hemisphere during the 2010 Minor Sudden Stratospheric Warming. Atmos. Sci. Lett. 2020, 22, e1010. [Google Scholar] [CrossRef]
- Liu, H.L.; Roble, R.G. A Study of a Self-Generated Stratospheric Sudden Warming and Its Mesospheric-Lower Thermospheric Impacts Using the Coupled TIME-GCM/CCM3. J. Geophys. Res. Atmos. 2002, 107, ACL 15-1–ACL 15-18. [Google Scholar] [CrossRef]
- de Wit, R.J.; Hibbins, R.E.; Espy, P.J.; Orsolini, Y.J.; Limpasuvan, V.; Kinnison, D.E. Observations of Gravity Wave Forcing of the Mesopause Region during the January 2013 Major Sudden Stratospheric Warming. Geophys. Res. Lett. 2014, 41, 4745–4752. [Google Scholar] [CrossRef]
- Coy, L.; Siskind, D.E.; Eckermann, S.D.; McCormack, J.P.; Allen, D.R.; Hogan, T.F. Modeling the August 2002 Minor Warming Event. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Kogure, M.; Yue, J.; Liu, H. Gravity Wave Weakening During the 2019 Antarctic Stratospheric Sudden Warming. Geophys. Res. Lett. 2021, 48, e2021GL092537. [Google Scholar] [CrossRef]
- Smith, A.K.; López-Puertas, M.; García-Comas, M.; Tukiainen, S. SABER Observations of Mesospheric Ozone during NH Late Winter 2002-2009. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Smith, A.K.; Garcia, R.R.; Marsh, D.R.; Richter, J.H. WACCM Simulations of the Mean Circulation and Trace Species Transport in the Winter Mesosphere. J. Geophys. Res. Atmos. 2011, 116, 1–17. [Google Scholar] [CrossRef]
- Smith, A.K. Interactions Between the Lower, Middle and Upper Atmosphere. Space Sci. Rev. 2012, 168, 1–21. [Google Scholar] [CrossRef]
- Butchart, N. The Brewer-Dobson Circulation. Rev. Geophys. 2014, 52, 157–184. [Google Scholar] [CrossRef]
- Koval, A.V.; Chen, W.; Didenko, K.A.; Ermakova, T.S.; Gavrilov, N.M.; Pogoreltsev, A.I.; Toptunova, O.N.; Wei, K.; Yarusova, A.N.; Zarubin, A.S. Modelling the Residual Mean Meridional Circulation at Different Stages of Sudden Stratospheric Warming Events. Ann. Geophys. 2021, 39, 357–368. [Google Scholar] [CrossRef]
- Hernandez, G. Climatology of the Upper Mesosphere Temperature above South Pole (90° S): Mesospheric Cooling during 2002. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Azeem, S.M.I.; Talaat, E.R.; Sivjee, G.G.; Yee, J.H. Mesosphere and Lower Thermosphere Temperature Anomalies during the 2002 Antarctic Stratospheric Warming Event. Ann. Geophys. 2010, 28, 267–276. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.H.; Jee, G.; Lee, W.; Song, I.S.; Kim, Y.H. New Method of Estimating Temperatures near the Mesopause Region Using Meteor Radar Observations. Geophys. Res. Lett. 2016, 43, 10580–10585. [Google Scholar] [CrossRef]
- Livesey, N.J.; Read, W.G.; Wagner, P.A.; Lambert, A.; Froidevaux, L.; Manney, G.L.; Pumphrey, H.C.; Millan Valle, L.F.; Santee, M.L.; Schwartz, M.J.; et al. Earth Observing System (EOS), Aura Microwave Limb Sounder (MLS), Version 4.2x Level 2 and 3 Data Quality and Description Document; Techical Report JPL D-33509; Jet Propulsion Laboratory: Pasadena, CA, USA, 2020.
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Siskind, D.E.; Coy, L.; Espy, P. Observations of Stratospheric Warmings and Mesospheric Coolings by the TIMED SABER Instrument. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Laštovička, J. A Review of Recent Progress in Trends in the Upper Atmosphere. J. Atmos. Solar-Terrestrial Phys. 2017, 163, 2–13. [Google Scholar] [CrossRef]
- Khosravi, R.; Brasseur, G.; Smith, A.; Rusch, D.; Walters, S.; Chabrillat, S.; Kockarts, G. Response of the Mesosphere to Human-Induced Perturbations and Solar Variability Calculated by a 2-D Model. J. Geophys. Res. Atmos. 2002, 107, ACH 7-1–ACH 7-21. [Google Scholar] [CrossRef]
- Garcia, R.R.; López-Puertas, M.; Funke, B.; Marsh, D.R.; Kinnison, D.E.; Smith, A.K.; González-Galindo, F. On the Distribution of CO2 and CO in the Mesosphere and Lower Thermosphere. J. Geophys. Res. 2014, 119, 5700–5718. [Google Scholar] [CrossRef]
- Qian, L.; Marsh, D.; Merkel, A.; Solomon, S.C.; Roble, R.G. Effect of Trends of Middle Atmosphere Gases on the Mesosphere and Thermosphere. J. Geophys. Res. Space Phys. 2013, 118, 3846–3855. [Google Scholar] [CrossRef]
- Espy, P.J.; Hibbins, R.E.; Jones, G.O.L.; Riggin, D.M.; Fritts, D.C. Rapid, Large-Scale Temperature Changes in the Polar Mesosphere and Their Relationship to Meridional Flows. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Shen, X.; Wang, L.; Osprey, S. Tropospheric Forcing of the 2019 Antarctic Sudden Stratospheric Warming. Geophys. Res. Lett. 2020, 47, e2020GL089343. [Google Scholar] [CrossRef]
- Wang, J.C.; Palo, S.E.; Forbes, J.M.; Marino, J.; Moffat-Griffin, T.; Mitchell, N.J. Unusual Quasi 10-Day Planetary Wave Activity and the Ionospheric Response During the 2019 Southern Hemisphere Sudden Stratospheric Warming. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029286. [Google Scholar] [CrossRef]
- Emmert, J.T.; Stevens, M.H.; Bernath, P.F.; Drob, D.P.; Boone, C.D. Observations of Increasing Carbon Dioxide Concentration in Earth’s Thermosphere. Nat. Geosci. 2012, 5, 868–871. [Google Scholar] [CrossRef]
- Andrews, D.; Leovy, C.; Holton, J. Middle Atmosphere Dynamics; Academic Press: Orlando, FL, USA, 1987. [Google Scholar]
- Holton, J.R. An Introduction to Dynamic Meteorology, 4th ed.; Elsevier Academic Press: Washington, DC, USA, 2004; p. 553. [Google Scholar]
- Clark, J.H.E.; Rogers, T.G. The transport of conservative trace gases by planetary waves. J. Atmos. Sci. 1978, 35, 2232–2235. [Google Scholar] [CrossRef]
- Lim, E.-P.; Hendon, H.H.; Boschat, G.; Hudson, D.; Thompson, D.W.J.; Dowdy, A.J.; Arblaster, J.M. Australian Hot and Dry Extremes Induced by Weakenings of the Stratospheric Polar Vortex. Nat. Geosci. 2019, 12, 896–901. [Google Scholar] [CrossRef]
- Menviel, L.; Spence, P.; Yu, J.; Chamberlain, M.A.; Matear, R.J.; Meissner, K.J.; England, M.H. Southern Hemisphere Westerlies as a Driver of the Early Deglacial Atmospheric CO2 Rise. Nat. Commun. 2018, 9, 2503. [Google Scholar] [CrossRef]
- Kouker, W.; Brasseur, G. Transport of Atmospheric Tracers by Planetary Waves During A Winter Stratospheric Event: A Three-Dimensional Model Simulation. J. Geophys. Res. 1986, 91, 13167–13185. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eswaraiah, S.; Seo, K.-H.; Kumar, K.N.; Ratnam, M.V.; Koval, A.V.; Jeong, J.-Y.; Mengist, C.K.; Lee, Y.-S.; Greer, K.; Hwang, J.-Y.; et al. Anthropogenic Influence on the Antarctic Mesospheric Cooling Observed during the Southern Hemisphere Minor Sudden Stratospheric Warming. Atmosphere 2022, 13, 1475. https://doi.org/10.3390/atmos13091475
Eswaraiah S, Seo K-H, Kumar KN, Ratnam MV, Koval AV, Jeong J-Y, Mengist CK, Lee Y-S, Greer K, Hwang J-Y, et al. Anthropogenic Influence on the Antarctic Mesospheric Cooling Observed during the Southern Hemisphere Minor Sudden Stratospheric Warming. Atmosphere. 2022; 13(9):1475. https://doi.org/10.3390/atmos13091475
Chicago/Turabian StyleEswaraiah, Sunkara, Kyong-Hwan Seo, Kondapalli Niranjan Kumar, Madineni Venkat Ratnam, Andrey V. Koval, Jin-Yun Jeong, Chalachew Kindie Mengist, Young-Sook Lee, Katelynn Greer, Jun-Young Hwang, and et al. 2022. "Anthropogenic Influence on the Antarctic Mesospheric Cooling Observed during the Southern Hemisphere Minor Sudden Stratospheric Warming" Atmosphere 13, no. 9: 1475. https://doi.org/10.3390/atmos13091475
APA StyleEswaraiah, S., Seo, K. -H., Kumar, K. N., Ratnam, M. V., Koval, A. V., Jeong, J. -Y., Mengist, C. K., Lee, Y. -S., Greer, K., Hwang, J. -Y., Lee, W., Pramitha, M., Venkata Chalapathi, G., Venkatarami Reddy, M., & Kim, Y. H. (2022). Anthropogenic Influence on the Antarctic Mesospheric Cooling Observed during the Southern Hemisphere Minor Sudden Stratospheric Warming. Atmosphere, 13(9), 1475. https://doi.org/10.3390/atmos13091475