Temporal and Spatial Modal Analysis and Prediction of Tropospheric CO Concentration over the World and East Asia
Abstract
:1. Introduction
2. Data Sources and Analysis Methods
2.1. Data Sources
2.2. Research Methods
2.2.1. Pearson Correlation Coefficient
2.2.2. Linear Inclination Rate
2.2.3. Sen Slope Estimation
2.2.4. Mann-Kendall (MK) Trend Test
2.2.5. Empirical Orthogonal Decomposition Method
2.2.6. Three-Exponential Smoothing Model Prediction
2.2.7. Introduction to the Basic Principles of VMD
2.2.8. Introduction to the Basic Principles of LSTM
2.2.9. Evaluating Indicator
3. Temporal and Spatial Distribution Characteristics of Global CO
3.1. Spatial Variation Characteristics of CO in Different Pressure Layers of Troposphere
3.2. Analysis of Temporal Variation Characteristics of Near-Surface CO
3.3. Temporal and Spatial Variation Characteristics of Nea- Surface CO during the Four Seasons
4. Temporal and Spatial Distribution Characteristics of CO in East Asia
4.1. Spatial Variation Characteristics of CO at Different Pressure Layers in Troposphere
4.2. Temporal Variation Characteristics of Different Pressure Layers in Troposphere
4.3. Interannual Variation Characteristics of Different Atmospheric Pressure Layers in Troposphere
4.4. Interannual Variation in Different Latitudes of Different Tropospheric Pressure Layers
4.5. Seasonal Spatial Variations of Different Atmospheric Pressure Layers in Troposphere over the Years
5. Analysis of Temporal and Spatial Variation Trend of CO
5.1. Analysis of Long-Term MK Space Variation Trend of CO Concentration in the Global Middle and Upper Troposphere for many Years
5.2. Analysis of Temporal and Spatial Modal Characteristics of Global Tropospheric CO Concentration over the Years
5.3. Prediction and Analysis of Near-Surface Global and East Asian CO Concentration Using the Three-Exponential Smoothing Model
5.4. Construction of Global CO Concentration Prediction Model Based on VMD-LSTM
6. Discussion
6.1. Temporal and Spatial Changes and Trends of Atmospheric CO Concentration in the World and East Asia
6.2. Discussion and Analysis on Influencing Factors of Tropospheric Atmospheric CO Concentration
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yurganov, L.N.; McMillan, W.W.; Dzhola, A.V.; Grechko, E.I.; Jones, N.B.; Van Der Werf, G.R. Global AIRS and MOPITT CO measurements: Validation, comparison, and links to biomass burning variations and carbon cycle. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Holloway, T.; Levy, H., II; Kasibhatla, P. Global distribution of carbon monoxide. J. Geophys. Res. Atmos. 2000, 105, 12123–12147. [Google Scholar] [CrossRef]
- Suthawaree, J.; Kato, S.; Takami, A.; Kadena, H.; Toguchi, M.; Yogi, K.; Hatakeyama, S.; Kajii, Y. Observation of ozone and carbon monoxide at Cape Hedo, Japan: Seasonal variation and influence of long-range transport. Atmos. Environ. 2008, 42, 2971–2981. [Google Scholar] [CrossRef]
- Kopacz, M.; Jacob, D.J.; Fisher, J.A.; Logan, J.A.; Zhang, L.; Megretskaia, I.A.; Yantosca, R.M.; Singh, K.; Henze, D.K.; Burrows, J.P.; et al. Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmos. Chem. Phys. 2010, 10, 855–876. [Google Scholar] [CrossRef]
- Buchwitz, M.; Burrows, J.P. Retrieval of CH4, CO, and CO2 total column amounts from SCIAMACHY near-infrared nadir spectra: Retrieval algorithm and first results. In Proceedings of the Remote Sensing of Clouds and the Atmosphere VIII, Barcelona, Spain, 8–12 September 2003; Volume 5235, pp. 375–388. [Google Scholar]
- Sahu, L.; Sheel, V.; Kajino, M.; Nedelec, P. Variability in tropospheric carbon monoxide over an urban site in Southeast Asia. Atmos. Environ. 2013, 68, 243–255. [Google Scholar] [CrossRef]
- Zhong, Q.; Huang, Y.; Shen, H.; Chen, Y.; Chen, H.; Huang, T.; Zeng, E.Y.; Tao, S. Global estimates of carbon monoxide emissions from 1960 to 2013. Environ. Sci. Pollut. Res. 2017, 24, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J.; Gidel, L.T. A two-dimensional photochemical model of the atmosphere: 2. The tropospheric budgets of the anthropogenic chlorocarbons CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone. J. Geophys. Res. Ocean. 1983, 88, 6641–6661. [Google Scholar] [CrossRef]
- Borsdorff, T.; Andrasec, J.; de Brugh, J.A.; Hu, H.; Aben, I.; Landgraf, J. Detection of carbon monoxide pollution from cities and wildfires on regional and urban scales: The benefit of CO column retrievals from SCIAMACHY 2.3 µm measurements under cloudy conditions. Atmos. Meas. Tech. 2018, 11, 2553–2565. [Google Scholar] [CrossRef]
- Deeter, M.N.; Emmons, L.K.; Francis, G.L.; Edwards, D.P.; Gille, J.C.; Warner, J.X.; Drummond, J.R. Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Buchwitz, M.; de Beek, R.; Noël, S.; Burrows, J.P.; Bovensmann, H.; Schneising, O.; Khlystova, I.; Bruns, M.; Bremer, H.; Bergamaschi, P.; et al. Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: Version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval. Atmos. Chem. Phys. 2006, 6, 2727–2751. [Google Scholar] [CrossRef] [Green Version]
- Robbins, R.C.; Borg, K.M.; Robinson, E. Carbon monoxide in the atmosphere. J. Air Pollut. Control. Assoc. 1968, 18, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Seiler, W. The cycle of atmospheric CO. Tellus 1974, 26, 116–135. [Google Scholar] [CrossRef]
- Seiler, W.; Fishman, J. The distribution of carbon monoxide and ozone in the free troposphere. J. Geophys. Res. Ocean. 1981, 86, 7255–7265. [Google Scholar] [CrossRef]
- Tangborn, A.; Stajner, I.; Buchwitz, M.; Khlystova, I.; Pawson, S.; Burrows, J.P.; Hudman, R.; Nedelec, P. Assimilation of SCIAMACHY total column CO observations: Global and regional analysis of data impact. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Worden, H.M.; Deeter, M.N.; Frankenberg, C.; George, M.; Nichitiu, F.; Worden, J.; Aben, I.; Bowman, K.W.; Clerbaux, C.; Coheur, P.F.; et al. Decadal record of satellite carbon monoxide observations. Atmos. Chem. Phys. 2013, 13, 837–850. [Google Scholar] [CrossRef]
- Jindal, P.; Thapliyal, P.K.; Shukla, M.V.; Sharma, S.K.; Mitra, D. Trend analysis of atmospheric temperature, water vapour, ozone, methane and carbon-monoxide over few major cities of India using satellite data. J. Earth Syst. Sci. 2020, 129, 60. [Google Scholar] [CrossRef]
- Peng, L.; Zhao, C.; Lin, Y.; Zheng, X.; Tie, X.; Chan, L.-Y. Analysis of carbon monoxide budget in North China. Chemosphere 2007, 66, 1383–1389. [Google Scholar] [CrossRef]
- Streets, D.G.; Zhang, Q.; Wang, L.; He, K.; Hao, J.; Wu, Y.; Tang, Y.; Carmichael, G. Revisiting China’s co emissions after the transport and chemical evolution over the pacific (trace-p) mission: Synthesis of inventories, atmospheric modeling, and observations. J. Geophys. Res. 2006, 111, D14306. [Google Scholar] [CrossRef]
- Tohjima, Y.; Kubo, M.; Minejima, C.; Mukai, H.; Tanimoto, H.; Ganshin, A.; Maksyutov, S.; Katsumata, K.; Machida, T.; Kita, K. Temporal changes in the emissions of CH4 and CO from China estimated from CH4/CO2 and CO/CO2 correlations observed at Hateruma Island. Atmos. Chem. Phys. 2014, 14, 1663–1677. [Google Scholar] [CrossRef]
- Yumimoto, K.; Uno, I.; Itahashi, S. Long-term inverse modeling of Chinese CO emission from satellite observations. Environ. Pollut. 2014, 195, 308–318. [Google Scholar] [CrossRef]
- Jiang, Z.; Worden, J.R.; Worden, H.; Deeter, M.; Jones, D.B.A.; Arellano, A.F.; Henze, D.K. A 15-year record of CO emissions constrained by MOPITT CO observations. Atmos. Chem. Phys. 2017, 17, 4565–4583. [Google Scholar] [CrossRef]
- Zheng, B.; Chevallier, F.; Ciais, P.; Yin, Y.; Deeter, M.N.; Worden, H.M.; Wang, Y.; Zhang, Q.; He, K. Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environ. Res. Lett. 2018, 13, 044007. [Google Scholar] [CrossRef]
- Sun, J.; McColl, K.A.; Wang, Y.; Rigden, A.J.; Lu, H.; Yang, K.; Li, Y.; Santanello, J.A., Jr. Global evaluation of terrestrial near-surface air temperature and specific humidity retrievals from the Atmospheric Infrared Sounder (AIRS). Remote Sens. Environ. 2021, 252, 112146. [Google Scholar] [CrossRef]
- Liu, J.; Hagan, D.F.T.; Liu, Y. Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sens. 2020, 13, 44. [Google Scholar] [CrossRef]
- Warner, J.; Carminati, F.; Wei, Z.; Lahoz, W.; Attié, J.-L. Tropospheric carbon monoxide variability from AIRS under clear and cloudy conditions. Atmos. Chem. Phys. 2013, 13, 12469–12479. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, H.; Lu, X.; Jin, J. Comparison analysis of global carbon monoxide concentration derived from SCIAMACHY, AIRS, and MOPITT. Int. J. Remote Sens. 2016, 37, 5155–5175. [Google Scholar] [CrossRef]
- De Leo, F.; De Leo, A.; Besio, G.; Briganti, R. Detection and quantification of trends in time series of significant wave heights: An application in the Mediterranean Sea. Ocean. Eng. 2020, 202, 107155. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Jahromi, A.B.; Ezam, M.; Lari, K.; Ali Akbari Bidokhti, A.A. An Investigation of the Hydrography of Chabahar Bay Using FVCOM Model and EOF Analysis. Mar. Geodesy 2022, 45, 360–379. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Lai, C.Q.; Ibrahim, H.; Abd Hamid, A.I.; Abdullah, J.M. LSTM network as a screening tool to detect moderate traumatic brain injury from resting-state electroencephalogram. Expert Syst. Appl. 2022, 198, 116761. [Google Scholar] [CrossRef]
- Lin, Z.; Shi, Y.; Chen, B.; Liu, S.; Ge, Y.; Ma, J.; Yang, L.; Lin, Z. Early warning method for power supply service quality based on three-way decision theory and LSTM neural network. Energy Rep. 2022, 8, 537–543. [Google Scholar] [CrossRef]
- Osman, M.K.; Tarasick, D.W.; Liu, J.; Moeini, O.; Thouret, V.; Fioletov, V.E.; Parrington, M.; Nédélec, P. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data. Atmos. Chem. Phys. 2016, 16, 10263–10282. [Google Scholar] [CrossRef]
- Zheng, B.; Chevallier, F.; Yin, Y.; Ciais, P.; Fortems-Cheiney, A.; Deeter, M.N.; Parker, R.J.; Wang, Y.; Worden, H.M.; Zhao, Y. Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth Syst. Sci. Data 2019, 11, 1411–1436. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Han, H.; Zhang, Y.; Jiang, Z.; Wang, H.; Meng, L.; Li, Y.C.; Liu, Y. Satellite-Observed Variations and Trends in Carbon Monoxide over Asia and Their Sensitivities to Biomass Burning. Remote Sens. 2020, 12, 830. [Google Scholar] [CrossRef]
- Ribeiro, I.; Andreoli, R.; Kayano, M.; Sousa, T.; Medeiros, A.; Godoi, R.H.M.; Godoi, A.; Duvoisin, S.; Martin, S.; Souza, R. Biomass burning and carbon monoxide patterns in Brazil during the extreme drought years of 2005, 2010, and 2015. Environ. Pollut. 2018, 243, 1008–1014. [Google Scholar] [CrossRef]
- Streets, D.G.; Yarber, K.F.; Woo, J.-H.; Carmichael, G.R. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Yin, Y.; Chevallier, F.; Ciais, P.; Broquet, G.; Fortems-Cheiney, A.; Pison, I.; Saunois, M. Decadal trends in global CO emissions as seen by MOPITT. Atmos. Chem. Phys. 2015, 15, 13433–13451. [Google Scholar] [CrossRef]
- Girach, I.; Nair, P.R. Carbon monoxide over Indian region as observed by MOPITT. Atmos. Environ. 2014, 99, 599–609. [Google Scholar] [CrossRef]
Area | Mean (×10−9) | Std (×10−9) | Min (×10−9) | Max (×10−9) |
---|---|---|---|---|
Global First quarter | 104.99 | 4.12 | 98.88 | 112.97 |
Global Second quarter | 92.17 | 3.35 | 87.77 | 100.98 |
Global Third quarter | 100.51 | 3.56 | 95.47 | 106.56 |
Global Fourth quarter | 104.60 | 3.54 | 98.92 | 110.50 |
Northern First quarter | 138.83 | 6.52 | 129.21 | 150.97 |
Northern Second quarter | 105.43 | 4.76 | 98.35 | 118.46 |
Northern Third quarter | 112.06 | 3.76 | 107.32 | 121.14 |
Northern Fourth quarter | 135.21 | 5.05 | 127.62 | 142.79 |
Southern First quarter | 66.32 | 1.61 | 63.95 | 69.55 |
Southern Second quarter | 77.01 | 1.98 | 74.22 | 81.02 |
Southern Third quarter | 87.31 | 3.74 | 81.89 | 93.49 |
Southern Fourth quarter | 69.87 | 2.22 | 67.11 | 73.77 |
Atmospheric Pressure Layer (hPa) | Mean (×10−9) | Var (×10−9) | Std (×10−9) |
---|---|---|---|
850 | 125.56 | 246.43 | 15.70 |
500 | 109.93 | 133.77 | 11.57 |
300 | 92.09 | 54.41 | 7.38 |
150 | 58.49 | 6.96 | 2.64 |
Atmospheric Pressure Layer (hPa) | Area | Linear Fitting Slope (×10−9/a) | Correlation Coefficient |
---|---|---|---|
850 | Global | −0.552 | −0.904 ** |
East Asia | −1.129 | −0.954 ** | |
500 | Global | −0.297 | −0.662 ** |
East Asia | −0.700 | −0.825 ** | |
300 | Global | −0.009 | −0.037 |
East Asia | −0.159 | −0.417 |
Mode | EOF1 | EOF2 | EOF3 | EOF4 | EOF5 | EOF6 | Cumulative Variance |
---|---|---|---|---|---|---|---|
850 hPa | 88.90% | 3.32% | 2.65% | 1.15% | 0.67% | 0.55% | 97.24% |
500 hPa | 56.84% | 14.95% | 13.98% | 3.86% | 2.05% | 1.45% | 93.13% |
100 hPa | 80.72% | 6.25% | 4.00% | 2.22% | 1.06% | 0.85% | 95.10% |
Area | MAE | RMSE | |
---|---|---|---|
Global | 1.469 | 1.915 | 0.918 |
East Asia | 2.154 | 2.797 | 0.972 |
Atmospheric Pressure Layer (hPa) | Atmospheric Parameters | Correlation Coefficient |
---|---|---|
1000 | atmospheric temperature | −0.829 ** |
methane | −0.419 ** | |
water vapor | −0.758 ** | |
925 | atmospheric temperature | −0.801 ** |
methane | −0.538 ** | |
water vapor | −0.788 ** | |
850 | atmospheric temperature | −0.749 ** |
methane | −0.529 ** | |
water vapor | −0.726 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Sun, L.; Wei, Y.; Tang, C. Temporal and Spatial Modal Analysis and Prediction of Tropospheric CO Concentration over the World and East Asia. Atmosphere 2022, 13, 1476. https://doi.org/10.3390/atmos13091476
Huang Y, Sun L, Wei Y, Tang C. Temporal and Spatial Modal Analysis and Prediction of Tropospheric CO Concentration over the World and East Asia. Atmosphere. 2022; 13(9):1476. https://doi.org/10.3390/atmos13091476
Chicago/Turabian StyleHuang, Yourui, Le Sun, Yuanyuan Wei, and Chaoli Tang. 2022. "Temporal and Spatial Modal Analysis and Prediction of Tropospheric CO Concentration over the World and East Asia" Atmosphere 13, no. 9: 1476. https://doi.org/10.3390/atmos13091476
APA StyleHuang, Y., Sun, L., Wei, Y., & Tang, C. (2022). Temporal and Spatial Modal Analysis and Prediction of Tropospheric CO Concentration over the World and East Asia. Atmosphere, 13(9), 1476. https://doi.org/10.3390/atmos13091476