Spatial Effects of Urban Transport on Air Pollution in Metropolitan Municipalities of Mexico
Abstract
:1. Introduction
Background
2. Materials and Methods
2.1. Data Sources
2.2. Statistics and Description of Variables
2.3. Principal Component Analysis
2.4. Exploratory Spatial Autocorrelation Analysis
2.5. Spatial Model Selection Criteria
2.6. Spatial Model Specification
3. Results
Direct and Indirect Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, P. Justifying a policy mix for pollution control: Are view of economic literature. J. Econ. Surv. 2012, 26, 71–97. [Google Scholar] [CrossRef]
- Baiardi, D. Do sustainability energy policies matter for reducing air pollution? Energy Policy 2020, 140, 111364. [Google Scholar] [CrossRef]
- Akimoto, H.; Tanimoto, H. Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone-Challenges toward a denitrified society. Atmos. Environ. 2022, 227, 119033. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar] [CrossRef]
- Akimoto, H. Atmospheric Reaction Chemistry; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- SEMARNAT. Inventario Nacional de Emisiones de Gases Contaminantes, Criterios 2016 (INEM). 2016. Available online: https://gisviewer.semarnat.gob.mx/wmaplicacion/inem/ (accessed on 8 October 2021).
- Huang, H.-C.; Lin, F.C.-F.; Wu, M.-F.; Nfor, O.H.; Hus, S.-Y.; Lung, C.-C.; Chen, C.-Y.; Liaw, Y.-P. Association between chronic obstructive pulmonary disease and PM2.5 in Taiwanese nonsmokers. Int. J. Hyg. Environ. Health 2019, 222, 884–888. [Google Scholar] [CrossRef]
- Alotaibi, R.; Bechle, M.; Marshall, J.D.; Ramani, T.; Zietsman, J.; Nieuwenhuijsen, M.J.; Khreis, H. Traffic related air pollution and the burden of childhood asthma in the contiguous United States in 2000 and 2010. Environ. Int. 2019, 127, 858–867. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; Xue, K.; Fang, C. Spatio-Temporal Heterogeneity and Socioeconomic driving Factors of PM2.5 in Beijing-Tianjin-Hebei and Its Surroungding Areas. Atmosphere 2021, 12, 1324. [Google Scholar] [CrossRef]
- Yang, W.; Wang, W.; Ouyang, S. The influencing factors and spatial spillover effects of CO2 emissions from transportation in China. Sci. Total Environ. 2019, 969, 133900. [Google Scholar] [CrossRef]
- Diao, B.; Ding, L.; Su, P.; Cheng, J. The Spatial-Temporal Characteristics and Influential Factors of NOx Emissions in China: A Spatial Econometric Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1405. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Liu, X.; Xia, H. Empirical analysis of the influential factors of haze pollution in China—Based on spatial econometric model. Energy Environ. 2018, 30, 854–866. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Z.; Xue, X.; Wang, Y. Spillover effects of railway and road on CO2 emissions in China: A spatiotemporal analysis. J. Clean. Prod. 2019, 234, 797–809. [Google Scholar] [CrossRef]
- Ren, Y.; Ren, X.; Hu, J. Driving factor of China’s city-level carbon emissions from the perspective of spatial spillover effect. Carbon Manag. 2019, 10, 551–566. [Google Scholar] [CrossRef]
- Qiang, W.; Lee, H.F.; Lin, Z.; Wong, D.W.H. Revisiting the impact of vehicle emissions and other contributors to air pollution in urban built-up areas: A dynamic spatial econometric analysis. Sci. Total Environ. 2020, 740, 140098. [Google Scholar] [CrossRef]
- Chen, Y.; Whalley, A. Green infrastructure: The effects of urban rail transit on air quality. Am. Econ. J. Econ. Policy 2012, 4, 58–97. [Google Scholar] [CrossRef]
- Du, Y.; Sun, T.; Peng, J.; Fang, K.; Liu, Y.; Yang, Y.; Wang, Y. Direct and spillover effects of urbanization on PM2.5 concentrations in China´s top three urban agglomerations. J. Clean. Prod. 2018, 190, 72–83. [Google Scholar] [CrossRef]
- Lu, J.; Li, B.; Li, H.; Al-Barakani, A. Expansiono of city scale, traffic modes, traffic congestion, and air pollution. Cities 2021, 108, 102974. [Google Scholar] [CrossRef]
- Song, L.; Jing, J.; Yan, Z.; Sun, C. Does government information transparency contribute to pollution abatement? Evidence from 264 Chinese cities. Environ. Sci. Pollut. Res. 2021, 29, 12853–12863. [Google Scholar] [CrossRef]
- Yu, X.; Shen, M.; Shen, W.; Zhang, X. Effects of Land Urbanization on Smog Pollution in China: Estimation of Spatial Autoregressive Panel Data Models. Land 2020, 9, 337. [Google Scholar] [CrossRef]
- Ding, X.; Cai, Z.; Xiao, Q.; Gao, S. A study on The Driving Factors and Spatial Spillover of Carbon Emission Intensity in The Yangtze River Economic Belt under Double Control Action. Int. J. Environ. Res. Public Health 2019, 16, 4452. [Google Scholar] [CrossRef]
- Mamipour, S.; Beheshtipour, H.; Feshari, M.; Amiri, H. Factors influencing carbon dioxide emissions in Iran´s provinces with emphasis on spatial linkages. Environ. Sci. Pollut. Res. 2019, 26, 18365–18678. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Zhou, Z.; Zhou, Y.; Ye, X.; Liu, S. A spatial Panel Data Analysis of Economics Growth, Urbanization, and nitrogen oxide emissions in China. Int. J. Environ. Res. Public Health 2018, 15, 725. [Google Scholar] [CrossRef]
- Xie, R.; Wei, D.; Han, F.; Lu, Y.; Fang, J.; Liu, Y.; Wang, J. The effect of traffic density on smog pollution: Evidence from Chinese cities. Technol. Forecast. Soc. Change 2019, 144, 421–427. [Google Scholar] [CrossRef]
- Kutlu, L.; Wang, R. Greenhouse Gas Emission Inefficiency Spillover Effects in European Countries. Int. J. Environ. Res. Public Health 2021, 18, 4479. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Zheng, H.; Li, M.; Tan, T. How urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 263, 110061. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Shao, S.; Yang, L. High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach. Energy Econ. 2021, 99, 105271. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Chuai, X.; Yang, H. The impact of land urbanization on carbon dioxide emissions in the Yangtze River Delta, China: A multiscale perspective. Cities 2021, 116, 103275. [Google Scholar] [CrossRef]
- Wu, X.; Gao, M.; Guo, S.; Li, W. Effects of environmental regulation on air pollution control in China: A spatial Durbin Econometric analysis. J. Regul. Econ. 2019, 55, 307–333. [Google Scholar] [CrossRef]
- Feng, T.; Du, H.; Lin, Z.; Zuo, J. Spatial spillover effects of environmental regulations on air pollution: Evidence from urban agglomerations in China. J. Environ. Manag. 2020, 272, 110998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Q.; Zhang, M. Environmental regulation and CO2 emissions: Based on strategic interaction of environmental governance. Ecol. Complex. 2021, 45, 100893. [Google Scholar] [CrossRef]
- Zhong, S.; Li, J.; Zhao, R. Does environmental information disclosure promote sulfur dioxide (SO2) remove? New evidence from 113 cities in China. J. Clean. Prod. 2021, 299, 126906. [Google Scholar] [CrossRef]
- Zhong, S.; Bushell, M. Impact of the built environment on the vehicle emission effects of road pricing policies: A simulation case study. Transp. Res. Part A Policy Pract. 2017, 103, 235–249. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Sun, T. The impact of multi-dimensional urbanization on China´s carbon emissions based on the spatial spillover effect. Pol. J. Environ. Stud. 2020, 29, 3317–3327. [Google Scholar] [CrossRef]
- INEGI. Vehículos de Motor Registrado en Circulación, año 2016. 2021. Available online: https://www.inegi.org.mx/programas/vehiculosmotor/ (accessed on 8 October 2021).
- INEGI. Encuesta Intercensal 2015. Available online: https://www.inegi.org.mx/programas/intercensal/2015/ (accessed on 8 October 2021).
- Siabato, W.; Guzmán-Manrique, J. La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuad. Geogr. Rev. Colomb. Geogr. 2019, 28, 1–22. [Google Scholar] [CrossRef]
- Arbia, G. A Primer for Spatial Econometrics with Applications in R; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Lesage, J.; Pase, K.R. Introduction to Spatial Econometric; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- LeSage, J.P. What Regional Scientists Need to Know about Spatial Econometrics. Rev. Reg. Stud. 2014, 44, 13–32. [Google Scholar] [CrossRef]
Emissions | Regressor | Direct Effect | Indirect Effect | Spatial Model | Country | Author |
---|---|---|---|---|---|---|
, , , Haze Pollution, Carbon | Traffic intensity | + | + | Spatial Durbin Model (SDM) | China | [10,11,14,16,22] |
, , Coal | Industrial activity | + | + | SDM | China, Iran | [12,16,22,23] |
Energy intensity | + | + | SDM | China | [11,24] | |
, , , Coal | Gross Domestic Product | + | + | SDM | China | [11,16] |
Smog Pollution | Technological progress | + | − | SDM | China | [25] |
Population density | + | − | SDM | China | [10] | |
Coal, Greenhouse Gas (GHG) | Energy efficiency | − | − | SDM | China | [15,26] |
Urbanization and scale | + | − | SDM | China | [18,21,27] | |
Light rail | − | − | SDM | China | [20,28,29] | |
, , , Smog Pollution | Environmental regulation | − | + | SDM | China | [20,30,31,32,33] |
Variable | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|
1705.45 | 3839.53 | 1.51 | 50,534.38 | |
140.86 | 286.18 | 0.03 | 2785.67 | |
159.69 | 379.17 | 0.03 | 5357.04 | |
46.89 | 94.77 | 0.05 | 486.99 | |
7838.79 | 18,687.94 | 14.34 | 264,912.00 | |
860.99 | 1910.11 | 1.37 | 25,002.78 | |
16.64 | 50.02 | 0.02 | 867.84 | |
Vehicle | 43,843.76 | 97,874.81 | 1 | 708,548 |
Density | 1015.90 | 2029.06 | 0.65 | 16,882.09 |
Bus vs. vehicle | 0.70 | - | 0 | 1 |
Variable | |||||||
---|---|---|---|---|---|---|---|
1.00 | |||||||
0.96 | 1.00 | ||||||
0.91 | 0.94 | 1.00 | |||||
0.89 | 0.77 | 0.76 | 1.00 | ||||
0.87 | 0.93 | 0.98 | 0.73 | 1.00 | |||
0.88 | 0.92 | 0.99 | 0.72 | 0.98 | 1.00 | ||
0.78 | 0.90 | 0.93 | 0.52 | 0.96 | 0.94 | 1.00 |
Initial Eigenvalues | Extraction Sums of Squared Loadings | |||||
---|---|---|---|---|---|---|
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 6.92 | 98.84 | 98.84 | 6.92 | 98.84 | 98.84 |
2 | 0.06 | 0.80 | 99.64 | |||
3 | 0.02 | 0.29 | 99.93 | |||
4 | 0.00 | 0.06 | 99.99 | |||
5 | 0.00 | 0.00 | 100.00 | |||
6 | 0.00 | 0.00 | 100.00 | |||
7 | 0.00 | 0.00 | 100.00 |
Z-Score | Component | |
---|---|---|
1 | 2 | |
0.82 | −0.42 | |
0.86 | −0.44 | |
0.91 | 0.03 | |
0.82 | −0.49 | |
0.81 | 0.17 | |
0.65 | 0.75 | |
0.73 | 0.63 |
Variables | Moran’s I Statistic | Expected Value | Standard Deviation | Z | p-Value |
---|---|---|---|---|---|
) | 0.05 | −0.002 | 0.01 | 4.97 | 0.00 |
ln(vehicles) | 0.08 | −0.002 | 0.01 | 7.79 | 0.00 |
Variable | OLS | SDM | ||
---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |
ln(vehicle) | 0.33 | 0.00 | 0.40 | 0.00 |
Bus vs. vehicle | −0.80 | 0.00 | −0.59 | 0.00 |
ln(density) | 0.15 | 0.00 | 0.11 | 0.01 |
Wln(vehicle) | −0.37 | 0.00 | ||
WBus vs. vehicle | −0.40 | 0.33 | ||
Wln(density) | 0.05 | 0.73 | ||
0.54 | 0.00 | |||
−0.28 | 0.22 | |||
Constant | 3.44 | 0.00 | 2.84 | 0.00 |
0.40 | 0.42 | |||
Moran’s test | 11.28 | 0.00 | ||
Wald test | 27.84 | 0.00 |
Direct Effect | Coefficient | Standard Error | Z | p-Value |
ln(vehicle) | 0.40 | 0.03 | 13.57 | 0.00 |
Bus vs. vehicle | −0.63 | 0.18 | −3.47 | 0.00 |
ln(density) | 0.12 | 0.04 | 2.80 | 0.00 |
Indirect Effect | Coefficient | Standard Error | Z | p-value |
ln(vehicle) | −0.11 | 0.04 | −3.17 | 0.00 |
Bus vs. vehicle | −0.57 | 0.36 | −1.6 | 0.11 |
ln(density) | 0.09 | 0.11 | 0.84 | 0.40 |
Total Effect | Coefficient | Standard Error | Z | p-value |
ln(vehicle) | 0.28 | 0.04 | 6.81 | 0.00 |
Bus vs. vehicle | −1.21 | 0.39 | −3.10 | 0.00 |
ln(density) | 0.21 | 0.11 | 1.91 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avilés-Polanco, G.; Almendarez-Hernández, M.A.; Beltrán-Morales, L.F.; Ortega-Rubio, A. Spatial Effects of Urban Transport on Air Pollution in Metropolitan Municipalities of Mexico. Atmosphere 2022, 13, 1191. https://doi.org/10.3390/atmos13081191
Avilés-Polanco G, Almendarez-Hernández MA, Beltrán-Morales LF, Ortega-Rubio A. Spatial Effects of Urban Transport on Air Pollution in Metropolitan Municipalities of Mexico. Atmosphere. 2022; 13(8):1191. https://doi.org/10.3390/atmos13081191
Chicago/Turabian StyleAvilés-Polanco, Gerzaín, Marco Antonio Almendarez-Hernández, Luis Felipe Beltrán-Morales, and Alfredo Ortega-Rubio. 2022. "Spatial Effects of Urban Transport on Air Pollution in Metropolitan Municipalities of Mexico" Atmosphere 13, no. 8: 1191. https://doi.org/10.3390/atmos13081191
APA StyleAvilés-Polanco, G., Almendarez-Hernández, M. A., Beltrán-Morales, L. F., & Ortega-Rubio, A. (2022). Spatial Effects of Urban Transport on Air Pollution in Metropolitan Municipalities of Mexico. Atmosphere, 13(8), 1191. https://doi.org/10.3390/atmos13081191