Fast Identification of the Failure of Heavy-Duty Diesel Particulate Filters Using a Low-Cost Condensation Particle Counter (CPC) Based System
Abstract
:1. Introduction
2. Experimental Methods
2.1. Principle of Diesel Particulate Filter (DPF)
2.2. Choice of Testing Vehicles and Working Conditions
2.3. Test Apparatus
3. Results and Discussions
3.1. Results of PEMS Tests
3.2. Results of Idle PN Concentration Tests
4. Conclusions
- PN emissions from China-6 heavy-duty diesel vehicles with malfunctioning DPFs were 1–3 orders of magnitude higher than those of the proper counterparts, which were at a similar level to those from China-5 heavy-duty diesel vehicles without DPFs;
- PN emission levels of the tested China-6 heavy-duty NG vehicles were close to those of China-6 diesel vehicles with proper DPFs.
- In idle PN concentration, there was a gap between the level of the tested China-6 diesel vehicles with proper DPFs and the level of idle PN concentration of tested China-5 diesel vehicles.
- Idle PN concentrations of DPF-malfunctioning China-6 heavy-duty vehicles were 1–2 orders of magnitude higher than the proper ones and China-5/6 heavy-duty NG vehicles, and they distributed in this region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BC | Black Carbon |
CPC | Condensation Particle Counter |
DPF | Diesel Particle Filter |
DTC | Diagnostic Trouble Code |
ET | Evaporation Tube |
IPA | Isopropanol |
MIL | Malfunction Indicating Light |
NG | Natural Gas |
PTI | Periodic Technical Inspection |
OBD | On-Board Diagnostics |
OBM | On-Board Monitoring |
PEMS | Portable Emissions Measurement System |
PM | Particle Mass |
PN | Particle Number |
WHSC | World Harmonized Stationary Cycle |
WHTC | World Harmonized Transient Cycle |
Appendix A
Vehicle No. | Emission Stage | After-Treatment | Rated Power (kW) | Peak Torque (N·m) | Mileage (km) |
---|---|---|---|---|---|
1 | China-5 (Diesel) | SCR | 206 | 1100 | 30,463 |
2 † | DPF + SCR | 96 | 600 | 3476 | |
3 | SCR | 430 | 1600 | 3742 | |
4 ‡ | China-6 (Diesel) | DPF + SCR | 412 | 2620 | 3985 |
5 ‡ | 136 | 680 | 3712 | ||
6 ‡ | 341 | 2300 | 30,822 | ||
7 ‡ | 341 | 2300 | 46,626 | ||
8 | 316 | 2000 | 14,643 | ||
9 | 316 | 2000 | 15,810 | ||
10 | 316 | 2000 | 16,264 | ||
11 | 341 | 2300 | 5232 | ||
12 | 341 | 2300 | 6370 | ||
13 | 316 | 2000 | 18,171 | ||
14 | China-6 (LNG) | TWC | 289 | 2100 | 17,1812 |
15 | 289 | 2100 | 63,438 |
Vehicle No. | Average PN Emission Rate by Total Mileage #/km | Average PN Emission Rate by Total Work #/kWh | ||||
---|---|---|---|---|---|---|
Urban | Rural | Highway | Urban | Rural | Highway | |
1 | 2.45 × 1013 | 2.82 × 1013 | 2.93 × 1015 | 7.55 × 1014 | 6.26 × 1014 | 2.45 × 1013 |
2 † | 1.73 × 1011 | 3.11 × 1011 | 6.02 × 1011 | 4.35 × 1011 | 7.41 × 1011 | 1.73 × 1011 |
3 | 2.66 × 1013 | 2.98 × 1013 | 3.32 × 1013 | 1.48 × 1013 | 1.76 × 1013 | 2.66 × 1013 |
4 ‡ | 3.21 × 1013 | 2.85 × 1013 | 1.54 × 1013 | 1.64 × 1013 | 1.66 × 1013 | 3.21 × 1013 |
5 ‡ | 1.07 × 1012 | 4.72 × 1012 | 6.43 × 1011 | 2.04 × 1012 | 6.92 × 1012 | 1.07 × 1012 |
6 ‡ | 2.76 × 1013 | 2.97 × 1013 | 4.60 × 1013 | 2.06 × 1013 | 1.91 × 1013 | 2.76 × 1013 |
7 ‡ | 1.83 × 1012 | 3.34 × 1012 | 3.58 × 1012 | 1.36 × 1012 | 1.74 × 1012 | 1.83 × 1012 |
8 | 3.92 × 1010 | 6.72 × 1010 | 2.13 × 109 | 3.13 × 1010 | 4.84 × 1010 | 3.92 × 1010 |
9 | 6.16 × 1010 | 6.87 × 1010 | 2.52 × 1010 | 5.19 × 1010 | 5.18 × 1010 | 6.16 × 1010 |
10 | 6.55 × 1010 | 7.98 × 1010 | 5.60 × 109 | 5.87 × 1010 | 6.63 × 1010 | 6.55 × 1010 |
11 | 5.25 × 1010 | 1.14 × 1011 | 3.71 × 1010 | 4.31 × 1010 | 8.31 × 1010 | 5.25 × 1010 |
12 | 2.84 × 1010 | 3.10 × 1011 | 6.81 × 1010 | 2.55 × 1010 | 1.86 × 1011 | 2.84 × 1010 |
13 | 1.06 × 1011 | 1.03 × 1011 | 3.39 × 1010 | 7.15 × 1010 | 7.98 × 1010 | 1.06 × 1011 |
14 | 1.12 × 1011 | 2.06 × 1010 | 5.04 × 109 | 8.84 × 1010 | 1.55 × 1010 | 1.12 × 1011 |
15 | 4.70 × 1010 | 1.24 × 1010 | 2.44 × 1011 | 3.86 × 1010 | 9.67 × 109 | 4.70 × 1010 |
Vehicle No. | Emission Stage | After- treatment | Idle PN Concentration Measured by APA #/cm3 | PN-PEMS Results #/kWh | Average PN Emission Rate by Total Mileage #/km | Average PN Emission Rate by Total Work #/kWh | Idle PN Concentration by PEMS (Standard Deviation) #/cm3 |
---|---|---|---|---|---|---|---|
1 | China-5 (Diesel) | SCR | 3.43 × 106 | 2.58 × 1014 | 3.19 × 1013 | 4.44 × 1013 | 3.36 × 106 (2.10 × 105) |
2 † | DPF+SCR | 1.02 × 104 | 2.57 × 1012 | 2.28 × 1011 | 6.11 × 1011 | 1.05 × 104 (2.69 × 103) | |
3 | SCR | 1.70 × 106 | 1.67 × 1014 | 3.22 × 1013 | 1.84 × 1013 | 1.58 × 106 (5.52 × 105) | |
4 ‡ | China-6 (Diesel) | DPF+SCR | 4.35 × 104 | 7.57 × 1013 | 2.96 × 1013 | 1.64 × 1013 | 4.16 × 104 (3.35 × 103) |
5 ‡ | 7.13 × 105 | 3.19 × 1013 | 3.38 × 1012 | 5.29 × 1012 | 6.98 × 105 (4.31 × 104) | ||
6 ‡ | 3.98 × 105 | 6.38 × 1013 | 2.98 × 1013 | 2.07 × 1013 | 9.24 × 105 (8.79 × 104) | ||
7 ‡ | 7.36 × 104 | 5.33 × 1012 | 2.34 × 1012 | 1.54 × 1012 | 7.02 × 104 (8.24 × 103) | ||
8 | 2.94 × 102 | 3.50 × 1011 | 6.18 × 1010 | 4.53 × 1010 | 9.63 × 100 (1.31 × 10-1) | ||
9 | 2.14 × 102 | 3.69 × 1011 | 6.15 × 1010 | 4.82 × 1010 | 2.12 × 100 (1.69 × 10-1) | ||
10 | 4.33 × 102 | 4.41 × 1011 | 7.29 × 1010 | 6.16 × 1010 | 5.44 × 100 (2.70 × 10-1) | ||
11 | 9.54 × 103 | 2.59 × 1011 | 1.08 × 1011 | 8.02 × 1010 | 3.35 × 102 (1.38 × 102) | ||
12 | 4.08 × 101 | 3.42 × 1011 | 1.63 × 1011 | 1.11 × 1011 | 1.98 × 103 (2.11 × 102) | ||
13 | 1.31 × 103 | 5.82 × 1011 | 9.55 × 1010 | 7.42 × 1010 | 1.60 × 101 (1.15 × 10-1) | ||
14 | China-6 (LNG) | TWC | 1.25 × 103 | 2.52 × 1011 | 5.24 × 1010 | 4.17 × 1010 | 1.48 × 103 (9.44 × 101) |
15 | 6.12 × 103 | 3.51 × 1011 | 3.98 × 1010 | 3.06 × 1010 | 6.16 × 103 (6.20 × 101) | ||
16 | China-5 (Diesel) | SCR | 1.88 × 106 | N/A | N/A | N/A | N/A |
17 | 2.07 × 106 | N/A | N/A | N/A | N/A | ||
18 | 2.58 × 106 | N/A | N/A | N/A | N/A | ||
19 | 4.37 × 106 | N/A | N/A | N/A | N/A | ||
20 | 1.60 × 106 | N/A | N/A | N/A | N/A | ||
21 | 2.69 × 106 | N/A | N/A | N/A | N/A | ||
22 | 2.54 × 106 | N/A | N/A | N/A | N/A | ||
23 | 2.14 × 106 | N/A | N/A | N/A | N/A | ||
24 | 3.34 × 106 | N/A | N/A | N/A | N/A | ||
25 | 2.88 × 106 | N/A | N/A | N/A | N/A | ||
26 | 2.58 × 106 | N/A | N/A | N/A | N/A | ||
27 | 3.49 × 106 | N/A | N/A | N/A | N/A | ||
28 | 1.65 × 106 | N/A | N/A | N/A | N/A | ||
29 | China-5/6 (LNG) | TWC | 4.79 × 102 | N/A | N/A | N/A | N/A |
30 | 5.31 × 102 | N/A | N/A | N/A | N/A | ||
31 | 9.37 × 102 | N/A | N/A | N/A | N/A | ||
32 | 7.40 × 103 | N/A | N/A | N/A | N/A | ||
33 | 4.20 × 103 | N/A | N/A | N/A | N/A |
Appendix B
References
- Thorsten, B.; Cutler, W. Reducing particulate emissions in gasoline engines. In Reducing Particulate Emissions in Gasoline Engines; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Kittelson, D.; Watts, W.; Johnson, J. Diesel Aerosol Sampling Methodology—CRC E-43, Final Report; Coordinating Research Council: Alpharetta, GA, USA, 2002. [Google Scholar]
- Kittelson, D.B. Engines and nanoparticles: A review. J. Aerosol Sci. 1998, 29, 575–588. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Munoz-Bueno, R.; Rubino, L.; Manfredi, U.; Dilara, P.; De Santi, G. Particle Measurement Programme (PMP): Particle Size and Number Emissions before, during and after Regeneration Events of a Euro 4 DPF Equipped Light-Duty Diesel Vehicle; SAE Technical Paper 2007-01-1944; SAE International: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Alföldy, B.; Giechaskiel, B.; Hofmann, W.; Drossinos, Y. Size-distribution dependent lung deposition of diesel exhaust particles. J. Aerosol Sci. 2009, 40, 652–663. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef] [PubMed]
- Bontempi, E. First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): The case of Lombardy (Italy). Environ. Res. 2020, 186, 109639. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Limits and Measurement Methods for Emissions from Diesel Fueled Heavy-Duty Vehicles (CHINA-6); Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018. [Google Scholar]
- Bergmann, M.; Kirchner, U.; Vogt, R.; Benter, T. On-road and laboratory investigation of low-level PM emissions of a modern diesel particulate filter equipped diesel passenger car. Atmos. Environ. 2009, 43, 1908–1916. [Google Scholar] [CrossRef]
- Li, J.; Ge, Y.; Wang, H.; Yu, C.; Yan, X.; Hao, L.; Tan, J. Effects of different diesel particulate filter on emission characteristics of in-use diesel vehicles. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 2989–3000. [Google Scholar] [CrossRef]
- Eisazadeh, H.; Ehteram, M.A.; Khazaee, I. Diffusion charging measurements on exhaust solid particle number and lung deposited surface area of compressed natural gas and diesel buses. Environ. Sci. Pollut. Res. 2020, 27, 16929–16939. [Google Scholar] [CrossRef]
- Bai, S.; Tang, J.; Wang, G.; Li, G. Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine. Appl. Therm. Eng. 2016, 100, 1292–1298. [Google Scholar] [CrossRef]
- Kasai, Y.; Miwa, S.; Kuki, T.; Senda, K.; Ogura, Y. New Cordierite Diesel Particulate Filter Material for the Diesel Particulate—NOx Reduction System; SAE Technical Paper 2004-01-0953; SAE International: Warrendale, PA, USA, 2004. [Google Scholar] [CrossRef]
- Cordiner, S.; Mecocci, F.; Mulone, V.; Rocco, V. Particle Number Emissions: An Analysis by Varying Engine/Exhaust-System Design and Operating Parameters; SAE Technical Paper 2011-24-0170; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Fujitani, Y.; Takahashi, K.; Fushimi, A.; Hasegawa, S.; Kondo, Y.; Tanabe, K.; Kobayashi, S. Particle number emission factors from diesel trucks at a traffic intersection: Long-term trend and relation to particle mass-based emission regulation. Atmos. Environ. X 2020, 5, 100055. [Google Scholar] [CrossRef]
- Yildiz, I.; Caliskan, H.; Mori, K. Effects of cordierite particulate filters on diesel engine exhaust emissions in terms of pollution prevention approaches for better environmental management. J. Environ. Manag. 2021, 293, 112873. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Manfredi, U.; Martini, G. Engine Exhaust Solid Sub-23 nm Particles: I. Literature Survey. SAE Int. J. Fuels Lubr. 2014, 7, 950–964. [Google Scholar] [CrossRef]
- Levy, H.; Schwarzkopf, M.D.; Horowitz, L.; Ramaswamy, V.; Findell, K.L. Strong sensitivity of late 21st century climate to projected changes in short -lived air pollutants. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef]
- Zhou, J.; Tie, X.; Yu, Y.; Zhao, S.; Li, G.; Liu, S.; Zhang, T.; Dai, W. Impact of the Emission Control of Diesel Vehicles on Black Carbon (BC) Concentrations over China. Atmosphere 2020, 11, 696. [Google Scholar] [CrossRef]
- Ma, C.; Wu, L.; Mao, H.-j.; Fang, X.-z.; Wei, N.; Zhang, J.-s.; Yang, Z.-w.; Zhang, Y.-j.; Lv, Z.-y.; Yang, L. Transient Characterization of Automotive Exhaust Emission from Different Vehicle Types Based on On-Road Measurements. Atmosphere 2020, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Smit, R.; Bainbridge, S.; Kennedy, D.; Kingston, P. A decade of measuring on-road vehicle emissions with remote sensing in Australia. Atmos. Environ. 2021, 252, 118317. [Google Scholar] [CrossRef]
- Boveroux, F.; Cassiers, S.; de Meyer, P.; Buekenhoudt, P.; Bergmans, B.; Idczak, F.; Jeanmart, H.; Verhelst, S.; Contino, F. Impact of Mileage on Particle Number Emission Factors for EURO5 and EURO6 Diesel Passenger Cars. Atmos. Environ. 2021, 244, 117975. [Google Scholar] [CrossRef]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J. Environ. Manag. 2015, 154, 225–258. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Lähde, T.; Suarez-Bertoa, R.; Valverde, V.; Clairotte, M. Comparisons of Laboratory and On-Road Type-Approval Cycles with Idling Emissions. Implications for Periodical Technical Inspection (PTI) Sensors. Sensors 2020, 20, 5790. [Google Scholar] [CrossRef]
- Burtscher, H.; Lutz, T.H.; Mayer, A. A New Periodic Technical Inspection for Particle Emissions of Vehicles. Emiss. Control Sci. Technol. 2019, 5, 279–287. [Google Scholar] [CrossRef]
- Seiler, V.; Boeckmann, E.; Eilts, P. Performance of Undamaged and Damaged Diesel Particulate Filters; SAE Technical Paper 2008-01-0335; SAE International: Warrendale, PA, USA, 2008. [Google Scholar] [CrossRef]
- Dabhoiwala, R.; Johnson, J.; Naber, J. Experimental Study Comparing Particle Size and Mass Concentration Data for a Cracked and Un-Cracked Diesel Particulate Filter; SAE Technical Paper 2009-01-0629; SAE International: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Zhang, X.; Tennison, P.; Schram, T. 3D Numerical Study of Pressure Loss Characteristics and Soot Leakage Through a Damaged DPF. SAE Int. J. Fuels Lubr. 2009, 2, 590–604. [Google Scholar] [CrossRef]
- Malik, A.; Abdulhamid, H.; Pagels, J.; Rissler, J.; Lindskog, M.; Nilsson, P.; Bjorklund, R.; Jozsa, P.; Visser, J.; Spetz, A.; et al. A Potential Soot Mass Determination Method from Resistivity Measurement of Thermophoretically Deposited Soot. Aerosol Sci. Technol. 2011, 45, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Ochs, T.; Schittenhelm, H.; Genssle, A.; Kamp, B. Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF); SAE Technical Paper 2010-01-0307; SAE International: Warrendale, PA, USA, 2008. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Fragkiadoulakis, P.; Samaras, Z.; Janka, K.; Tikkanen, J. Exhaust Particle Sensor for OBD Application; SAE Technical Paper 2011-01-0626; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Sappok, A.; Ragaller, P.; Herman, A.; Bromberg, L.; Prikhodko, V.; Parks, J.; Storey, J. On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing. SAE Int. J. Engines 2017, 10, 1667–1682. [Google Scholar] [CrossRef]
- Maricq, M.M.; Bilby, D. The impact of voltage and flow on the electrostatic soot sensor and the implications for its use as a diesel particulate filter monitor. J. Aerosol Sci. 2018, 124, 41–53. [Google Scholar] [CrossRef]
- Bémer, D.; Subra, I. Monitoring particle emission for non-road diesel machineries equipped with particulate filters. J. Aerosol Sci. 2017, 113, 153–165. [Google Scholar] [CrossRef]
- Fleischman, R.; Amiel, R.; Czerwinski, J.; Mayer, A.; Tartakovsky, L. Buses retrofitting with diesel particle filters: Real-world fuel economy and roadworthiness test considerations. J. Environ. Sci. 2018, 67, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Melas, A.; Selleri, T.; Suarez-Bertoa, R.; Giechaskiel, B. Evaluation of Solid Particle Number Sensors for Periodic Technical Inspection of Passenger Cars. Sensors 2021, 21, 8325. [Google Scholar] [CrossRef]
- Yamada, H. Improving Methodology of Particulate Measurement in Periodic Technical Inspection with High-Sensitivity Techniques: Laser Light Scattering Photometry and Particle Number Method. Emiss. Control Sci. Technol. 2019, 5, 37–44. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lahde, T.; Suarez-Bertoa, R.; Clairotte, M.; Grigoratos, T.; Zardini, A.; Perujo, A.; Martini, G. Particle number measurements in the European legislation and future JRC activities. Combust. Engines 2018, 174, 3–16. [Google Scholar] [CrossRef]
- Valverde, V.; Mora, B.A.; Clairotte, M.; Pavlovic, J.; Suarez-Bertoa, R.; Giechaskiel, B.; Astorga-LLorens, C.; Fontaras, G. Emission Factors Derived from 13 Euro 6b Light-Duty Vehicles Based on Laboratory and On-Road Measurements. Atmosphere 2019, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Haralampous, O.; Mastrokalos, M.; Tzorbatzoglou, F.; Dritselis, C. Experimental and Computational Investigation of Particle Filtration Mechanisms in Partially Damaged DPFs. SAE Int. J. Adv. Curr. Prac. Mobil. 2020, 2, 681–691. [Google Scholar] [CrossRef]
- Lv, L.; Ge, Y.; Ji, Z.; Tan, J.; Wang, X.; Hao, L.; Wang, Z.; Zhang, M.; Wang, C.; Liu, H. Regulated emission characteristics of in-use LNG and diesel semi-trailer towing vehicles under real driving conditions using PEMS. J. Environ. Sci. 2020, 88, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Jarosinski, W.; Wiśniowski, P. Verifying the Efficiency of a Diesel Particulate Filter Using Particle Counters with Two Different Measurements in Periodic Technical Inspection of Vehicles. Energies 2021, 14, 5128. [Google Scholar] [CrossRef]
- Beatrice, C.; di Iorio, S.; Guido, C.; Napolitano, P. Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Exp. Therm. Fluid Sci. 2012, 39, 45–53. [Google Scholar] [CrossRef]
- Yamada, H. PN Emissions from Heavy-Duty Diesel Engine with Periodic Regenerating DPF. SAE Int. J. Engines 2013, 6, 1178–1189. [Google Scholar] [CrossRef]
- Dwyer, H.; Ayala, A.; Zhang, S.; Collins, J.; Huai, T.; Herner, J.; Chau, W. Emissions from a diesel car during regeneration of an active diesel particulate filter. J. Aerosol Sci. 2010, 41, 541–552. [Google Scholar] [CrossRef]
Specifications | Value |
---|---|
Response Time (t10–t90) | <5 s |
Zero Check | <2#/cm3 30 s average when sampling HEPA filtered air (>99.995% filter efficiency with ambient background concentration < 2 × 104#/cm3) |
Resolution | 1#/cm3 |
Accuracy (Laboratory Test) | ±15% relative or ±40#/cm3 absolute, whichever is greater (Monodisperse 70 nm) |
Repeatability (Laboratory Test) | 3 Repeats 30 s average data ±10% @1 × 103–2 × 104#/cm3 (Monodisperse 70 nm) |
Linearity (Laboratory Test) | R2 > 0.95 For Entire Concentration Range Intercept < 0.5% of Full Scale Minimum 6 points between 0 and 2 × 104#/cm3 (Monodisperse 70 nm) |
Efficiency (Laboratory Test) | Monodisperse Counting Efficiencies @1 × 103–2 × 104#/cm3 10 nm < 0.80 23 nm 0.75–1.05 41 nm 0.85–1.15 50 nm 0.85–1.15 80 nm 0.85–1.15 100 nm 0.85–1.15 200 nm 0.85–1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Z.; Zhao, W.; Lyu, L.; Zhu, Z. Fast Identification of the Failure of Heavy-Duty Diesel Particulate Filters Using a Low-Cost Condensation Particle Counter (CPC) Based System. Atmosphere 2022, 13, 268. https://doi.org/10.3390/atmos13020268
Ge Z, Zhao W, Lyu L, Zhu Z. Fast Identification of the Failure of Heavy-Duty Diesel Particulate Filters Using a Low-Cost Condensation Particle Counter (CPC) Based System. Atmosphere. 2022; 13(2):268. https://doi.org/10.3390/atmos13020268
Chicago/Turabian StyleGe, Zihao, Weirui Zhao, Liqun Lyu, and Ziru Zhu. 2022. "Fast Identification of the Failure of Heavy-Duty Diesel Particulate Filters Using a Low-Cost Condensation Particle Counter (CPC) Based System" Atmosphere 13, no. 2: 268. https://doi.org/10.3390/atmos13020268
APA StyleGe, Z., Zhao, W., Lyu, L., & Zhu, Z. (2022). Fast Identification of the Failure of Heavy-Duty Diesel Particulate Filters Using a Low-Cost Condensation Particle Counter (CPC) Based System. Atmosphere, 13(2), 268. https://doi.org/10.3390/atmos13020268