Human Bioclimate Analysis for the Paris Olympic Games
Abstract
:1. Introduction
2. Methodology and Data
2.1. Study Area
2.2. Methods
2.2.1. Thermal Indices
2.2.2. Model to Calculate Thermal Indices
2.2.3. Meteorological Data
2.2.4. Tourism- and Event-Tailored Climate Information
3. Results
3.1. Frequencies of Physiologically Equivalent Temperature Classes
3.2. Frequency of Precipitation
3.3. The Climate-Tourism/Transfer-Information-Scheme
3.4. Daily Distribution of Mean Physiologically Equivalent Temperature
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matzarakis, A.; Frohlich, D. Sport events and climate for visitors—The case of FIFA World Cup in Qatar 2022. Int. J. Biometeorol. 2015, 59, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Fröhlich, D.; Bermon, S.; Adami, P. Visualization of Climate Factors for Sports Events and Activities–The Tokyo 2020 Olympic Games. Atmosphere 2019, 10, 572. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Graw, K.; Matzarakis, A. Comparison of thermal comfort between Sapporo and Tokyo—the case of the Olympics 2020. Atmosphere 2020, 11, 444. [Google Scholar] [CrossRef]
- Wong, P.; Lai, P.-C.; Hart, M. Microclimate variations between semienclosed and open sections of a marathon route. Adv. Meteorol. 2013, 2013, 287934. [Google Scholar] [CrossRef] [Green Version]
- Kakamu, T.; Wada, K.; Smith, D.R.; Endo, S.; Fukushima, T. Preventing heat illness in the anticipated hot climate of the Tokyo 2020 Summer Olympic Games. Environ. Health Prev. Med. 2017, 22, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzarakis, A. Transfer of climate data for tourism applications—the climate-tourism/transfer-information-scheme. Sustain. Environ. Res. 2014, 24, 273–280. [Google Scholar]
- De Freitas, C.R. Tourism climatology: Evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int. J. Biometeorol. 2003, 48, 45–54. [Google Scholar] [CrossRef]
- Matzarakis, A.; Fröhlich, D.; Bermon, S.; Adami, P.E. Quantifying Thermal Stress for Sport Events—The Case of the Olympic Games 2020 in Tokyo. Atmosphere 2018, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- FIFA. Heat Breaks Reduce Thermal Stress. Available online: https://www.fifamedicalnetwork.com/heat-breaks-reduce-thermal-stress (accessed on 7 March 2020).
- Eijsvogels, T.M.; de Korte, J.Q.; Bongers, C.C. Beat the heat: How to become a gold medalist at the Tokyo Olympics. Temperature 2021, 8, 203–205. [Google Scholar] [CrossRef]
- Meteo France. Le Climat en France Métropolitaine. Available online: https://meteofrance.com/comprendre-climat/france/le-climat-en-france-metropolitaine (accessed on 30 December 2021).
- Köppen, W. Das geographische system der klimate. In Handbuch der Klimatologie, Bd. 1; Teil, C.W., Köppen, G.R., Geiger, M., Eds.; Verlag Gebrüder Borntraeger: Berlin, Germany, 1936; pp. 5–44. [Google Scholar]
- Walter, H.; Lieth, H. Klimadiagram-Weltatlas; VEB Gustav Fischer Verlag: Jena, Germany, 1960. [Google Scholar]
- Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere 2019, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- VDI Guideline 3787/Part 2. Environmental meteorology, Methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level: Part I: Climate. In VDI/DIN Handbuch Reinhaltung der Luft, Band 1B: Umweltmeteorologie; Beuth-Verlag: Berlin, Germany, 2008; Volume 2, pp. 1–32.
- Höppe, P. The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Matzarakis, A. Modified physiologically equivalent temperature—Basics and applications for western European climate. Theor. Appl. Climatol. 2018, 132, 1275–1289. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, D.; Matzarakis, A. Spatial Estimation of Thermal Indices in Urban Areas—Basics of the SkyHelios Model. Atmosphere 2018, 9, 209. [Google Scholar] [CrossRef] [Green Version]
- VDI Guideline 3789/Part 2. Wechselwirkung zwischen Atmosphäre und Oberflächen Berechnung der kurz- und langwelligen Strahlung. In VDI/DIN Handbuch Reinhaltung der Luft Umweltmeteorologie; Beuth Verlag: Berlin, Germany, 1994.
- Matzarakis, A.; Mayer, H. Another kind of environmental stress: Thermal stress. WHO Newsl. 1996, 18, 7–10. [Google Scholar]
- Kuttler, W. Stadtklima. In Handbuch der Umweltveränderungen und Ökotoxologie; Guderian, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 420–470. [Google Scholar]
- Fröhlich, D.; Matzarakis, A. A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar. Theor. Appl. Climatol. 2015, 124, 179–187. [Google Scholar] [CrossRef]
- Vanos, J.K.; Kosaka, E.; Iida, A.; Yokohari, M.; Middel, A.; Scott-Fleming, I.; Brown, R.D. Planning for spectator thermal comfort and health in the face of extreme heat: The Tokyo 2020 Olympic marathons. Sci. Total Environ. 2019, 657, 904–917. [Google Scholar] [CrossRef]
- Fröhlich, D.; Gangwisch, M.; Matzarakis, A. Effect of radiation and wind on thermal comfort in urban environments—Application of the RayMan and SkyHelios model. Urban Clim. 2019, 27, 1–7. [Google Scholar] [CrossRef]
- Matzarakis, A.; Gangwisch, M.; Fröhlich, D. RayMan and SkyHelios Model. In Urban Microclimate Modelling for Comfort and Energy Studies; Palme, M., Salvati, A., Eds.; Springer: New York, NY, USA, 2021; pp. 339–361. [Google Scholar] [CrossRef]
- Matzarakis, A.; Laschewski, G.; Muthers, S. The Heat Health Warning System in Germany—Application and Warnings for 2005 to 2019. Atmosphere 2020, 11, 170. [Google Scholar] [CrossRef] [Green Version]
PET (°C) | Thermal Perception | Grade of Physical Stress |
---|---|---|
≤4 | Very cold | Extreme cold stress |
>4–8 | Cold | Strong cold stress |
>8–13 | Cool | Moderate cold stress |
>13–18 | Slightly cool | Slight cold stress |
>18–23 | Comfortable | No thermal stress |
>23–29 | Slightly warm | Slight heat stress |
>29–35 | Warm | Moderate heat stress |
>35–41 | Hot | Strong heat stress |
>41 | Very hot | Extreme heat stress |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matzarakis, A.; Graw, K. Human Bioclimate Analysis for the Paris Olympic Games. Atmosphere 2022, 13, 269. https://doi.org/10.3390/atmos13020269
Matzarakis A, Graw K. Human Bioclimate Analysis for the Paris Olympic Games. Atmosphere. 2022; 13(2):269. https://doi.org/10.3390/atmos13020269
Chicago/Turabian StyleMatzarakis, Andreas, and Kathrin Graw. 2022. "Human Bioclimate Analysis for the Paris Olympic Games" Atmosphere 13, no. 2: 269. https://doi.org/10.3390/atmos13020269
APA StyleMatzarakis, A., & Graw, K. (2022). Human Bioclimate Analysis for the Paris Olympic Games. Atmosphere, 13(2), 269. https://doi.org/10.3390/atmos13020269