Biometeorological Conditions during the August 2015 Mega-Heat Wave and the Summer 2010 Mega-Heat Wave in Ukraine
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Analysis of Heat Waves in Ukraine for the Period 1961–2015
3.2. Thermal Comfort Conditions during Mega-Heat Wave in 2010
3.3. Thermal Comfort Conditions during Mega-Heat Wave in August 2015
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef]
- Kovats, R.S.; Ebi, K.L. Heatwaves and public health in Europe. Eur. J. Public Health 2006, 16, 592–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, R. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health 2009, 8, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosling, S.N.; Lowe, J.A.; McGregor, G.R.; Pelling, M.; Malamud, B.D. Associations between elevated atmospheric temperature and human mortality: A critical review of the literature. Clim. Change 2009, 92, 299–341. [Google Scholar] [CrossRef]
- Matzarakis, A.; Laschewski, G.; Muthers, S. The Heat Health Warning System in Germany—Application and Warnings for 2005 to 2019. Atmosphere 2020, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Muthers, S.; Koch, E. Human-biometeorological evaluation of summer mortality in Vienna. Theor. Appl. Climatol. 2011, 105, 1–10. [Google Scholar] [CrossRef]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Kenny, N.A. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int. J. Biometeorol. 2010, 54, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Konstantinov, P.; Varentsov, M.; Malinina, E. Modeling of thermal comfort conditions inside the urban boundary layer during Moscow’s 2010 summer heat wave (case-study). Urban Clim. 2014, 10, 563–572. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rocco, M.; Najjar, G. Thermal bioclimate in Strasbourg—The 2003 heat wave. Theor. Appl. Climatol. 2009, 98, 209–220. [Google Scholar] [CrossRef]
- Matzarakis, A.; Nastos, P. Analysis of tourism potential for Crete island, Greece. Glob. Nest J. 2011, 13, 141–149. [Google Scholar]
- Basarin, B.; Lukić, T.; Matzarakis, A. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia. Int. J. Biometeorol. 2016, 60, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Krzyżewska, A.; Wereski, S.; Demczuk, P. Biometeorological conditions during an extreme heatwave event in Poland in August 2015. Weather 2020, 75, 183–189. [Google Scholar] [CrossRef]
- Roshan, G.; Ghanghermeh, A.; Kong, Q. Spatial and temporal analysis of outdoor human thermal comfort during heat and cold waves in Iran. Weather Clim. Extrem. 2018, 19, 58–67. [Google Scholar] [CrossRef]
- Tomczyk, A.; Bednorz, E.; Matzarakis, A. Human-biometeorological conditions during heat waves in Poland. Int. J. Climatol. 2020, 40, 5043–5055. [Google Scholar] [CrossRef]
- Anderson, B.; Bell, M. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology 2009, 20, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.; Bisanti, L.; D’Ippoliti, D.; Danova, J.; et al. Heat effects on mortality in 15 European cities. Epidemiology 2008, 19, 711–719. [Google Scholar] [CrossRef]
- Rocklöv, J.; Forsberg, B. The effect of temperature on mortality in Stockholm 1998—2003: A study of lag structures and heatwave effects. Scand. J. Public Health 2008, 36, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Thorsson, S.; Rocklöv, J.; Konarska, J.; Lindberg, F.; Holmer, B.; Dousset, B.; Rayner, D. Mean radiant temperature—A predictor of heat related mortality. Urban Clim. 2014, 10, 332–345. [Google Scholar] [CrossRef]
- Di Napoli, C.; Pappenberger, F.; Cloke, H. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchcik, M. Mortality and thermal environment (UTCI) in Poland—Long-term, multi-city study. Int. J. Biometeorol. 2020, 65, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Nastos, P.; Matzarakis, A. The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theor. Appl. Climatol. 2012, 108, 591–599. [Google Scholar] [CrossRef]
- Urban, A.; Kyselý, J. Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. Int. J. Environ. Res. Public Health 2014, 11, 952–967. [Google Scholar] [CrossRef] [Green Version]
- Sfîcă, L.; Croitoru, A.-E.; Iordache, I.; Ciupertea, A.-F. Synoptic Conditions Generating Heat Waves and Warm Spells in Romania. Atmosphere 2017, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Koppe, C.; Jendritzky, G. Inclusion of short-term adaptation to thermal stresses in a heat load warning procedure. Meteorol. Z. 2005, 14, 271–278. [Google Scholar] [CrossRef]
- Ruuhela, R.; Jylhä, K.; Lanki, T.; Tiittanen, P.; Matzarakis, A. Biometeorological Assessment of Mortality Related to Extreme Temperatures in Helsinki Region, Finland, 1972–2014. Int. J. Environ. Res. Public Health 2017, 14, 944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalkstein, L.; Greene, J. An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change. Environ. Health Perspect. 1997, 105, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Laschewski, G.; Jendritzky, G. Effects of the thermal environment on human health: An investigation of 30 years of daily mortality data from SW Germany. Clim. Res. 2002, 21, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.; Bednorz, E. Heatwaves in Central Europe and their circulation conditions. Int. J. Climatol. 2016, 36, 770–782. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J. Hot Central-European summer of 2013 in a long-term context. Int. J. Climatol. 2015, 35, 4399–4407. [Google Scholar] [CrossRef]
- Fink, A.; Brücher, T.; Krüger, A.; Leckebusch, G.; Pinto, J.; Ulbrich, U. The 2003 European summer heatwaves and drought—Synoptic diagnosis and impacts. Weather 2004, 59, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Rebetez, M.; Mayer, H.; Dupont, O.; Schindler, D.; Gartner, K.; Kropp, J.P.; Menzel, A. Heat and drought 2003 in Europe: A climate synthesis. Ann. For. Sci. 2006, 63, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Rebetez, M.; Dupont, O.; Giroud, M. An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003. Theor. Appl. Climatol. 2009, 95, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kyselý, J. Recent severe heat waves in central Europe: How to view them in a long-term prospect? Int. J. Climatol. 2010, 30, 89–109. [Google Scholar] [CrossRef]
- Monteiro, A.; Carvalho, V.; Oliveira, T.; Sousa, C. Excess mortality and morbidity during the July 2006 heat wave in Porto, Portugal. Int. J. Biometeorol. 2013, 57, 155–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoy, A.; Hänsel, S.; Skalak, P.; Ustrnul, Z.; Bochníček, O. The extreme European summer of 2015 in a longterm perspective. Int. J. Clim. 2016, 37, 943–962. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.; Luterbacher, J.; Trigo, R.; García-Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grumm, R. The central European and Russian heat event of July-August 2010. Bull. Amer. Meteor. 2011, 92, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Rahmstorf, S.; Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108, 17905–17909. [Google Scholar] [CrossRef] [Green Version]
- Otto, F.; Massey, N.; van Oldenborgh, G.; Jones, R.; Allen, M. Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett. 2012, 39, L04702. [Google Scholar] [CrossRef] [Green Version]
- Krzyżewska, A.; Dyer, J. The August 2015 mega-heatwave in Poland in the context of past events. Weather 2018, 73, 207–214. [Google Scholar] [CrossRef]
- Bador, M.; Terray, L.; Boe, J.; Somot, S.; Alias, A.; Gibelin, A.; Dubuisson, B. Future summer mega-heatwave and record-breaking temperatures in a warmer France climate. Environ. Res. Lett. 2017, 12, 074025. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E. Climate science: Autopsy of two mega-heatwaves. Nat. Geosci. 2014, 7, 332–333. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Song, G.; Kalkstein, L.; Kalkstein, A.; Tang, X. Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int. J. Biometeorol. 2007, 51, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Gershunov, A.; Cayan, D.; Iacobellis, S. The great 2006 heat wave over California and Nevada: Signal of an increasing trend. J. Clim. 2009, 22, 6181–6203. [Google Scholar] [CrossRef] [Green Version]
- Shevchenko, O.; Samchuk, E.; Snizhko, S. Characteristics of synoptic processes during heat wave in July–August 2010 in Ukraine. Proc. Russ. State Hydrometeorol. Univ. 2013, 29, 85–94. [Google Scholar]
- Robinson, P.J. On the definition of a heat wave. J. Appl. Meteorol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Shevchenko, O.; Lee, H.; Snizhko, S.; Mayer, H. Long-term analysis of heat waves in Ukraine. Int. J. Climatol. 2014, 34, 1642–1650. [Google Scholar] [CrossRef]
- Shevchenko, O.; Oliinyk, R.; Snizhko, S.; Svintsitska, H.; Kostyrko, I. Indexing of Heatwaves in Ukraine. Water 2020, 12, 962. [Google Scholar] [CrossRef] [Green Version]
- Frich, P.; Alexander, L.; Della-Marta, P.; Gleason, B.; Haylock, M.; Klein Tank, A.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Radinović, D.; Ćurić, M. Criteria for heat and cold wave duration indexes. Theor. Appl. Climatol. 2012, 107, 505–510. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Fröhlich, D.; Bermon, S.; Adami, P. Quantifying Thermal Stress for Sport Events—The Case of the Olympic Games 2020 in Tokyo. Atmosphere 2018, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Mayer, H.; Iziomon, M. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Endler, C. Climate change and thermal bioclimate in cities: Impacts and options for adaptation in Freiburg, Germany. Int. J. Biometeorol. 2010, 54, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Błażejczyk, K.; Matzarakis, A. Assessment of bioclimatic differentiation of Poland based on the human heat balance. Geogr. Pol. 2007, 80, 63–82. [Google Scholar]
- Omonijo, A.; Adeofun, C.; Oguntoke, O.; Matzarakis, A. Relevance of thermal environment to human health: A case study of Ondo State, Nigeria. Theor. Appl. Climatol. 2013, 113, 205–212. [Google Scholar] [CrossRef]
- Mahmoud, A. Analysis of the microclimatic and human comfort conditions in an urban park in hot and arid regions. Build. Environ. 2011, 46, 2641–2656. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A. Tourism climate information based on human thermal perception in Taiwan and Eastern China. Tour. Manag. 2011, 32, 492–500. [Google Scholar] [CrossRef]
- Katerusha, O.; Matzarakis, A. Thermal bioclimate and climate tourism analysis for Odessa, black sea. Geogr. Ann. A Phys. Geogr. 2015, 97, 671–679. [Google Scholar] [CrossRef]
- Shevchenko, O.; Snizhko, S.; Matzarakis, A. Recent trends on human thermal bioclimate conditions in Kyiv, Ukraine. Geogr. Pol. 2020, 93, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Schneidereit, A.; Schubert, S.; Vargin, P.; Lunkeit, F.; Zhu, X.; Peters, D.H.W.; Fraedrich, K. Large-Scale Flow and the Long-Lasting Blocking High over Russia: Summer 2010. J. Am. Meteorol. Soc. 2012, 140, 2967–2981. [Google Scholar] [CrossRef]
- Müller, N.; Kuttler, W.; Barlag, A.-B. Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theor. Appl. Climatol. 2014, 115, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Revich, B. Heat-wave, air quality and mortality in European Russia in summer 2010: Preliminary assessment. Hum. Ecol. 2011, 7, 3–9. [Google Scholar]
- Výberči, D.; Labudová, L.; Eštóková, M.; Faško, P.; Trizna, M. Human mortality impacts of the 2015 summer heat spells in Slovakia. Theor. Appl. Climatol. 2018, 133, 925–936. [Google Scholar] [CrossRef]
- Urban, A.; Hanzlíková, H.; Kyselý, J.; Plavcová, E. Impacts of the 2015 Heat Waves on Mortality in the Czech Republic-A Comparison with Previous Heat Waves. Int. J. Environ. Res. Public Health 2017, 14, 1562. [Google Scholar] [CrossRef] [Green Version]
- Vicedo-Cabrera, A.; Ragettli, M.; Schindler, C.; Röösli, M. Excess mortality during the warm summer of 2015 in Switzerland. Swiss Med. Wkly. 2016, 146, w14379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthers, S.; Laschewski, G.; Matzarakis, A. The Summers 2003 and 2015 in South-West Germany: Heat Waves and Heat-Related Mortality in the Context of Climate Change. Atmosphere 2017, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Andrade, H.; Alcoforado, M. Microclimatic variation of thermal comfort in a district of Lisbon (Telheiras) at night. Theor. Appl. Climatol. 2008, 92, 225–237. [Google Scholar] [CrossRef]
- Hirashima, S.; Assis, E.; Nikolopoulou, M. Daytime thermal comfort in urban spaces: A field study in Brazil. Build. Environ. 2016, 107, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Holst, J.; Mayer, H. Modification of Human-Biometeorologically Significant Radiant Flux Densities by Shading as Local Method to Mitigate Heat Stress in Summer within Urban Street Canyons. Adv. Meteorol. 2013, 2013, 312572. [Google Scholar] [CrossRef]
- Mayer, H.; Kuppe, S.; Holst, J.; Imbery, F.; Matzarakis, A. Human thermal comfort below the canopy of street trees on a typical central European summer day. Ber. Meteorol. Inst. Albert-Ludwigs-Univ. Freibg. 2009, 18, 211–219. [Google Scholar]
- Mayer, H.; Matzarakis, A. Human-biometeorological assessment of urban structures. In Proceedings of the Vol. 2 Fifth International Conference on Urban Climate, Lodz, Poland, 1–5 September 2003; pp. 83–86. [Google Scholar]
- Lokoshchenko, M. Urban ‘heat island’ in Moscow. Urban Clim. 2014, 10, 550–562. [Google Scholar] [CrossRef]
- Sharma, R.; Joshi, P. Identifying seasonal heat islands in urban settings of Delhi (India) using remotely sensed data—An anomaly based approach. Urban Clim. 2014, 9, 19–34. [Google Scholar] [CrossRef]
- Tam, B.; Gough, W.; Mohsin, T. The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban Clim. 2015, 12, 1–10. [Google Scholar] [CrossRef]
PET, °C | Thermal Perception | Grade of Physiological Stress |
---|---|---|
<4 | Very cold | Extreme cold stress |
4.1–8.0 | Cold | Strong cold stress |
8.1–13.0 | Cool | Moderate cold stress |
13.1–18.0 | Slightly cool | Slight cold stress |
18.1–23.0 | Comfortable | No thermal stress |
23.1–29.0 | Slightly warm | Slight heat stress |
29.1–35.0 | Warm | Moderate heat stress |
35.1–41.0 | Hot | Strong heat stress |
>41.1 | Very hot | Extreme heat stress |
Station | Mean Duration, Days | Maximum Duration, Days (Year of Occurrence) |
---|---|---|
Bila Tserkva | 7.7 | 18 (2010) |
Hlukhiv | 8.3 | 19 (2010) |
Kyiv | 9.6 | 18 (2010) |
Ovruch | 8.4 | 17 (1963, 2010) |
Semenivka | 9.4 | 37 (2010) |
Ivano-Frankivsk | 8.1 | 15 (2015) |
Lviv | 7.7 | 14 (2015) |
Lyubeshiv | 8.7 | 16 (1999) |
Rivne | 8.4 | 14 (1964, 2015) |
Uzhhorod | 8.2 | 19 (1994) |
Khmelnytskyi | 7.3 | 13 (2015) |
Chernivtsi | 7.5 | 13 (1964, 2015) |
Hadiach | 8.4 | 19 (2010) |
Dnipro | 8.8 | 24 (2010) |
Kropyvnytskyi | 7.8 | 18 (2010) |
Poltava | 8.1 | 19 (2010) |
Uman | 7.6 | 18 (2010) |
Lozova | 7.2 | 13 (2010) |
Luhansk | 8.3 | 24 (2010) |
Mariupol | 9.1 | 21 (2010) |
Kharkiv | 7.9 | 20 (2010) |
Askaniia Nova | 8.3 | 19 (2010) |
Henichesk | 7.0 | * |
Hulaipole | 8.7 | 18 (2001) |
Izmail | 7.8 | 17 ** (2010) |
Mykolaiv | 8.5 | 19 (2002) |
Odesa | 8.1 | 12 (2008, 2010) |
Simferopol | 9.6 | 20 (2010) |
Station | Air Temperature (°C) | Number of Days with Air Temperature >30 °C | Number of Days with PET >35 °C | Difference (°C) between Mean Air Temperature of August 2010 and Mean Air Temperature of August 1981–2010 | ||
---|---|---|---|---|---|---|
Min | Max | Mean | ||||
Bila Tserkva | 14.4 | 38.1 | 26.5 | 13 | 10 | 4.5 |
Hlukhiv | 16.5 | 39.7 | 28.5 | 13 | 13 | 5.3 |
Kyiv | 18.5 | 39.2 | 28.4 | 13 | 13 | 4.9 |
Ovruch | 15.1 | 37.7 | 25.0 | 12 | 9 | 3.7 |
Semenivka | 14.8 | 41.4 | 28.4 | 13 | 13 | 5.6 |
Hadiach | 20.2 | 39.6 | 29.0 | 13 | 13 | 5.2 |
Dnipro | 20.1 | 40.9 | 29.6 | 13 | 13 | 4.4 |
Kropyvnytskyi | 17.0 | 39.4 | 28.5 | 13 | 13 | 4.5 |
Poltava | 18.9 | 39.4 | 29.6 | 13 | 13 | 5.2 |
Uman | 16.0 | 37.0 | 26.9 | 13 | 13 | 4.3 |
Lozova | 18.6 | 39.1 | 29.3 | 13 | 13 | 5 |
Luhansk | 15.6 | 42.1 | 29.5 | 13 | 13 | 5.3 |
Mariupol | 23.6 | 37.2 | 31.0 | 13 | 10 | 4.7 |
Kharkiv | 20.2 | 39.8 | 30.6 | 13 | 13 | 5.8 |
Askaniia Nova | 17.8 | 40.7 | 29.1 | 13 | 13 | 3.6 |
Hulaipole | 13.3 | 39.6 | 27.8 | 13 | 13 | 4 |
Izmail | 17.5 | 37.2 | 28.3 | 13 | 12 | 3.7 |
Mykolaiv | 20.0 | 39.7 | 29.5 | 13 | 13 | 3.6 |
Odesa | 19.7 | 38.1 | 28.8 | 13 | 13 | 3.9 |
Simferopol | 19.8 | 39.5 | 28.7 | 13 | 13 | 3.8 |
Station | Slight Heat Stress | Moderate Heat Stress | Strong Heat Stress | Extreme Heat Stress |
---|---|---|---|---|
Bila Tserkva | 0.0 | 0.0 | 69.2 | 30.8 |
Hlukhiv | 0.0 | 0.0 | 7.7 | 92.3 |
Kyiv | 0.0 | 0.0 | 46.2 | 53.8 |
Ovruch | 7.7 | 15.4 | 30.8 | 46.2 |
Semenivka | 0.0 | 0.0 | 15.4 | 84.6 |
Hadiach | 0.0 | 0.0 | 15.4 | 84.6 |
Dnipro | 0.0 | 0.0 | 7.7 | 92.3 |
Kropyvnytskyi | 0.0 | 0.0 | 7.7 | 92.3 |
Poltava | 0.0 | 0.0 | 0.0 | 100.0 |
Uman | 0.0 | 0.0 | 15.4 | 84.6 |
Lozova | 0.0 | 0.0 | 0.0 | 100.0 |
Luhansk | 0.0 | 0.0 | 0.0 | 100.0 |
Mariupol | 0.0 | 0.0 | 84.6 | 15.4 |
Kharkiv | 0.0 | 0.0 | 0.0 | 100.0 |
Askaniia Nova | 0.0 | 0.0 | 15.4 | 84.6 |
Hulaipole | 0.0 | 0.0 | 0.0 | 100.0 |
Izmail | 0.0 | 7.7 | 38.5 | 53.9 |
Mykolaiv | 0.0 | 0.0 | 0.0 | 100.0 |
Odesa | 0.0 | 0.0 | 46.2 | 53.8 |
Simferopol | 0.0 | 0.0 | 23.1 | 76.9 |
Station | Air Temperature (°C) | Number of Days with Air Temperature >30 °C | Number of Days with PET >35 °C | Difference (°C) between Mean Air Temperature of August 2015 and Mean Air Temperature of August 1981–2010 | ||
---|---|---|---|---|---|---|
Min | Max | Mean | ||||
Hlukhiv | 10.6 | 33.9 | 22.9 | 7 | 7 | 1.4 |
Ovruch | 13.4 | 35.5 | 24.4 | 9 | 8 | 2.7 |
Semenivka | 9.9 | 34.7 | 24.1 | 8 | 6 | 2.1 |
Izmail | 16.4 | 37.5 | 27.6 | 10 | 8 | 2.3 |
Ivano-Frankivsk | 10.5 | 35.1 | 23.2 | 10 | 7 | 2.9 |
Lviv | 13.3 | 33.8 | 24.3 | 9 | 5 | 3.9 |
Lyubeshiv | 14.2 | 35.2 | 25.2 | 9 | 6 | 3.3 |
Rivne | 15.2 | 35.5 | 25.2 | 9 | 7 | 3.5 |
Uzhhorod | 15.9 | 37.9 | 26.8 | 10 | 9 | 3.6 |
Khmelnytskyi | 15.1 | 34.4 | 24.6 | 10 | 3 | 3.5 |
Chernivtsi | 14.7 | 35.0 | 25.1 | 10 | 6 | 3.2 |
Station | Date of Occurrence of the HW and Duration (days) | The Mean PET Value (°C) at 12 UTC in the Period from 5 to 14 August | The Highest PET Values (°C) at 12 UTC during Heat Wave and the Data of Occurrence | Frequency (%) of Days with Different Grades of Physiological Stress on Human Beings at 12 UTC during the Period from 5 to 14 August | ||
---|---|---|---|---|---|---|
Moderate Heat Stress | Strong Heat Stress | Extreme Heat Stress | ||||
Hlukhiv | 7–13.08 (7) | 37.8 | 42.2 (9 Aug) | 20.0 | 70.0 | 10.0 |
Ovruch | 3–14.08 (12) | 40.5 | 50.1 (13 Aug) | 10.0 | 50.0 | 40.0 |
Semenivka | 7–13.08 (7) | 37.9 | 41.1 (10 Aug) | 10.0 | 80.0 | 10.0 |
Ivano-Frankivsk | 2–16.08 (15) | 38.9 | 41.7 (13 Aug) | 10.0 | 80.0 | 10.0 |
Lviv | 3–16.08 (14) | 37.9 | 47.7 (16 Aug) | 10.0 | 90.0 | 0.0 |
Lyubeshiv | 3–13.08 (11) | 38.3 | 41.4 (9 Aug) | 10.0 | 80.0 | 10.0 |
Rivne | 3–16.08 (14) | 37.6 | 42.6 (11 Aug) | 20.0 | 60.0 | 20.0 |
Uzhhorod | 5–16.08 (12) | 42.0 | 46.2 (8 Aug) | 0.0 | 30.0 | 70.0 |
Khmelnytskyi | 4–16.08 (13) | 37.2 | 40.4 (11 Aug) | 10.0 | 90.0 | 0.0 |
Chernivtsi | 4–16.08 (13) | 38.5 | 44.4 (12 Aug) | 10.0 | 70.0 | 20.0 |
Izmail | 10–16.08 (7) | 39.1 | 42.1 (11 Aug) | 10.0 | 70.0 | 20.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shevchenko, O.; Snizhko, S.; Zapototskyi, S.; Matzarakis, A. Biometeorological Conditions during the August 2015 Mega-Heat Wave and the Summer 2010 Mega-Heat Wave in Ukraine. Atmosphere 2022, 13, 99. https://doi.org/10.3390/atmos13010099
Shevchenko O, Snizhko S, Zapototskyi S, Matzarakis A. Biometeorological Conditions during the August 2015 Mega-Heat Wave and the Summer 2010 Mega-Heat Wave in Ukraine. Atmosphere. 2022; 13(1):99. https://doi.org/10.3390/atmos13010099
Chicago/Turabian StyleShevchenko, Olga, Sergiy Snizhko, Sergii Zapototskyi, and Andreas Matzarakis. 2022. "Biometeorological Conditions during the August 2015 Mega-Heat Wave and the Summer 2010 Mega-Heat Wave in Ukraine" Atmosphere 13, no. 1: 99. https://doi.org/10.3390/atmos13010099
APA StyleShevchenko, O., Snizhko, S., Zapototskyi, S., & Matzarakis, A. (2022). Biometeorological Conditions during the August 2015 Mega-Heat Wave and the Summer 2010 Mega-Heat Wave in Ukraine. Atmosphere, 13(1), 99. https://doi.org/10.3390/atmos13010099