Distributions and Risk Assessment of the Natural Radionuclides in the Soil of Shoubra El Kheima, South Nile Delta, Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Sample Treatment and Analysis
2.4. Radiation Hazard Indices Calculation
2.5. Data Treatment and Statistical Analysis
3. Results and Discussion
3.1. Soil Characteristics
3.2. Activity Concentrations
3.3. Statistical Analysis
3.4. Radiation Hazard
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- UNSCEAR. Sources and Effects of Ionizing Radiation, Report to the General Assembly with Scientific Annexes; United Nation: New York, NY, USA, 2000. [Google Scholar]
- Missimer, T.M.; Teaf, C.; Maliva, R.G.; Danley-Thomson, A.; Covert, D.; Hegy, M. Natural radiation in the rocks, soils, and groundwater of Southern Florida with a discussion on potential health impacts. Int. J. Environ. Res. Public Health 2021, 16, 1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, T.; Park, W.; Han, T.; Bong, K.M.; Kim, K. Natural and artificial radioactivity in volcanic ash soils of Jeju Island, Republic of Korea, and assessment of the radiation hazards: Importance of soil properties. J. Radioanal. Nucl. Chem. 2020, 323, 1113–1124. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of Ionizing Radiation, Report to the General Assembly with Scientific Annexes; United Nation: New York, NY, USA, 2008. [Google Scholar]
- Pal, R.; Patra, A.C.; Bakshi, A.K.; Dhabekar, B.; Reddy, P.J.; Sengupta, P.; Sapra, B.K. Investigations on baseline levels for natural radioactivity in soils, rocks, and lakes of Larsemann Hills in East Antarctica. Environ. Monit. Assess. 2021, 193, 822. [Google Scholar] [CrossRef] [PubMed]
- Yehia, M.; Baghdady, A.; Howari, F.M.; Awad, S.; Gad, A. Natural radioactivity and groundwater quality assessment in the northern area of the Western Desert of Egypt. J. Hydrol. Reg. Stud. 2017, 12, 331–344. [Google Scholar] [CrossRef]
- Ndour, O.; Thiandoume, C.; Traore, A.; Cagnat, X.; Diouf, P.M.; Ndeye, M.; Ndao, A.S.; Tidjani, A. Assessment of natural radioactivity and its radiological hazards in several types of cement used in Senega. SN Appl. Sci. 2020, 2, 2078. [Google Scholar] [CrossRef]
- Caridi, F.; Testagrossa, B.; Acri, G. Elemental composition and natural radioactivity of refractory materials. Environ. Earth Sci. 2021, 80, 170. [Google Scholar] [CrossRef]
- Massoud, E.; El-Taher, A.; Najam, L.A.; Elsaman, R. Ecological impacts of Assuit fertiliser factory in Upper Egypt: Environmental implications and spatial distribution of natural radionuclides. Int. J. Environ. Anal. Chem. 2021, 1–15. [Google Scholar] [CrossRef]
- Garba, N.N.; Odoh, C.M.; Nasiru, R.; Saleh, M.A. Investigation of potential environmental radiation risks associated with artisanal gold mining in Zamfara State, Nigeria. Environ. Earth Sci. 2021, 80, 76. [Google Scholar] [CrossRef]
- Hazou, E.; Zorko, B.; Dzagli, M.M.; Haliba, E.M.; Guembou, S.C.; Ndontchueng, M.M.; Tchakpele, P.K. Transfer from soil to grass and statistical analysis of naturally occurring radionuclides in soil from phosphate mining and processing sites in Maritime Region of Togo. Environ. Earth Sci. 2021, 80, 626. [Google Scholar] [CrossRef]
- Abedin, M.J.; Karim, M.R.; Hossain, S.; Deb, N.; Kamal, M.; Miah, M.H.A.; Khandaker, M.U. Spatial distribution of radionuclides in agricultural soil in the vicinity of a coal-fired brick kiln. Arab. J. Geosci. 2019, 12, 236. [Google Scholar] [CrossRef]
- Dinis, M.L.; Fiúza, A.; Góis, J.; Carvalho, J.S.; Castro, A.C. Assessment of natural radioactivity, heavy metals and particulate matter in air and soil around a coal-fired power plant—An integrated approach. Atmosphere 2021, 12, 1433. [Google Scholar] [CrossRef]
- Majeed, K.F.; Salama, E.; Elfki, S.A.; Al-Bakhat, Y.M. Natural radioactivity assessment around the petroleum-producing areas of The-Qar province, Iraq. Environ. Earth Sci. 2021, 80, 64. [Google Scholar] [CrossRef]
- Baghdady, A.; Awad, S.; Gad, A. Assessment of metal contamination and natural radiation hazards in different soil types near iron ore mines, Bahariya Oasis, Egypt. Arab. J. Geosci. 2018, 11, 506. [Google Scholar] [CrossRef]
- Gad, A.; Saleh, A.; Khalifa, M. Assessment of natural radionuclides and related occupational risk in agricultural soil, southeastern Nile Delta, Egypt. Arab. J. Geosci. 2019, 12, 188. [Google Scholar] [CrossRef]
- Younis, H.; Wasim, B.; Qureshi, A.A.; Ali, M.; Ahmad, F.; Mehboob, K.; Ajaz, M.; Hussain, K. Determination of radioactivity levels in the virgin and fertilized soil samples of Rawalpindi District, Pakistan. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 1085–1095. [Google Scholar] [CrossRef]
- Luevano-Gurrola, S.; Perez-Tapia, A.; Pinedo-Alvarez, C.; Carrillo-Flores, J.; Montero-Cabrera, M.E.; Renteria-Villalobos, M. Lifetime effective dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico. Int. J. Environ. Res. Public Health 2015, 12, 12324–12339. [Google Scholar] [CrossRef] [Green Version]
- Aghdam, M.M.; Crowley, Q.; Rocha, C.; Dentoni, V.; Da Pelo, S.; Long, S.; Savatier, M. A study of natural radioactivity levels and radon/thoron release potential of bedrock and soil in Southeastern Ireland. Int. J. Environ. Res. Public Health 2021, 18, 2709. [Google Scholar] [CrossRef]
- Belyaeva, O.; Movsisyan, N.; Pyuskyulyan, K.; Sahakyan, L.; Tepanosyan, G.; Saghatelyan, A. Yerevan soil radioactivity: Radiological and geochemical assessment. Chemosphere 2021, 265, 129173. [Google Scholar] [CrossRef]
- Ribeiro, F.C.; Lauria, D.C.; Rio, M.A.; da Cunha, F.G.; Sousa, W.O.; Lima, E.M.; Franzen, M. Mapping soil radioactivity in the Fernando de Noronha archipelago, Brazil. J. Radioanal. Nucl. Chem. 2017, 311, 577–587. [Google Scholar] [CrossRef]
- Ahmed, N.K.; El-Arabi, A.M. Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. J. Environ. Radioact. 2005, 84, 51–64. [Google Scholar] [CrossRef]
- Belivermis, M.; Kılıç, Ö.; Çotuk, Y.; Topcuoğlu, S. The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ. Monit. Assess. 2010, 163, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.M.; Uosif, M.A.; Elsaman, R.; Alrowaili, Z.A.; Moustafa, E. The dependence of natural radioactivity levels and its radiological hazards on the texture of agricultural soil in Upper Egypt. Environ. Earth Sci. 2020, 79, 228. [Google Scholar] [CrossRef]
- Issa, S.A. Radiometric assessment of natural radioactivity levels of agricultural soil samples collected in Dakahlia, Egypt. Radiat. Prot. Dosim. 2013, 156, 59–67. [Google Scholar] [CrossRef]
- El-Gamal, H.; Hussien, M.T.; Saleh, E.E. Evaluation of natural radioactivity levels in soil and various foodstuffs from Delta Abyan, Yemen. J. Radiat. Res. Appl. Sci. 2019, 12, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Ugbede, F.O.; Osahon, O.D.; Agbalagba, E.O. Radiological risk assessment of 238U, 232Th and 40K in soil and their uptake by rice cultivated in CAS paddy environment of Abakaliki, Nigeria. Chem. Afr. 2021, 4, 691–701. [Google Scholar] [CrossRef]
- Monged, M.H.; Abu Khatita, A.M.; El-Hemamy, S.T.; Sabet, H.S. Environmental assessment of radioactivity levels and radiation hazards in soil at North Western-Mediterranean Sea coast, Egypt. Environ. Earth Sci. 2020, 79, 386. [Google Scholar] [CrossRef]
- Khalifa, M.; Gad, A. Assessment of heavy metals contamination in agricultural soil of southwestern Nile Delta, Egypt. Soil Sediment Contam. Int. J. 2018, 27, 619–642. [Google Scholar] [CrossRef]
- Osman, R.; Melegy, A.; Dawood, Y.; Gad, A. Distribution of some potentially toxic heavy metals in the soil of Shoubra El Kheima, Egypt. Egypt. J. Chem. 2021, 64, 1965–1980. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; International Soil Reference and Information Centre: Wageningen, The Netherlands, 2002. [Google Scholar]
- Lewis, D.W.; McConchie, D. Analytical Sedimentology; Springer: Amsterdam, The Netherlands, 1994. [Google Scholar]
- International Atomic Energy Agency (IAEA). Intercomparison Runs Reference Manuals; AQCS: Vienna, Austria, 1995. [Google Scholar]
- Ibraheem, A.A.; El-Taher, A.; Alruwaili, H.M. Assessment of natural radioactivity levels and radiation hazard indices for soil samples from Abha, Saudi Arabia. Results Phys. 2018, 11, 325–330. [Google Scholar] [CrossRef]
- Abbasi, A.; Kurnaz, A.; Turhan, S.; Mirekhtiary, F. Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus. J. Radioanal. Nucl. Chem. 2020, 324, 203–210. [Google Scholar] [CrossRef]
- Kavasara, M.; Vinutha, P.R.; Kaliprasad, C.S.; Narayana, Y. Studies on the dependence of natural radioactivity on clay minerals of soils in Davanagere district of Karnataka, India. J. Radioanal. Nucl. Chem. 2021, 330, 1461–1471. [Google Scholar] [CrossRef]
- Beretka, J.; Mathew, P.J. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef]
- ECRP (European Commission Radiation Protection). Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials; 112; European Comissision: Brussels, Belgium, 1999. [Google Scholar]
- Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hindiroglu, S.; Karahan, G. Radionuclide concentrations in soil and lifetime cancer risk due to the gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 2009, 100, 49–53. [Google Scholar] [CrossRef] [PubMed]
- ICRP (International Commission on Radiological Protection). Recommendations of the International Commission on Radiological Protection. In ICRP Publication 60; Pergamon Press Ann ICRP: Oxford, UK, 1990. [Google Scholar]
- USDA. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, Handbook No. 436; US Department of Agriculture: Washington, WA, USA, 1999.
- Melegy, A.A.; El-Agami, N.L. Factors controlling the chemistry and mineralogy of selected soils types of the Czech Republic and Egypt. Bull. Geosci. 2004, 79, 71–79. [Google Scholar]
- Tabar, E.; Yakut, H.; Saç, M.M.; Taşköprü, C.; İçhedef, M.; Kuş, A. Natural radioactivity levels and related risk assessment in soil samples from Sakarya, Turkey. J. Radioanal. Nucl. Chem. 2017, 313, 249–259. [Google Scholar] [CrossRef]
- Kekelidze, N.; Jakhutashvili, T.; Tutberidze, B.; Tulashvili, F.; Akhalkatsishvili, M.; Mtsariashvili, L. Radioactivity of soils in Mtskheta-Mtianeti region (Georgia). Ann. Agrar. Sci. 2017, 15, 304–311. [Google Scholar] [CrossRef]
- IAEA (International Atomic Energy Agency). The Environmental Behaviour of Radium, revised ed.; IAEA-TRS 476; IAEA: Vienna, Austria, 2014. [Google Scholar]
- Wang, Z.; Ye, Y. Assessment of soil radioactivity levels and radiation hazards in Guangyao Village, South China. J. Radioanal. Nucl. Chem. 2021, 329, 679–693. [Google Scholar] [CrossRef]
- Mohammed, N.; Chanai, E.; Alkhorayef, M. The impact of the extensive use of phosphate fertilizers on radioactivity levels in farm soil and vegetables in Tanzania. J. Radioanal. Nucl. Chem. 2016, 307, 2373–2379. [Google Scholar] [CrossRef]
- Kasumović, A.; Adrović, F.; Kasić, A.; Hankić, E. Natural radioactivity and radiation hazards assessment of soil samples from the area of Tuzla and Lukavac, Bosnia and Herzegovina. Isot. Environ. Health Stud. 2015, 51, 469–477. [Google Scholar] [CrossRef]
- Hamideen, M.S. Correlations study between environmental radioactivity concentrations and some health risk indicators of soil samples in Amman city, Jordan. Int. J. Environ. Anal. Chem. 2022, 102, 380–390. [Google Scholar] [CrossRef]
- Garba, N.N.; Ramli, A.T.; Saleh, M.A.; Gabdo, H.T. Natural radioactivity and associated radiation hazards in soil of Kelantan, Malaysia. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1707–1717. [Google Scholar] [CrossRef]
- Külahcı, F.; Aközcan, S.; Günay, O. Monte Carlo simulations and forecasting of Radium-226, Thorium-232, and Potassium-40 radioactivity concentrations. J. Radioanal. Nucl. Chem. 2020, 324, 55–70. [Google Scholar] [CrossRef]
S/N | Radiological Parameters | Units | Safety Criterion | References | |
---|---|---|---|---|---|
1 | Radium Equivalent Activity Index (Raeq) | (1) | Bq kg−1 | <370 Bq kg−1 | [1,37] |
2 | External Radiation Hazard Index (Hex) | (2) | - | <1 | [1,38] |
3 | Air Absorbed Dose Rate (D) | (3) | nGy h−1 | <57 nGy h−1 | [1] |
4 | Annual Effective Dose Equivalent (AEDE) | (4) | mSv year−1 | <0.07 mSv year−1 | [1] |
5 | Excess Lifetime Cancer Risk (ELCR) | (5) | - | <0.29 × 10−3 | [4,39] |
Soil Land Use | pH | OM | Sand | Silt | Clay | SiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | 226Ra | 232Th | 40K | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agricultural N = 16 | Min | 7.92 | 4.23 | 2.70 | 20.60 | 8.70 | 41.50 | 15.40 | 7.50 | 0.10 | 1.80 | 3.10 | UDL | 20.20 | 103.29 |
Max | 8.78 | 8.88 | 37.33 | 43.90 | 61.00 | 50.50 | 21.90 | 9.50 | 0.24 | 2.60 | 6.50 | 33.30 | 32.32 | 635.39 | |
Mean | 8.42 | 6.05 | 12.98 | 27.43 | 48.85 | 45.44 | 18.23 | 8.21 | 0.17 | 2.14 | 4.77 | 18.73 | 26.01 | 337.06 | |
Std. D. | 0.22 | 1.23 | 7.66 | 5.85 | 11.92 | 2.40 | 2.20 | 0.54 | 0.03 | 0.19 | 0.83 | 11.26 | 4.89 | 141.61 | |
Urban N = 10 | Min | 8.18 | 1.43 | 6.94 | 7.98 | 6.44 | 49.50 | 8.89 | 2.58 | 0.03 | 0.88 | 3.20 | 11.10 | 8.08 | 71.99 |
Max | 8.78 | 5.46 | 72.52 | 39.99 | 55.00 | 73.80 | 17.80 | 8.60 | 0.13 | 2.10 | 6.29 | 44.40 | 24.24 | 422.55 | |
Mean | 8.45 | 3.64 | 35.26 | 26.84 | 29.86 | 56.30 | 14.03 | 7.27 | 0.10 | 1.62 | 4.95 | 21.09 | 14.95 | 233.19 | |
Std. D. | 0.22 | 1.27 | 23.29 | 11.11 | 17.28 | 7.67 | 3.46 | 1.77 | 0.04 | 0.33 | 0.96 | 9.72 | 4.68 | 116.86 | |
Industrial N = 14 | Min | 7.65 | 1.20 | 19.19 | 2.39 | 8.70 | 47.60 | 8.10 | 3.20 | 0.01 | 0.50 | 3.50 | UDL | UDL | 9.39 |
Max | 8.96 | 6.63 | 84.25 | 35.97 | 41.80 | 76.20 | 21.00 | 10.40 | 0.26 | 2.75 | 6.50 | 33.30 | 28.28 | 697.99 | |
Mean | 8.32 | 4.03 | 50.57 | 22.05 | 18.46 | 55.91 | 13.41 | 7.60 | 0.15 | 1.71 | 5.17 | 20.61 | 15.01 | 240.12 | |
Std. D. | 0.34 | 1.47 | 17.96 | 11.36 | 8.89 | 7.93 | 3.68 | 1.91 | 0.08 | 0.58 | 0.80 | 9.60 | 8.74 | 202.92 | |
All Samples N = 40 | Min | 7.65 | 1.20 | 2.70 | 2.39 | 6.44 | 41.50 | 8.10 | 2.58 | 0.01 | 0.50 | 3.10 | UDL | UDL | 9.39 |
Max | 8.96 | 8.88 | 84.25 | 43.90 | 61.00 | 76.20 | 21.90 | 10.40 | 0.26 | 2.75 | 6.50 | 44.40 | 32.32 | 697.99 | |
Mean | 8.39 | 4.74 | 31.71 | 25.40 | 33.47 | 51.82 | 15.49 | 7.76 | 0.14 | 1.86 | 4.96 | 19.98 | 19.39 | 277.16 | |
Std. D. | 0.27 | 1.69 | 23.03 | 9.53 | 18.20 | 8.04 | 3.79 | 1.49 | 0.06 | 0.45 | 0.85 | 10.12 | 8.34 | 164.47 |
Location | Samples | 226Ra | 232Th | 40K | References |
---|---|---|---|---|---|
Egypt | |||||
South Nile Delta (Shoubra) | N = 40 | 19.98 | 19.39 | 277.16 | Present study |
Middle Nile Delta (Dakahlia) | N = 25 | 43.00 | 54.00 | 183.00 | [25] |
Southeastern Nile Delta | N = 36 | 35.50 | 23.60 | 266.40 | [16] |
Mediterranean Sea coast | N = 38 | 25.18 | 11.22 | 159.16 | [28] |
Upper Egypt (Assiut) | N = 15 | 49.45 | 59.11 | 137.85 | [9] |
Upper Egypt (EL Minya) | N = 174 | 17.53 | 10.16 | 183.08 | [24] |
Upper Egypt (Qena) | N = 32 | 13.70 | 12.30 | 1233.00 | [22] |
Worldwide | |||||
Antarctica (Larsemann) | N = 20 | 33.00 | 199.00 | 1150.00 | [5] |
Armenia (Yerevan) | N = 51 | 45.69 | 37.25 | 423.68 | [20] |
Bangladesh (Chittagong) | N = 10 | 45.00 | 51.00 | 423.00 | [12] |
Bosnia and Herzegovina (Tuzla and Lukavac) | N = 31 | 32.00 | 32.00 | 331.00 | [48] |
Brazil (Fernando de Noronha) | N = 70 | 62.00 | 82.00 | 179.00 | [21] |
China (Guangyao) | N = 30 | 26.80 | 8.87 | 453.81 | [46] |
Cyprus | N = 37 | 83.70 | 53.60 | 593.90 | [35] |
Georgia (Mtskheta–Mtianeti) | N = 17 | 24.00 | 26.90 | 464.00 | [44] |
India (Karnataka) | N = 25 | 28.07 | 21.58 | 237.68 | [36] |
Iraq (The-Qar) | N = 33 | 12.89 | 15.54 | 297.22 | [14] |
Jordan (Amman) | N = 40 | 29.00 | 35.50 | 265.70 | [49] |
Korea (Jeju Island) | N = 16 | 32.40 | 35.60 | 314.00 | [3] |
Malaysia (Kelantan) | N = 36 | 82.00 | 123.00 | 643.00 | [50] |
Nigeria (Zamfara) | N = 18 | 19.00 | 23.00 | 269.00 | [10] |
Pakistan (Rawalpindi) | N = 14 | 19.04 | 30.52 | 303.09 | [17] |
Saudi Arabia (Abha) | N = 13 | 38.67 | 23.49 | 217.87 | [34] |
Tanzania (Iringa) | N = 12 | 163.00 | 143.00 | 583.00 | [47] |
Turky (Istanbul) | N = 22 | 30.40 | 36.60 | 524.50 | [51] |
Yemen (Delta Abyan) | N = 28 | 33.15 | 77.25 | 1220.59 | [26] |
Sand | Silt | Clay | SiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | 226Ra | 232Th | 40K | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
OM | −0.717 ** | 0.360 * | 0.615 ** | −0.743 ** | 0.513 ** | 0.479 ** | 0.454 ** | 0.521 ** | 0.042 | 0.032 | 0.550 ** | 0.370 * |
Sand | 1 | −0.582 ** | −0.897 ** | 0.761 ** | −0.570 ** | −0.419 ** | −0.402 * | −0.617 ** | 0.088 | −0.072 | −0.715 ** | −0.463 ** |
Silt | 1 | 0.172 | −0.548 ** | 0.395 * | 0.329 * | 0.241 | 0.506 ** | 0.165 | 0.038 | 0.395 * | 0.286 | |
Clay | 1 | −0.584 ** | 0.469 ** | 0.295 | 0.324 * | 0.446 ** | −0.234 | 0.064 | 0.652 ** | 0.403 ** | ||
SiO2 | 1 | −0.795 ** | −0.692 ** | −0.573 ** | −0.699 ** | −0.175 | −0.076 | −0.683 ** | −0.470 ** | |||
Al2O3 | 1 | 0.395 * | 0.309 | 0.383 * | −0.075 | 0.046 | 0.660 ** | 0.407 ** | ||||
Fe2O3 | 1 | 0.443 ** | 0.368 * | 0.312 | −0.053 | 0.349 * | 0.358 * | |||||
MnO | 1 | 0.657 ** | 0.227 | 0.196 | 0.403 ** | 0.392 * | ||||||
MgO | 1 | 0.185 | 0.094 | 0.532 ** | 0.394 * | |||||||
CaO | 1 | 0.127 | −0.163 | −0.124 | ||||||||
226Ra | 1 | −0.049 | 0.269 | |||||||||
232Th | 1 | 0.536 ** | ||||||||||
40K | 1 |
Raeq | Hex | D | AEDE | ELCR × 10–3 | ||
---|---|---|---|---|---|---|
All Samples N = 40 | Min | 22.902 | 0.062 | 10.831 | 0.013 | 0.046 |
Max | 121.708 | 0.329 | 59.132 | 0.073 | 0.254 | |
Mean | 69.052 | 0.186 | 32.501 | 0.039 | 0.139 | |
Std. D. | 24.984 | 0.067 | 12.094 | 0.015 | 0.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, R.; Dawood, Y.H.; Melegy, A.; El-Bady, M.S.; Saleh, A.; Gad, A. Distributions and Risk Assessment of the Natural Radionuclides in the Soil of Shoubra El Kheima, South Nile Delta, Egypt. Atmosphere 2022, 13, 98. https://doi.org/10.3390/atmos13010098
Osman R, Dawood YH, Melegy A, El-Bady MS, Saleh A, Gad A. Distributions and Risk Assessment of the Natural Radionuclides in the Soil of Shoubra El Kheima, South Nile Delta, Egypt. Atmosphere. 2022; 13(1):98. https://doi.org/10.3390/atmos13010098
Chicago/Turabian StyleOsman, Randa, Yehia H. Dawood, Ahmed Melegy, Mohamed S. El-Bady, Ahmed Saleh, and Ahmed Gad. 2022. "Distributions and Risk Assessment of the Natural Radionuclides in the Soil of Shoubra El Kheima, South Nile Delta, Egypt" Atmosphere 13, no. 1: 98. https://doi.org/10.3390/atmos13010098
APA StyleOsman, R., Dawood, Y. H., Melegy, A., El-Bady, M. S., Saleh, A., & Gad, A. (2022). Distributions and Risk Assessment of the Natural Radionuclides in the Soil of Shoubra El Kheima, South Nile Delta, Egypt. Atmosphere, 13(1), 98. https://doi.org/10.3390/atmos13010098