Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought
Abstract
:1. Introduction
2. Study Area and Dust Storms
3. Data Set and Methodology
4. Results and Discussion
4.1. Evolution of Dust Days in SW Iran
4.2. Satellite Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pokharel, A.K.; Kaplan, M.L.; Fiedler, S. Subtropical Dust Storms and Downslope Wind Events: Subtropical Dust Storms. J. Geophys. Res. 2017, 122, 10191–10205. [Google Scholar]
- Mandija, F.; Chavez-Perez, V.; Nieto, R.; Sicard, M.; Danylevsky, V.; Añel, J.; Gimeno, L. The climatology of dust events over the European continent using data of the BSC-DREAM8b model. Atmos. Res. 2018, 209, 144–162. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, E.; Etemadi, H.; Smoak, J.M.; Amouniya, H.; Mahoutchi, M.H. Dust storm source detection using ANP and WRF models in southwest of Iran. Arab. J. Geosci. 2021, 14, 1529. [Google Scholar] [CrossRef]
- Francis, D.; Alshamsi, N.; Cuesta, J.; Isik, A.G.; Dundar, C. Cyclogenesis and Density Currents in the Middle East and the Associated Dust Activity in September 2015. Geoscience 2019, 9, 376. [Google Scholar] [CrossRef] [Green Version]
- Miri, A.; Maleki, S.; Middleton, N. An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century. Sci. Total Environ. 2021, 757, 143952. [Google Scholar] [CrossRef] [PubMed]
- Al-Hemoud, A.; Al-Dousari, A.; Al-Dashti, H.; Petrov, P.; Al-Saleh, A.; Al-Khafaji, S.; Behbehani, W.; Li, J.; Koutrakis, P. Sand and dust storm trajectories from Iraq Mesopotamian flood plain to Kuwait. Sci. Total Environ. 2020, 710, 136291. [Google Scholar] [CrossRef]
- Miri, A.; Ahmadi, H.; Ekhtesasi, M.R.; Panjehkeh, N.; Ghanbari, A. Environmental and socio-economic impacts of dust storms in Sistan Region, Iran. Int. J. Environ. Stud. 2009, 66, 343–355. [Google Scholar] [CrossRef]
- Goudie, A.S. Desert dust and human health disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef]
- Nastos, P.T.; Kampanis, N.A.; Giaouzaki, K.N.; Matzarakis, A. Environmental impacts on human health during a Sa-haran dust episode at Crete Island, Greece. Meteorol. Z. 2011, 20, 517–529. [Google Scholar] [CrossRef]
- Schepanski, K. Transport of Mineral Dust and Its Impact on Climate. Geoscience 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Gavrouzou, M.; Hatzianastassiou, N.; Gkikas, A.; Lolis, C.; Mihalopoulos, N. A Climatological Assessment of Intense Desert Dust Episodes over the Broader Mediterranean Basin Based on Satellite Data. Remote Sens. 2021, 13, 2895. [Google Scholar] [CrossRef]
- Titos, G.; Ealo, M.; Pandolfi, M.; Pérez, N.; Sola, Y.; Sicard, M.; Comerón, A.; Querol, X.; Alastuey, A. Spatiotemporal Evolution of a Severe Winter Dust Event in the Western Mediterranean: Aerosol Optical and Physical Properties: Dust Optical and Physical Properties. J. Geophys. Res. 2017, 122, 4052–4069. [Google Scholar] [CrossRef] [Green Version]
- Rashki, A.; Kaskaoutis, D.G.; Mofidi, A.; Minvielle, F.; Chiapello, I.; Legrand, M.; Dumka, U.C.; Francois, P. Effects of Monsoon, Shamal and Levar Winds on Dust Accumulation over the Arabian Sea during Summer—The July 2016 Case. Aeolian Res. 2019, 36, 27–44. [Google Scholar] [CrossRef]
- Francis, D.; Chaboureau, J.-P.; Nelli, N.; Cuesta, J.; Alshamsi, N.; Temimi, M.; Pauluis, O.; Xue, L. Summertime dust storms over the Arabian Peninsula and impacts on radiation, circulation, cloud development and rain. Atmos. Res. 2021, 250, 105364. [Google Scholar] [CrossRef]
- Ahmady-Birgani, H.; Ravan, P.; Schlosser, J.S.; Cuevas-Robles, A.; AzadiAghdam, M.; Sorooshian, A. On the chemical nature of wet deposition over a major desiccated lake: Case study for Lake Urmia basin. Atmos. Res. 2020, 234, 104762. [Google Scholar] [CrossRef]
- Gholami, H.; Mohammadifar, A.; Pourghasemi, H.R.; Collins, A.L. A New Integrated Data Mining Model to Map Spatial Variation in the Susceptibility of Land to Act as a Source of Aeolian Dust. Environ. Sci. Pollut. Res. Int. 2020, 27, 42022–42039. [Google Scholar] [CrossRef] [PubMed]
- Gholami, H.; Mohammadifar, A.; Golzari, S.; Kaskaoutis, D.G.; Collins, A.L. Using the Boruta algorithm and deep learning models for mapping land susceptibility to atmospheric dust emissions in Iran. Aeolian Res. 2021, 50, 100682. [Google Scholar] [CrossRef]
- Motaghi, F.A.; Hamzehpour, N.; Abasiyan, S.M.A.; Rahmati, M. The wind erodibility in the newly emerged surfaces of Urmia Playa Lake and adjacent agricultural lands and its determining factors. Catena 2020, 194, 104675. [Google Scholar] [CrossRef]
- Avila, A.; Peñuelas, J. Increasing frequency of Saharan rains over Northeastern Spain and its ecological consequences. Sci. Total Environ. 1999, 228, 153–156. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Al-Awadhi, J.; Al-Enezi, A. Barchan Dunes in Northern Kuwait. Desertif. Third Millenn. 2003, 299–308. [Google Scholar] [CrossRef]
- Kumar, A.; Suresh, K.; Rahaman, W. Geochemical Characterization of Modern Aeolian Dust over the Northeastern Ara-bian Sea: Implication for Dust Transport in the Arabian Sea. Sci. Total Environ. 2020, 729, 138576. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.T.; Anderson, R.F.; Fleisher, M.Q.; Serno, S.; Winckler, G.; Gersonde, R. Biogeography in 231Pa/230Th Ratios and a Balanced 231Pa Budget for the Pacific Ocean. Earth Planet. Sci. Lett. 2014, 391, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, G.; Babu, K.N.; Solanki, H.A. Monitoring Bio-Optical Response of Coastal Waters Surrounding the Indian Sub-continent to Atmospheric Dust Deposition Using Satellite Data. Environ. Sci. Pollut. Res. Int. 2020, 27, 5523–5535. [Google Scholar] [CrossRef] [PubMed]
- Goudie, A.S. Dust storms: Recent developments. J. Environ. Manag. 2009, 90, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Middleton, N. Rangeland management and climate hazards in drylands: Dust storms, desertification and the overgrazing debate. Nat. Hazards 2018, 92, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Prakash, P.J.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H. The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos. Chem. Phys. Discuss. 2015, 15, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, S.; Kaskaoutis, D.G.; Singh, R.P.; Singh, R.K.; Mishra, A.K.; Srivastava, M.K.; Singh, A.K. Meteorological, Atmospheric and Climatic Perturbations during Major Dust Storms over Indo-Gangetic Basin. Aeolian Res. 2015, 17, 15–31. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Athanasopoulou, E.; Speyer, O.; Raptis, P.I.; Marinou, E.; Proestakis, E.; Solomos, S.; Gerasopoulos, E.; et al. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements. Atmos. Meas. Tech. 2017, 10, 2435–2453. [Google Scholar] [CrossRef] [Green Version]
- Kaskaoutis, D.G.; Francis, D.; Rashki, A.; Chaboureau, J.-P.; Dumka, U.C. Atmospheric Dynamics from Synoptic to Local Scale during an Intense Frontal Dust Storm over the Sistan Basin in Winter 2019. Geosciences 2019, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Kok, J.F.; Adebiyi, A.A.; Albani, S.; Balkanski, Y.; Checa-Garcia, R.; Chin, M.; Colarco, P.R.; Hamilton, D.S.; Huang, Y.; Ito, A.; et al. Contribution of the World’s Main Dust Source Regions to the Global Cycle of Desert Dust. Atmos. Chem. Phys. 2021, 21, 8169–8193. [Google Scholar] [CrossRef]
- Pozzer, A.; de Meij, A.; Yoon, J.; Tost, H.; Georgoulias, A.K.; Astitha, M. AOD Trends during 2001–2010 from Observations and Model Simulations. Atmos. Chem. Phys. 2015, 15, 5521–5535. [Google Scholar] [CrossRef] [Green Version]
- Klingmüller, K.; Pozzer, A.; Metzger, S.; Stenchikov, G.L.; Lelieveld, J. Aerosol optical depth trend over the Middle East. Atmos. Chem. Phys. Discuss. 2016, 16, 5063–5073. [Google Scholar] [CrossRef] [Green Version]
- Floutsi, A.A.; Korras-Carraca, M.; Matsoukas, C.; Hatzianastassiou, N.; Biskos, G. Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12 years (2002–2014) based on Collection 006 MODIS-Aqua data. Sci. Total Environ. 2016, 551–552, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Middleton, N. Variability and Trends in Dust Storm Frequency on Decadal Timescales: Climatic Drivers and Human Impacts. Geoscience 2019, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, A.; Wu, R.; Aldabash, M. Long-Term AOD Trend Assessment over the Eastern Mediterranean Region: A Comparative Study Including a New Merged Aerosol Product. Atmos. Environ. 2020, 238, 117736. [Google Scholar] [CrossRef]
- Rashki, A.; Middleton, N.; Goudie, A. Dust storms in Iran—Distribution, causes, frequencies and impacts. Aeolian Res. 2021, 48, 100655. [Google Scholar] [CrossRef]
- Engelstaedter, S.; Tegen, I.; Washington, R. North African dust emissions and transport. Earth-Sci. Rev. 2006, 79, 73–100. [Google Scholar] [CrossRef]
- Parajuli, S.P.; Stenchikov, G.L.; Ukhov, A.; Kim, H. Dust Emission Modeling Using a New High-Resolution Dust Source Function in WRF-Chem With Implications for Air Quality. J. Geophys. Res. Atmos. 2019, 124, 10109–10133. [Google Scholar] [CrossRef] [Green Version]
- Gholami, H.; Mohamadifar, A.; Collins, A.L. Spatial mapping of the provenance of storm dust: Application of data mining and ensemble modelling. Atmos. Res. 2020, 233, 104716. [Google Scholar] [CrossRef]
- Gholami, H.; Rahimi, S.; Fathabadi, A.; Habibi, S.; Collins, A.L. Mapping the spatial sources of atmospheric dust using GLUE and Monte Carlo simulation. Sci. Total Environ. 2020, 723, 138090. [Google Scholar] [CrossRef]
- Li, S.; Pan, D.; Xu, Z.; Lin, P.; Zhang, Y. Numerical simulation of dynamic water grouting using quick-setting slurry in rock fracture: The Sequential Diffusion and Solidification (SDS) method. Comput. Geotech. 2020, 122, 103497. [Google Scholar] [CrossRef]
- Emamian, A.; Rashki, A.; Kaskaoutis, D.G.; Gholami, A.; Opp, C.; Middleton, N. Assessing Vegetation Restoration Potential under Different Land Uses and Climatic Classes in Northeast Iran. Ecol. Indic. 2021, 122, 107325. [Google Scholar] [CrossRef]
- Al-Dousari, A.M.; Alsaleh, A.; Ahmed, M.; Misak, R.; Al-Dousari, N.; Al-Shatti, F.; Elrawi, M.; William, T. Off-Road Vehicle Tracks and Grazing Points in Relation to Soil Compaction and Land Degradation. Earth Syst. Environ. 2019, 3, 471–482. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Pye, K.; Al-Hazza, A.; Al-Shatti, F.; Ahmed, M.; Al-Dousari, N.; Rajab, M. Nanosize inclusions as a fingerprint for aeolian sediments. J. Nanopart. Res. 2020, 22, 94. [Google Scholar] [CrossRef]
- Ahmed, M.; Al-Dousari, N.; Al-Dousari, A. The role of dominant perennial native plant species in controlling the mobile sand encroachment and fallen dust problem in Kuwait. Arab. J. Geosci. 2016, 9, 134. [Google Scholar] [CrossRef]
- El-Wahab, R.H.A.; Al-Rashed, A.R.; Al-Dousari, A. Influences of Physiographic Factors, Vegetation Patterns and Human Impacts on Aeolian Landforms in Arid Environment. Arid. Ecosyst. 2018, 8, 97–110. [Google Scholar] [CrossRef]
- Kharol, S.K.; Kaskaoutis, D.; Badarinath, K.; Sharma, A.R.; Singh, R. Influence of land use/land cover (LULC) changes on atmospheric dynamics over the arid region of Rajasthan state, India. J. Arid. Environ. 2013, 88, 90–101. [Google Scholar] [CrossRef]
- Ebrahimi-Khusfi, Z.; Mirakbari, M.; Khosroshahi, M. Vegetation response to changes in temperature, rainfall, and dust in arid environments. Environ. Monit. Assess. 2020, 192, 691. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Khusfi, Z.; Mirakbari, M.; Ebrahimi-Khusfi, M.; Taghizadeh-Mehrjardi, R. Impacts of vegetation anomalies and agricultural drought on wind erosion over Iran from 2000 to 2018. Appl. Geogr. 2020, 125, 102330. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A.S. Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations. Ann. Assoc. Am. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.; Sepehr, A. Statistical evaluation of the dust events at selected stations in Southwest Asia: From the Caspian Sea to the Arabian Sea. Catena 2018, 165, 590–603. [Google Scholar] [CrossRef]
- Salmabadi, H.; Khalidy, R.; Saeedi, M. Transport routes and potential source regions of the Middle Eastern dust over Ahvaz during 2005–2017. Atmos. Res. 2020, 241, 104947. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Liu, Z.; Wang, F.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Climatic Controls on the Interannual to Decadal Variability in Saudi Arabian Dust Activity: Toward the Development of a Seasonal Dust Prediction Model: Saudi Arabian Dust Prediction. J. Geophys. Res. 2015, 120, 1739–1758. [Google Scholar] [CrossRef]
- Mohammadpour, K.; Sciortino, M.; Saligheh, M.; Raziei, T.; Boloorani, A.D. Spatiotemporal regionalization of atmospheric dust based on multivariate analysis of MACC model over Iran. Atmos. Res. 2021, 249, 105322. [Google Scholar] [CrossRef]
- Arfan Ali, M.A.; Assiri, M. Analysis of AOD from MODIS-Merged DT–DB Products over the Arabian Peninsula. Earth Syst. Environ. 2019, 3, 625–636. [Google Scholar]
- Ali, A.; Nichol, J.E.; Bilal, M.; Qiu, Z.; Mazhar, U.; Wahiduzzaman; Almazroui, M.; Islam, M.N. Classification of aerosols over Saudi Arabia from 2004–2016. Atmos. Environ. 2020, 241, 117785. [Google Scholar] [CrossRef]
- Sabetghadam, S.; Alizadeh, O.; Khoshsima, M.; Pierleoni, A. Aerosol properties, trends and classification of key types over the Middle East from satellite-derived atmospheric optical data. Atmos. Environ. 2021, 246, 118100. [Google Scholar] [CrossRef]
- Xu, X.; Xie, L.; Yang, X.; Wu, H.; Cai, L.; Qi, P. Aerosol optical properties at seven AERONET sites over Middle East and Eastern Mediterranean Sea. Atmos. Environ. 2020, 243, 117884. [Google Scholar] [CrossRef]
- Yousefi, R.; Wang, F.; Ge, Q.; Shaheen, A. Long-term aerosol optical depth trend over Iran and identification of dominant aerosol types. Sci. Total Environ. 2020, 722, 137906. [Google Scholar] [CrossRef]
- Hamidi, M.; Kavianpour, M.R.; Shao, Y. Synoptic analysis of dust storms in the Middle East. Asia-Pac. J. Atmos. Sci. 2013, 49, 279–286. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Kalashnikova, O.V.; Garay, M.J. Climatology of Summer Shamal Wind in the Middle East: Summer Shamal Climatology. J. Geophys. Res. 2016, 121, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Hermida, L.; Merino, A.; Sanchez, J.L.; Fernández-González, S.; García-Ortega, E.; Lopez, L. Characterization of synoptic patterns causing dust outbreaks that affect the Arabian Peninsula. Atmos. Res. 2018, 199, 29–39. [Google Scholar] [CrossRef]
- Namdari, S.; Karimi, N.; Sorooshian, A.; Mohammadi, G.; Sehatkashani, S. Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos. Environ. 2018, 173, 265–276. [Google Scholar] [CrossRef]
- Mohammadpour, K.; Sciortino, M.; Kaskaoutis, D.G. Classification of weather clusters over the Middle East associated with high atmospheric dust-AODs in West Iran. Atmos. Res. 2021, 259, 105682. [Google Scholar] [CrossRef]
- Mashat, A.; Awad, A.M. A synoptic and dynamic study of a dust storm event over the Middle East. Bull. Fac. Sci. Cairo Univ. 2010, 78, 43–64. [Google Scholar]
- Beegum, N.; Gherboudj, I.; Chaouch, N.; Temimi, M.; Ghedira, H. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula. Atmos. Res. 2018, 199, 62–81. [Google Scholar] [CrossRef]
- Ledari, D.G.; Hamidi, M.; Shao, Y. Evaluation of the 13 April 2011 frontal dust storm in west Asia. Aeolian Res. 2020, 44, 100592. [Google Scholar] [CrossRef]
- Labban, A.H.; Mashat, A.S.; Awad, A.M. The variability of the Siberian high ridge over the Middle East. Int. J. Clim. 2021, 41, 104–130. [Google Scholar] [CrossRef]
- Hamzeh, N.; Karami, S.; Kaskaoutis, D.; Tegen, I.; Moradi, M.; Opp, C. Atmospheric Dynamics and Numerical Simulations of Six Frontal Dust Storms in the Middle East Region. Atmosphere 2021, 12, 125. [Google Scholar] [CrossRef]
- Al-Jumaily, K.J.; Ibrahim, M.K. Analysis of Synoptic Situation for Dust Storms in Iraq. Int. J. Energy Environ. 2013, 4, 851–858. [Google Scholar]
- Mashat, A.; Awad, A. The Synoptic Features of the Autumn Dust Classes in Northern Saudi Arabia. Int. J. Adv. Res. 2015, 3, 461–471. [Google Scholar]
- Mashat, A.-W.S.; Awad, A.M.; Assiri, M.E.; Labban, A.H. Dynamic and synoptic study of spring dust storms over northern Saudi Arabia. Theor. Appl. Clim. 2020, 140, 619–634. [Google Scholar] [CrossRef]
- Baghbanan, P.; Ghavidel, Y.; Farajzadeh, M. Spatial analysis of spring dust storms hazard in Iran. Theor. Appl. Clim. 2019, 139, 1447–1457. [Google Scholar] [CrossRef]
- Maleki, H.; Sorooshian, A.; Goudarzi, G.; Nikfal, A.; Baneshi, M.M. Temporal Profile of PM10 and Associated Health Ef-fects in One of the Most Polluted Cities of the World (Ahvaz, Iran) between 2009 and 2014. Aeolian Res. 2016, 22, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudarzi, G.; Geravandi, S.; Foruozandeh, H.; Babaei, A.A.; Alavi, N.; Niri, M.V.; Khodayar, M.J.; Salmanzadeh, S.; Mohammadi, M.J. Cardiovascular and respiratory mortality attributed to ground-level ozone in Ahvaz, Iran. Environ. Monit. Assess. 2015, 187, 487. [Google Scholar] [CrossRef] [PubMed]
- Shahsavani, A.; Tobías, A.; Querol, X.; Stafoggia, M.; Abdolshahnejad, M.; Mayvaneh, F.; Guo, Y.; Hadei, M.; Hashemi, S.S.; Khosravi, A.; et al. Short-term effects of particulate matter during desert and non-desert dust days on mortality in Iran. Environ. Int. 2020, 134, 105299. [Google Scholar] [CrossRef] [PubMed]
- Naimabadi, A.; Ghadiri, A.; Idani, E.; Babaei, A.A.; Alavi, N.; Shirmardi, M.; Khodadadi, A.; Marzouni, M.B.; Ankali, K.A.; Rouhizadeh, A.; et al. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran. Environ. Pollut. 2016, 211, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, Z.; Teymouri, P.; Darvishi Boloorani, A.; Mesdaghinia, A.; Middleton, N.; Griffin, D.W. An Overview of Bioaerosol Load and Health Impacts Associated with Dust Storms: A Focus on the Middle East. Atmos. Environ. 2020, 223, 117187. [Google Scholar] [CrossRef]
- Zoljoodi, M.; Didevarasl, A.; Saadatabadi, A.R. Dust Events in the Western Parts of Iran and the Relationship with Drought Expansion over the Dust-Source Areas in Iraq and Syria. Atmos. Clim. Sci. 2013, 03, 321–336. [Google Scholar] [CrossRef]
- Broomandi, P.; Karaca, F.; Guney, M.; Fathian, A.; Geng, X.; Kim, J.R. Destinations frequently impacted by dust storms originating from southwest Iran. Atmos. Res. 2021, 248, 105264. [Google Scholar] [CrossRef]
- Sissakian, V.K.; Al-Ansari, N.; Knutsson, S. Sand and dust storm events in Iraq. Nat. Sci. 2013, 5, 1084–1094. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, M.; Kavianpour, M.R.; Shao, Y. A quantitative evaluation of the 3–8 July 2009 Shamal dust storm. Aeolian Res. 2017, 24, 133–143. [Google Scholar] [CrossRef]
- Karimi, N.; Namdari, S.; Sorooshian, A.; Bilal, M.; Heidary, P. Evaluation and modification of SARA high-resolution AOD retrieval algorithm during high dust loading conditions over bright desert surfaces. Atmos. Pollut. Res. 2019, 10, 1005–1014. [Google Scholar] [CrossRef]
- Darvishi Boloorani, A.; Papi, R.; Soleimani, M.; Karami, L.; Amiri, F.; Neysani Samany, N. Water Bodies Changes in Tigris and Euphrates Basin Has Impacted Dust Storms Phenomena. Aeolian Res. 2021, 50, 100698. [Google Scholar] [CrossRef]
- Pikridas, M.; Vrekoussis, M.; Sciare, J.; Kleanthous, S.; Vasiliadou, E.; Kizas, C.; Savvides, C.; Mihalopoulos, N. Spatial and temporal (short and long-term) variability of submicron, fine and sub-10 μm particulate matter (PM1, PM2.5, PM10) in Cyprus. Atmos. Environ. 2018, 191, 79–93. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Lelieveld, J.; Yousefi, R.; Aldabash, M. Winter AOD trend changes over the Eastern Mediterranean and Middle East region. Int. J. Clim. 2021, 41, 5516–5535. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O.; Ghafarian, P.; Owlad, E. Temporal Variations in the Frequency and Concentration of Dust Events over Iran Based on Surface Observations: Climatology of dust events over Iran. Int. J. Climatol. 2016, 36, 2050–2062. [Google Scholar] [CrossRef]
- Karami, S.; Hossein Hamzeh, N.; Noori, F.; Ranjbar, A. Investigation of Dust Storms in Ilam and the Performance Analysis of Simulation of 6 Numerical Prediction Models at a Severe Dust Storm in West of Iran. J. Air Pollut. Health 2019, 4, 133–146. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Karami, S.; Opp, C.; Fattahi, E.; Jean-François, V. Spatial and temporal variability in dust storms in the Middle East, 2002–2018: Three case studies in July 2009. Arab. J. Geosci. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Ahmadi Doabi, S.A.; Karami, M.A.M. Assessment of Kermanshah Province Atmospheric Dust Contamination with Selected Heavy Metals Using Pollution Indexes during the Summer 2013. J. Water Soil 2017, 30, 822–834. [Google Scholar]
- Shahsavani, A.; Naddafi, K.; Jaafarzadeh Haghighifard, N.; Mesdaghinia, A.; Yunesian, M.; Nabizadeh, R.; Arhami, M.; Yarahmadi, M.; Sowlat, M.H.; Ghani, M.; et al. Characterization of Ionic Composition of TSP and PM10 during the Middle Eastern Dust (MED) Storms in Ahvaz, Iran. Environ. Monit. Assess. 2012, 184, 6683–6692. [Google Scholar] [CrossRef] [PubMed]
- Zarasvandi, A.; Carranza, E.J.; Moore, F.; Rastmanesh, F. Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). J. Geochem. Explor. 2011, 111, 138–151. [Google Scholar] [CrossRef]
- Goudarzi, G.; Daryanoosh, S.; Godini, H.; Hopke, P.; Sicard, P.; De Marco, A.; Rad, H.D.; Harbizadeh, A.; Jahedi, F.; Mohammadi, M.; et al. Health risk assessment of exposure to the Middle-Eastern Dust storms in the Iranian megacity of Kermanshah. Public Health 2017, 148, 109–116. [Google Scholar] [CrossRef]
- Sekhavati, B.; Sekhavati, N. Chemical, Physical and Mineralogical Properties of Dust Fractions in the Kermanshah Province, Iran. ECOPERSIA 2020, 8, 261–268. [Google Scholar]
- Karimi, K.; Aeini, H.T.S.; Nokhandan, M.H.; Moghadas, N.H. Identifying the Origins of Dust Storm Production in the Middle East Using Remote Sensing. J. Clin. Res. 2011, 2, 57–72. [Google Scholar]
- Mehrizi, E. An Investigation about the Sources of Ilam Dust. In Proceedings of the Second International Conference on Dust, Ilam, Iran, 25–27 April 2018. [Google Scholar]
- Amarloei, A.; Jonaidi Jafari, A.; Mazloomi, S. Study of Particulate Matters Concentration and Radiation Rate in the Atmosphere of Ilam City during Middle East Dust Storms. Int. J. Environ. Anal. Chem. 2020, 1–9. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Abbasi, H.S.; Moore, F.; Delshab, H.; Soltani, N. Polycyclic Aromatic Hydrocarbons in Street Dust of Bushehr City, Iran: Status, Source, and Human Health Risk Assessment. Polycycl. Aromat. Compd. 2020, 40, 61–75. [Google Scholar] [CrossRef]
- O’Loingsigh, T.; McTainsh, G.; Tews, E.; Strong, C.; Leys, J.; Shinkfield, P.; Tapper, N. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records. Aeolian Res. 2014, 12, 29–40. [Google Scholar] [CrossRef]
- Notaro, M.; Yu, Y.; Kalashnikova, O.V. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. J. Geophys. Res. Atmos. 2015, 120, 110–229. [Google Scholar] [CrossRef]
- Abdollahi, S.; Madadi, M.; Ostad-Ali-Askari, K. Monitoring and investigating dust phenomenon on using remote sensing science, geographical information system and statistical methods. Appl. Water Sci. 2021, 11, 111. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS Aero-sol Products over Land and Ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Hsu, N.C.; Lee, J.; Kim, W.V.; Dutcher, S.T. Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land. J. Geophys. Res. Atmos. 2019, 124, 4658–4688. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Randles, C.A.; Da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef] [PubMed]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Rautenbach, C.J.D.; Eriksson, P.G.; Qiang, M.; Gupta, P. Dust Storms and Their Horizontal Dust Loading in the Sistan Region, Iran. Aeolian Res. 2012, 5, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Aminfar, R.; Landi, A.; Hojati, S. Study of Deposition Rate and Dust Particle Size Distribution with Attention to Soil Properties in Hoveizeh-Khorramshahr Supercritical Source. Iran. J. Soil Water Res 1550, 51. [Google Scholar] [CrossRef]
- Behrooz, R.D.; Esmaili-Sari, A.; Bahramifar, N.; Kaskaoutis, D. Analysis of the TSP, PM10 concentrations and water-soluble ionic species in airborne samples over Sistan, Iran during the summer dusty period. Atmos. Pollut. Res. 2017, 8, 403–417. [Google Scholar] [CrossRef]
- Foroushani, M.A.; Opp, C.; Groll, M.; Nikfal, A. Evaluation of WRF-Chem Predictions for Dust Deposition in South-western Iran. Atmosphere 2020, 11, 757. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Kaskaoutis, D.G.; Zan, J.; Orozbaev, R.; Tan, L.; Chen, X. Aeolian dust dynamics in the Fergana Valley, Central Asia, since ~30 ka inferred from loess deposits. Geosci. Front. 2021, 12, 101180. [Google Scholar] [CrossRef]
- Al-Ghadban, A.N.; Uddin, S.; Beg, M.U.; Al-Dousari, A.M.; Gevao, B.; Al-Yamani, F. Ecological Consequences of River Manipulations and Drainage of Mesopotamian Marshes on the Arabian Gulf Ecosystem: Investigations on Changes in Sedimentology and Environmental Quality, with Special Reference to Kuwait Bay. Kuwait Inst. Sci. Res. (KISR) 2008, 9362, 1–174. [Google Scholar]
- MalAmiri, N.; Rashki, A.; Hosseinzadeh, S.R.; Kaskaoutis, D.G. Mineralogical, Geochemical, and Textural Characteristics of Soil and Airborne Samples during Dust Storms in Khuzestan, Southwest Iran. Chemosphere 2022, 286, 131879. [Google Scholar] [CrossRef] [PubMed]
- Arami, S.A.; Ownegh, M.; MohammadianBehbahani, A.; Akbari, M.; Zarasvandi, A.; Gorgan University of Agricultural Sciences and Natural Resources (GUASNR); Kharazmi University; Shahid Chamran University of Ahvaz. The analysis of dust hazard studies in southwest region of Iran in 22 years (1996–2017). J. Spat. Anal. Environ. Hazarts 2018, 5, 39–66. [Google Scholar] [CrossRef]
- Malamiri, N.; Rashki, A.; Hosseinzadeh, S.; Gahadi Toroqh, M. Identification of Desert Dust Sources in the West Khuzestan Province Using of Brightness Temperature Algorithms. J. Geogr. Environ. Hazards 2019, 8, 97–110. [Google Scholar]
- Heidarian, P.; Azhdari, A.; Joudaki, M.; Khatooni, J.D.; Firoozjaei, S.F. Integrating Remote Sensing, GIS, and Sedimentology Techniques for Identifying Dust Storm Sources: A Case Study in Khuzestan, Iran. J. Ind. Soc. Remote Sens. 2018, 46, 1113–1124. [Google Scholar] [CrossRef]
- Ghojghar, M.A.; Pourgholam-Amiji, M.; Bazrafshan, J.; Araghinejad, S.; Liaghat, A.; Hosseini-Moghari, S.-M. Performance Evaluation of Genetic Algorithm and GA-SA Hybrid Method in Forecasting Dust Storms (Case Study: Khuzestan Province). Soil Water Res. 2021, 51, 22059. [Google Scholar]
- Heydarian, M.; Ghorbani, H.R. Prehistoric Evidence of Sonqor Koliyaie Plain in Central Zagros. Iran. J. Archaeol. Stud. 2016, 6, 19–29. [Google Scholar]
- Ghojghar, M.A.; Bazrafshan, J.; Araghinejad, S.; Parsi, E.; Soltani, S. Evaluation of the Performance of the Support-Wavelet Vector Machine Hybrid Model in Predicting Dust Storms. Environ. Manag. Hazards 2020, 7, 331–351. [Google Scholar]
- Ghasem, A.; Shamsipour, A.; Miri, M.; Safarrad, T. Synoptic and Remote Sensing Analysis of Dust Events in Southwestern Iran. Nat. Hazards 2012, 64, 1625–1638. [Google Scholar] [CrossRef]
- Arami, S.A.; Ownegh, M.; Mohammadian Behbahani, A.; Akbari, M.; Zarasvandi, A. Statistical Analysis of Spatio-Temporal Pattern of Dust Storms in West and Southwest of Iran. J. Water Soil Conserv. 2018, 25, 61–83. [Google Scholar]
- Yousefi, R.; Wang, F.; Ge, Q.; Lelieveld, J.; Shaheen, A. Aerosol Trends during the Dusty Season over Iran. Remote Sens. 2021, 13, 1045. [Google Scholar] [CrossRef]
- Broomandi, P.; Dabir, B.; Bonakdarpour, B.; Rashidi, Y. Identification of dust storm origin in South–West of Iran. J. Environ. Health Sci. Eng. 2017, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Farhadipour, S.; Azadi, M.; Bidokhti, A.A.; Sayyari, H.; Choobari, O.A. Study and Simulation of Severe Dust Storms in the West and Southwest of Iran. Russ. Meteorol. Hydrol. 2018, 43, 613–624. [Google Scholar] [CrossRef]
- Hojati, S.; Khademi, H.; Cano, A.F.; Landi, A. Characteristics of dust deposited along a transect between central Iran and the Zagros Mountains. Catena 2012, 88, 27–36. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Rashki, A.; Houssos, E.E.; Mofidi, A.; Goto, D.; Bartzokas, A.; Francois, P.; Legrand, M. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Clim. Dyn. 2015, 45, 407–424. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.; Francois, P.; Kosmopoulos, P.; Legrand, M. Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeolian Res. 2015, 16, 35–48. [Google Scholar] [CrossRef]
- Hamidianpour, M.; Jahanshahi, S.M.A.; Kaskaoutis, D.G.; Rashki, A.; Nastos, P.G. Climatology of the Sistan Levar wind: Atmospheric dynamics driving its onset, duration and withdrawal. Atmos. Res. 2021, 260, 105711. [Google Scholar] [CrossRef]
- Nabavi, S.S.; Moradi, H.; Shrifikia, M. Evaluation of Dust Storm Temporal Distribution and the Relation of the Effective Factors with the Frequency of Occurrence in Khuzestan Province from 2000 to 2015. Sci.-Res. Q. Geograph. Data (SEPEHR) 2019, 28, 191–203. [Google Scholar]
- Tahmasebi, A.M.; Sardari, F. Revisiting Project of Critical Sources of Wind Erosion, Suitable to Prevent Wind Erosion in the Country; Yazd University: Yazd, Iran, 2010. [Google Scholar]
- Ebrahimi-Khusfi, Z.; Nafarzadegan, A.R.; Dargahian, F. Predicting the Number of Dusty Days around the Desert Wetlands in Southeastern Iran Using Feature Selection and Machine Learning Techniques. Ecol. Indic. 2021, 125, 107499. [Google Scholar] [CrossRef]
- Sahraei, J.; Mobarak Hassan, E.; Mohammadi, N. The Effect of the Zagros Mountain Range on Transporting Iraqi Dust to Western Iran Using the WRF/Chem Model (Case Study). J. Geogr. Environ. Hazards 2020, 8, 119–134. [Google Scholar]
- Akbary, M.; Farahbakhshi, M. Analyzing and Tracing of Dust Hazard in Recent Years in Kermanshah Province. Int. J. Environ. Res. 2015, 9, 673–682. [Google Scholar]
- Al-Dousari, A.M.; Ahmed, M.; Al-Dousari, N.; Al-Awadhi, S. Environmental and economic importance of native plants and green belts in controlling mobile sand and dust hazards. Int. J. Environ. Sci. Technol. 2019, 16, 2415–2426. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Ramadan, A.; Al-Qattan, A.; Al-Ateeqi, S.; Dashti, H.; Ahmed, M.; Al-Dousari, N.; Al-Hashash, N.; Othman, A. Cost and effect of native vegetation change on aeolian sand, dust, microclimate and sustainable energy in Kuwait. J. Taibah Univ. Sci. 2020, 14, 628–639. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Eriksson, P.G.; Rautenbach, C.J.D.W.; Flamant, C.; Vishkaee, F.A. Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations. Nat. Hazards 2013, 71, 563–585. [Google Scholar] [CrossRef] [Green Version]
- Gandham, H.; Dasari, H.P.; Langodan, S.; Karumuri, R.K.; Hoteit, I. Major Changes in Extreme Dust Events Dynamics over the Arabian Peninsula during 2003–2017 Driven by Atmospheric Conditions. J. Geophys. Res. Atmos. 2020, 125, 24. [Google Scholar] [CrossRef]
- Kontos, S.; Liora, N.; Giannaros, C.; Kakosimos, K.; Poupkou, A.; Melas, D. Modeling natural dust emissions in the central Middle East: Parameterizations and sensitivity. Atmos. Environ. 2018, 190, 294–307. [Google Scholar] [CrossRef]
- Nabavi, S.O.; Haimberger, L.; Samimi, C. Climatology of Dust Distribution over West Asia from Homogenized Remote Sensing Data. Aeolian Res. 2016, 21, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Daniali, M.; Karimi, N. Spatiotemporal analysis of dust patterns over Mesopotamia and their impact on Khuzestan province, Iran. Nat. Hazards 2019, 97, 259–281. [Google Scholar] [CrossRef]
- Francis, D.B.K.; Flamant, C.; Chaboureau, J.-P.; Banks, J.; Cuesta, J.; Brindley, H.; Oolman, L. Dust emission and transport over Iraq associated with the summer Shamal winds. Aeolian Res. 2017, 24, 15–31. [Google Scholar] [CrossRef]
- Karimi, M.; Oladi Ghadikolaei, J.; Mohammadi, J.; Sari Agricultural Sciences and Natural Resources University; Sari Agricultural Sciences and Natural Resources University; Gorgan Agricultural Sciences and Natural Resources University. Investigating the vegetation changes in the internal and external dust storm sources using MODIS satellite imagery (case study: Kermanshah province). Ecol. Iran. For. 2018, 6, 39–49. [Google Scholar] [CrossRef]
- Rezaei Moghadam, M.H.; Boroujeni, M.M. Determination of the Dust Using NOAA Satellite AVHRR (Case Study: South-West of Iran). Geogr. Environ. Sustain. 2015, 5, 1–13. [Google Scholar]
- Hassan, E.M.; Saadatabadi, A.; Fattahi, E. Dust Investigation by MERRA-2 Model in Iran. Iran. J. Soil Water Res. 2020, 10, 22059. [Google Scholar]
- Khan, R.; Kumar, K.; Zhao, T.; Ullah, W.; de Leeuw, G. Interdecadal Changes in Aerosol Optical Depth over Pakistan Based on the MERRA-2 Reanalysis Data during 1980–2018. Remote Sens. 2021, 13, 822. [Google Scholar] [CrossRef]
- Tuna Tuygun, G.; Gündoğdu, S.; Elbir, T. Estimation of Ground-Level Particulate Matter Concentrations Based on Synergistic Use of MODIS, MERRA-2 and AERONET AODs over a Coastal Site in the Eastern Mediterranean. Atmos. Environ. 2021, 261, 118562. [Google Scholar] [CrossRef]
- Che, H.; Gui, K.; Xia, X.; Wang, Y.; Holben, B.N.; Goloub, P.; Cuevas-Agulló, E.; Wang, H.; Zheng, Y.; Zhao, H.; et al. Large contribution of meteorological factors to interdecadal changes in regional aerosol optical depth. Atmos. Chem. Phys. Discuss. 2019, 19, 10497–10523. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhang, J.; Yao, F.; Zhang, D.; Guo, H. Temporal variation of dust emissions in dust sources over Central Asia in recent decades and the climate linkages. Atmos. Environ. 2020, 222, 117176. [Google Scholar] [CrossRef]
- Gholamnia, M.; Khandan, R.; Bonafoni, S.; Sadeghi, A. Spatiotemporal Analysis of MODIS NDVI in the Semi-Arid Region of Kurdistan. Iran. Remote Sens. 2019, 11, 1723. [Google Scholar] [CrossRef] [Green Version]
- Bozorg-Haddad, O.; Zolghadr-Asli, B.; Sarzaeim, P.; Aboutalebi, M.; Chu, X.; Loáiciga, H.A. Evaluation of water shortage crisis in the Middle East and possible remedies. J. Water Supply: Res. Technol. 2019, 69, 85–98. [Google Scholar] [CrossRef]
- Hameed, M.; Ahmadalipour, A.; Moradkhani, H. Apprehensive Drought Characteristics over Iraq: Results of a Multidecadal Spatiotemporal Assessment. Geosciences 2018, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Basart, S.; Vendrell, L.; Baldasano, J. High-resolution dust modelling over complex terrains in West Asia. Aeolian Res. 2016, 23, 37–50. [Google Scholar] [CrossRef]
- Yassin, M.F.; Almutairi, S.; Al-Hamoud, A. Dust Storms Backward Trajectories’ and Source Identification over Kuwait. Atmos. Res. 2018, 212, 158–171. [Google Scholar] [CrossRef]
Synoptic Station | Longitude | Latitude | Elevation | Total Number of Dust Days |
---|---|---|---|---|
Ahvaz | 48.6 | 31.33 | 22.5 | 1289 |
Abadan | 48.25 | 30.33 | 6 | 1767 |
Bushehr | 50.83 | 28.96 | 29 | 1371 |
Kermanshah | 47.15 | 34.35 | 1318 | 863 |
Ilam | 46.42 | 33.64 | 1387 | 948 |
Synoptic Station | Location | Number of Dust Days in July 2009 | Mean Number of Dust Days in July (2000 to 2017) |
---|---|---|---|
Gotvand | Southwest | 31 | 7.2 |
Kangvar | West | 31 | 7.2 |
Ahvaz | Southwest | 30 | 13 |
Bostan | Southwest | 30 | 14.4 |
Dorud | West | 29 | 8.9 |
Izeh | Southwest | 29 | 10.5 |
Abadan | Southwest | 28 | 13.6 |
Masjed-Soleyman | Southwest | 30 | 13.8 |
Kermanshah | West | 28 | 8 |
Gilanegharb | West | 27 | 7 |
Dehloran | Southwest | 27 | 13.5 |
Khark Island | Persian Gulf | 26 | 5.1 |
Eyvan | West | 30 | 6.7 |
Khoram Abad | West | 25 | 10 |
Bushehr | South | 25 | 8.9 |
Arak | West | 24 | 9.5 |
Bandar Dayyer | West | 22 | 12.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Mohammadpour, K. Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought. Atmosphere 2021, 12, 1350. https://doi.org/10.3390/atmos12101350
Hamzeh NH, Kaskaoutis DG, Rashki A, Mohammadpour K. Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought. Atmosphere. 2021; 12(10):1350. https://doi.org/10.3390/atmos12101350
Chicago/Turabian StyleHamzeh, Nasim Hossein, Dimitris G. Kaskaoutis, Alireza Rashki, and Kaveh Mohammadpour. 2021. "Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought" Atmosphere 12, no. 10: 1350. https://doi.org/10.3390/atmos12101350
APA StyleHamzeh, N. H., Kaskaoutis, D. G., Rashki, A., & Mohammadpour, K. (2021). Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought. Atmosphere, 12(10), 1350. https://doi.org/10.3390/atmos12101350