Heat Exposure Information at Screen Level for an Impact-Based Forecasting and Warning Service for Heat-Wave Disasters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Digital Forecast System of the KMA
2.3. Ground Observation Data
2.4. Surface Data
2.5. Statistical Model and Evaluation Method
3. Results
3.1. Digital Analyzed Data Downscaled to a 1 km Resolution for Daily Maximum and Minimum Temperatures
3.2. Daily Maximum and Minimum Temperatures Downscaled to 1 km Resolution Digital Analyzed Data Using Different Techniques
3.3. Verification of KMA’s Digital Forecast Data Downscaled to a 1 km Resolution
3.4. Analysis of Spatial Characteristics of Major Cities
3.5. Correlation between Screen Level (Activity Height of People) and Observation Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, H.J.; Yi, C.; Chae, Y.; Park, J. Comparison of statistical interpolation methods for downscaling of summer temperature data from the Korea Meteorological administration’s digital forecasts. Assoc. Korean Photo-Geogr. 2019, 29, 19–32. [Google Scholar] [CrossRef]
- Lee, J.J.; Sung, N.M.; Park, B.J.; Lee, J.S.; Kang, K.W. Transportation strategies under adverse weather conditions for climate change adaption. Korea Transp. Inst. 2011, 21, 1–159. [Google Scholar]
- Gómez-Martín, M.B.; Armesto-López, X.A.; Martínez-Ibarra, E. The Spanish tourist sector facing extreme climate events: A case study of domestic tourism in the heat-waves of 2003. Int. J. Biometeorol. 2014, 58, 781–797. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat-waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pongrácz, R.; Bartholy, J. Tendency analysis of extreme climate indices with special emphasis on agricultural impacts. In Bioclimatology and Water in the Land; Lapin, M., Matejka, F., Eds.; FMFI Comenius University: Slovakia, Czech Republic, 2006. [Google Scholar]
- Koffi, B.; Koffi, E. Heat-waves across Europe by the end of the 21stcentury: Multiregional climate simulations. Clim. Res. 2008, 36, 153–168. [Google Scholar] [CrossRef] [Green Version]
- UNWMO. Meeting of the Joint CCI/CLIVAR Task Group on Climate Indices. World Climate Data and Monitoring Programme, WCDMP No. 37, -WMO-TD No. 930; WMO: Bracknell, UK, 1999. [Google Scholar]
- Korea Environment Institute. Evidence-Based Climate Change Risk Management Framework for Customized Adaptation; Korea Environment Institute: Sejong, Korea, 2018; pp. 1–231. [Google Scholar]
- Kim, D.W.; Chung, J.H.; Lee, J.S.; Lee, J.S. Characteristics of heat-waves mortality in Korea. Atmosphere 2014, 24, 225–234. [Google Scholar] [CrossRef]
- Kim, H.M.; Min, K.R.; Kim, I.G.; Lim, B.H.; Youn, M.J.; Kim, S.B. Paradigm shift to impact-based forecasting and warning services for natural hazard response. Korea Soc. Innov. 2017, 12, 161–178. [Google Scholar]
- Kang, M.; Kim, K.R.; Shin, J.Y. Event-Based Heat-Related Risk Assessment Model for South Korea Using Maximum Perceived Temperature, Wet-Bulb Globe Temperature, and Air Temperature Data. Int. J. Environ. Res. Public Health 2020, 17, 2631. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.; Lem, S.H.; Kim, D.W.; Lee, W.S. The effects of climate elements on heat-related illness in South Korea. J. Clim. Chang. Res. 2016, 7, 205–215. [Google Scholar] [CrossRef]
- Kang, Y.; Shin, J.; Park, C.S. Assessing climate change risk and adaptation policy improvements through text-mining. Urban Des. 2016, 17, 69–84. [Google Scholar]
- Anderson, B.G.; Bell, M.L. Weather-related mortality: How heat, cold, and heat-waves affect mortality in the United States. Epidemiology (Camb. Mass.) 2009, 20, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, S.; Lee, E.; Kwon, B.Y.; Lee, S.; Jo, K.H.; Kim, J. Long-term changes in the heat-mortality relationship according to heterogeneous regional climate: A time-series study in South Korea. BMJ Open 2016, 6, e011786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Chae, Y.; Choi, S.H. Analysis of Mortality Change Rate from Temperature in Summer by Age, Occupation, Household Type, and Chronic Diseases in 229 Korean Municipalities from 2007–2016. Int. J. Environ. Res. Public Health 2019, 16, 1561. [Google Scholar] [CrossRef] [Green Version]
- Son, J.-Y.; Lee, J.-T.; Anderson, G.B.; Bell, M.L. The impact of heat-waves on mortality in seven major cities in Korea. Environ. Health Perspect. 2012, 120, 566–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, J.-Y.; Bell, M.L.; Lee, J.-T. The impact of heat, cold, and heat-waves on hospital admissions in eight cities in Korea. Int. J. Biometeorol. 2014, 58, 1893–1903. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.-H.; Lee, K.-S.; Bae, H.-J.; Kim, D.; Yoo, H.; Park, S.; Hong, Y.-C. Estimation of heat-related deaths during heat-waves episodes in South Korea (2006–2017). Int. J. Biometeorol. 2019, 63, 1621–1629. [Google Scholar] [CrossRef]
- Heo, S.; Bell, M.L.; Lee, J.-T. Comparison of health risks by heat-waves definition: Applicability of wet-bulb globe temperature for heat-waves criteria. Environ. Res. 2019, 168, 158–170. [Google Scholar] [CrossRef]
- Dieter, S.; Ute, F.; Tobia, L.; Steen, L.; Fred, M.; Christian, S. Quantification of heat-stress related mortality hazard, vulnerability and risk in Berlin, Germany. Die Erde 2014, 144, 238–259. [Google Scholar]
- Korea Meteorological Administration. Meteorological Technology & Policy; Korea Meteorological Administration: Seoul, Korea, 2018; Volume 11, pp. 1–97. [Google Scholar]
- Jänicke, B.; Holtmann, A.; Kim, K.R.; Kang, M.; Fehrenbach, U.; Scherer, D. Quantification and evaluation of intra-urban heat stress variability in Seoul, Korea. Int. J. Biometeorol. 2019, 63, 1–12. [Google Scholar] [CrossRef]
- Kim, K.R.; Yi, C.; Lee, J.S.; Meier, F.; Jänicke, B.; Fehrenbach, U.; Scherer, D. BioCAS: Biometeorological Climate impact Assessment System for building-scale impact assessment of heat-stress related mortality. Die Erde J. Geogr. Soc. Berl. 2014, 145, 62–79. [Google Scholar]
- Yi, C.; An, S.M.; Kim, K.R.; Kwon, H.G.; Min, J.S. Surface micro-climate analysis based on urban morphological characteristics: Temperature deviation estimation and evaluation. Atmos. Korea 2016, 26, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Grimmond, C.S.B.; Roth, M.; Oke, T.R.; Au, Y.C.; Best, M.; Betts, R.; Carmichael, G.; Cleugh, H.; Dabberdt, W.; Emmanuel, R.; et al. Climate and more sustainable cities: Climate information for improved planning and management of cities (producers/capabilities perspective). Procedia Environ. Sci. 2010, 1, 247–274. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Wiesner, S.; Zakšek, K. Estimation of dense time series of urban air temperatures from multitemporal geostationary satellite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4129–4137. [Google Scholar] [CrossRef]
- Hoffmann, P.; Krueger, O.; Schlünzen, K.H. A statistical model for the urban heat island and its application to a climate change scenario. Int. J. Clim. 2012, 32, 1238–1248. [Google Scholar] [CrossRef]
- Arnds, D.; Böhner, J.; Bechtel, B. Spatio-temporal variance and meteorological drivers of the urban heat island in a European city. Theor. Appl. Climatol. 2017, 128, 43–61. [Google Scholar] [CrossRef]
- Robert, S.; Foresti, L.; Kanevski, M. Spatial prediction of monthly wind speeds in complex terrain with adaptive general regression neural networks. Int. J. Climatol. 2013, 33, 1793–1804. [Google Scholar] [CrossRef]
- Caillouet, L.; Vidal, J.-P.; Sauquet, E.; Gra, B. Probabilistic precipitation and temperature downscaling of the twentieth century reanalysis over France. Clim. Past. 2016, 12, 635–662. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-H.; Kim, T.; Kim, M.-K.; Lee, S.-H.; Min, S.-K.; Kwon, W.-T. Regional climate simulation for Korea using dynamic downscaling and statistical adjustment. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 1629–1643. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.B.; Kwon, H.-H.; Han, D. Bias correction methods for regional climate model simulations considering the distributional parametric uncertainty underlying the observations. J. Hydrol. 2015, 530, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themeßl, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Dallavalle, J.P. A perspective on the use of model output statistics in objective weather forecasting. In Proceedings of the 15th Conference on Weather Analysis and Forecasting, Norfolk, VA, USA, 19–23 August 1996; Volume 15, pp. 479–482. [Google Scholar]
- Fuentes, U.; Heimann, D. An improved statistical-dynamical downscaling scheme and its application to the alpine precipitation climatology. Appl. Clim. 2000, 65, 119–135. [Google Scholar] [CrossRef]
- Imbert, A.; Benestad, R.E. An improvement of analog model strategy for more reliable local climate change scenarios. Appl. Clim. 2005, 82, 245–255. [Google Scholar] [CrossRef]
- Keramitsoglou, I.; Kiranoudis, C.T.; Weng, Q. Downscaling geostationary land surface temperature imagery for urban analysis. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1253–1257. [Google Scholar] [CrossRef]
- Park, J.; Jang, D.H. Application of MK-PRISM for interpolation of wind speed and comparison with Co-kriging in South Korea. GISci. Remote Sens. 2016, 53, 421–443. [Google Scholar] [CrossRef]
- Daly, C.; Neilson, R.P.; Phillips, D.L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. 1994, 33, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Daly, C.; Gibson, W.P.; Taylor, G.H.; Johnson, G.L.; Pasteris, P. A knowledgebased approach to the statistical mapping of climate. Clim. Res. 2002, 22, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.; Shin, Y.; Roh, J.W. Development of an Urban High-Resolution Air Temperature Forecast System for Local Weather Information Services Based on Statistical Downscaling. Atmosphere 2018, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Yi, C. Statistical downscaling of urban-scale air temperatures using an analog model output statistics technique. Atmosphere 2019, 10, 427. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.Y.; Eum, J.H.; Choi, Y.J.; Kim, K.R.; Scherer, D.; Fehrenbach, U.; Kim, G.H. Development of Climate Analysis Seoul (CAS) maps based on landuse and meteorological model. J. Korean Assoc. Geogr. Inf. Stud. 2011, 14, 12–25. [Google Scholar] [CrossRef]
- Shin, S.C.; Kim, M.K.; Suh, M.S.; Rha, D.K.; Jang, D.H.; Kim, C.S.; Kim, Y.H. Estimation of high resolution gridded precipitation using GIS and PRISM. Atmosphere 2008, 18, 71–81. [Google Scholar]
- Park, S.H.; Choi, S.J. Hierarchical Gaussian process model for regression. In Korean Information Science Society Conference; Korean Institute of Information Scientists and Engineers: Seoul, Korea, 2010; pp. 66–67. [Google Scholar]
- Lee, K.M.; Kim, K.Y.; Oh, U.; Yoo, S.K.; Song, B.S. Prediction of Multi-Physical Analysis Using Machine Learning. J. IKEEE 2016, 20, 94–102. [Google Scholar] [CrossRef]
- Matulla, C.; Zhang, X.; Wang, X.L.; Wang, J.; Zorita, E.; Wagner, S.; Von Storch, H. Influence of similarity measures on the performance of the analog method for downscaling daily precipitation. Clim. Dyn. 2008, 30, 133–144. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; San-Martín, D.; Brands, S.; Manzanas, R.; Herrera, S. Reassessing statistical downscaling techniques for their robust application under climate change conditions. J. Clim. 2013, 26, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Radanovics, S.; Vidal, J.-P.; Sauquet, E.; Daoud, A.B.; Bontron, G. Optimising predictor domains for spatially coherent precipitation downscaling. Hydrol. Earth Syst. Sci. 2013, 17, 4189–4208. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Quintana-Seguí, P.; Llasat, M.C.; Herrera, S.; Gutiérrez, J.M. Testing MOS precipitation downscaling for ensembles regional climate models over Spain. J. Geophys. Res. Atmos. 2011, 116, 1–14. [Google Scholar] [CrossRef]
- Mardia, K.V. Spatial discrimination and classification maps. Commun. Stat. Theory Methods 1984, 13, 2181–2197. [Google Scholar] [CrossRef]
- Mardia, K.V.; Watkins, A.J. On multimodality of the likelihood in the spatial linear model. Biometrika 1989, 76, 289–295. [Google Scholar] [CrossRef]
- Mardia, K.V. Maximum likelihood estimation for spatial models. In Spatial Statistics: Past. Present and Future; Institute of Mathematical Geography: Ann Arbor, MI, USA, 1990; Volume 12, pp. 203–253. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by random forest. R News 2002, 2, 18–22. [Google Scholar]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.; Kim, K.R.; An, S.M.; Choi, Y.J.; Holtmann, A.; Jänicke, B.; Fehrenbach, U.; Scherer, D. Estimating spatial patterns of air temperature at building-resolving spatial resolution in Seoul, Korea. Int. J. Clim. 2016, 36, 533–549. [Google Scholar] [CrossRef]
- Shmueli, G. To explain or to predict? Stat. Sci. 2010, 25, 289–310. [Google Scholar] [CrossRef]
- Hamdi, R.; Schayes, G. Sensitivity study of the urban heat island intensity to urban characteristics. Int. J. Climatol. 2008, 28, 973–982. [Google Scholar] [CrossRef]
- Bottyán, Z.; Unger, J. A multiple linear statistical model for estimating the mean maximum urban heat island. Theor. Appl. Climatol. 2003, 75, 233–243. [Google Scholar] [CrossRef]
- Unger, J.; Sümeghy, Z.; Gulyás, Á.; Bottyán, Z.; Mucsi, L. Land-use and meteorological aspects of the urban heat island. Meteorol. Appl. 2001, 8, 189–194. [Google Scholar] [CrossRef] [Green Version]
Name | Climate | Land Use | Area (Ha) | Number of Observation Stations | Daily Average Temperature | Daily Maximum Temperature | Daily Minimum Temperature |
---|---|---|---|---|---|---|---|
Incheon | Oceanic | Forests | 6010 | 112 | 24.3 (28.1) | 32.1 (36.0) | 17.7 (21.6) |
Agricultural area | 4523 | ||||||
* Urban area | 14,838 | ||||||
Seoul | Continental | Forests | 14,113 | 108 | 25.4 (28.8) | 34.4 (39.6) | 17.8 (21.9) |
Agricultural area | 1858 | ||||||
Urban area | 34,280 | ||||||
Daejeon | Continental | Forests | 27,053 | 133 | 25.5 (29.0) | 34.3 (39.4) | 17.1 (22.3) |
Agricultural area | 7549 | ||||||
Urban area | 9973 | ||||||
Daegu | Continental | Forests | 47,552 | 143 | 25.9 (29.0) | 36.0 (39.2) | 17.3 (22.9) |
Agricultural area | 11,383 | ||||||
Urban area | 16,260 | ||||||
Gwangju | Continental | Forests | 16,249 | 156 | 25.6 (28.4) | 34.6 (38.5) | 18.0 (22.9) |
Agricultural area | 14,434 | ||||||
Urban area | 11,140 | ||||||
Ulsan | Oceanic | Forests | 66,073 | 152 | 24.7 (29.0) | 34.3 (38.8) | 16.9 (22.4) |
Agricultural area | 12,603 | ||||||
Urban area | 11,482 | ||||||
Busan | Oceanic | Forests | 33,919 | 159 | 24.6 (28.0) | 32.1 (37.3) | 18.4 (24.0) |
Agricultural area | 8901 | ||||||
Urban area | 18,155 |
Data | Label | Description | Units |
---|---|---|---|
Surface data | lon, lat | Location | - |
Elevation | Temperature reduction rate due to elevation | m | |
Slope | Heat emissions from the ground surface due to the angle of incidence of the sun | deg | |
Aspect | Heat emissions from the ground surface due to the direction of incidence of the sun | deg | |
dzdx | Time and intensity of the sun’s influence East–west: mornings and afternoons considered as primary influence periods | m/m | |
dzdy | Duration and intensity of the sun’s influence South–north: intensity during the primary influence periods | m/m | |
Hollow depth | Heat-trapping phenomenon | m | |
distance from shoreline | Distance affected by the ocean | m | |
Land cover | Heat absorption and emission due to land cover | - |
Date | RMSE [°C] | CC | PBIAS [%] | ||||||
---|---|---|---|---|---|---|---|---|---|
GPRM | RF | SVM | GPRM | RF | SVM | GPRM | RF | SVM | |
2016-08-07 | 0.41 | 0.83 | 1.01 | 0.97 | 0.86 | 0.78 | 0.00 | −0.04 | −0.10 |
2016-08-08 | 0.46 | 0.84 | 1.03 | 0.96 | 0.87 | 0.78 | 0.02 | −0.02 | −0.06 |
2016-08-09 | 0.48 | 0.93 | 1.15 | 0.97 | 0.90 | 0.83 | −0.04 | −0.16 | −0.28 |
2016-08-10 | 0.45 | 0.87 | 1.13 | 0.98 | 0.93 | 0.86 | −0.02 | −0.06 | −0.14 |
2016-08-11 | 0.44 | 0.82 | 0.97 | 0.96 | 0.87 | 0.81 | −0.02 | 0.00 | −0.06 |
2016-08-12 | 0.48 | 0.83 | 1.01 | 0.96 | 0.89 | 0.82 | −0.02 | −0.04 | −0.12 |
2016-08-13 | 0.47 | 0.82 | 1.03 | 0.96 | 0.89 | 0.81 | 0.02 | 0.06 | −0.10 |
Average | 0.46 | 0.85 | 1.05 | 0.97 | 0.89 | 0.81 | −0.01 | −0.04 | −0.12 |
2017-08-01 | 0.64 | 0.89 | 1.15 | 0.97 | 0.93 | 0.89 | 0.04 | 0.06 | −0.06 |
2017-08-02 | 0.74 | 1.07 | 1.34 | 0.95 | 0.90 | 0.84 | 0.04 | 0.06 | −0.16 |
2017-08-03 | 0.74 | 1.08 | 1.29 | 0.94 | 0.86 | 0.80 | 0.00 | −0.06 | −0.24 |
2017-08-04 | 0.71 | 1.03 | 1.32 | 0.95 | 0.88 | 0.79 | 0.02 | 0.02 | −0.24 |
2017-08-05 | 0.74 | 1.16 | 1.37 | 0.93 | 0.84 | 0.75 | −0.02 | −0.02 | −0.30 |
2017-08-06 | 0.79 | 1.19 | 1.44 | 0.94 | 0.85 | 0.76 | 0.00 | 0.02 | −0.14 |
2017-08-07 | 0.80 | 1.13 | 1.42 | 0.95 | 0.90 | 0.84 | 0.06 | 0.06 | −0.16 |
Average | 0.74 | 1.08 | 1.33 | 0.95 | 0.88 | 0.81 | 0.02 | 0.02 | −0.19 |
2018-08-10 | 1.02 | 1.17 | 1.36 | 0.92 | 0.90 | 0.85 | 0.00 | 0.02 | −0.18 |
2018-08-11 | 1.08 | 1.18 | 1.41 | 0.95 | 0.95 | 0.92 | −0.08 | −0.08 | −0.20 |
2018-08-12 | 1.01 | 1.15 | 1.35 | 0.94 | 0.92 | 0.89 | 0.06 | 0.04 | −0.08 |
2018-08-13 | 1.11 | 1.23 | 1.38 | 0.89 | 0.86 | 0.82 | −0.02 | −0.06 | −0.22 |
2018-08-14 | 1.05 | 1.17 | 1.34 | 0.88 | 0.85 | 0.79 | 0.02 | 0.02 | 0.04 |
2018-08-15 | 1.08 | 1.21 | 1.42 | 0.88 | 0.85 | 0.78 | 0.02 | 0.02 | −0.18 |
2018-08-16 | 1.07 | 1.21 | 1.45 | 0.92 | 0.89 | 0.84 | 0.00 | −0.02 | −0.22 |
2018-08-17 | 1.12 | 1.23 | 1.43 | 0.96 | 0.95 | 0.93 | 0.02 | 0.06 | −0.02 |
Average | 1.07 | 1.19 | 1.39 | 0.92 | 0.90 | 0.85 | 0.00 | 0.00 | −0.13 |
Date | RMSE [°C] | CC | PBIAS [%] | ||||||
---|---|---|---|---|---|---|---|---|---|
GPRM | RF | SVM | GPRM | RF | SVM | GPRM | RF | SVM | |
2016-08-07 | 0.38 | 0.65 | 0.77 | 0.97 | 0.90 | 0.85 | −0.02 | 0.02 | −0.04 |
2016-08-08 | 0.37 | 0.69 | 0.87 | 0.97 | 0.88 | 0.79 | −0.04 | −0.10 | −0.18 |
2016-08-09 | 0.36 | 0.69 | 0.85 | 0.98 | 0.92 | 0.86 | −0.02 | −0.04 | −0.02 |
2016-08-10 | 0.34 | 0.62 | 0.81 | 0.98 | 0.94 | 0.89 | −0.04 | −0.06 | −0.12 |
2016-08-11 | 0.36 | 0.68 | 0.87 | 0.97 | 0.91 | 0.83 | 0.00 | 0.02 | −0.02 |
2016-08-12 | 0.37 | 0.68 | 0.87 | 0.97 | 0.91 | 0.85 | 0.02 | −0.02 | −0.04 |
2016-08-13 | 0.39 | 0.77 | 0.94 | 0.97 | 0.89 | 0.82 | −0.04 | 0.02 | 0.06 |
Average | 0.37 | 0.68 | 0.85 | 0.97 | 0.91 | 0.84 | −0.02 | −0.02 | −0.05 |
2017-08-01 | 0.46 | 0.66 | 0.76 | 0.96 | 0.91 | 0.88 | 0.02 | 0.08 | −0.06 |
2017-08-02 | 0.49 | 0.72 | 0.86 | 0.96 | 0.92 | 0.88 | 0.04 | 0.08 | −0.06 |
2017-08-03 | 0.54 | 0.80 | 0.97 | 0.98 | 0.95 | 0.92 | −0.12 | −0.10 | −0.22 |
2017-08-04 | 0.50 | 0.77 | 0.94 | 0.97 | 0.93 | 0.88 | 0.00 | −0.04 | −0.12 |
2017-08-05 | 0.49 | 0.79 | 0.95 | 0.96 | 0.91 | 0.86 | 0.02 | 0.02 | −0.08 |
2017-08-06 | 0.50 | 0.79 | 0.89 | 0.97 | 0.93 | 0.90 | 0.08 | 0.10 | 0.02 |
2017-08-07 | 0.52 | 0.79 | 0.97 | 0.95 | 0.89 | 0.83 | 0.06 | 0.16 | −0.04 |
Average | 0.50 | 0.76 | 0.91 | 0.96 | 0.92 | 0.88 | 0.01 | 0.04 | −0.08 |
2018-08-10 | 0.63 | 0.75 | 0.88 | 0.93 | 0.90 | 0.85 | 0.02 | 0.04 | 0.00 |
2018-08-11 | 0.68 | 0.79 | 0.97 | 0.95 | 0.93 | 0.89 | −0.04 | −0.12 | −0.12 |
2018-08-12 | 0.76 | 0.93 | 1.09 | 0.94 | 0.91 | 0.88 | 0.12 | 0.00 | 0.10 |
2018-08-13 | 0.67 | 0.81 | 0.94 | 0.92 | 0.88 | 0.84 | 0.06 | 0.02 | 0.08 |
2018-08-14 | 0.80 | 0.96 | 1.14 | 0.91 | 0.87 | 0.81 | 0.00 | −0.08 | 0.16 |
2018-08-15 | 0.84 | 1.07 | 1.23 | 0.92 | 0.87 | 0.82 | 0.10 | 0.06 | 0.30 |
2018-08-16 | 0.69 | 0.82 | 1.00 | 0.93 | 0.91 | 0.85 | −0.04 | −0.04 | 0.04 |
2018-08-17 | 0.97 | 1.18 | 1.49 | 0.95 | 0.93 | 0.89 | −0.14 | −0.06 | −0.42 |
Average | 0.75 | 0.91 | 1.09 | 0.93 | 0.90 | 0.86 | 0.01 | −0.02 | 0.02 |
Meteorological Elements | July 2003–2017 | August 2003–2017 | ||
---|---|---|---|---|
Surface data | R2 | Surface data | R2 | |
Daily average temperature | hollow depth, urbanization area, agriculture area, elevation | 0.61 | elevation, urbanization area | 0.71 |
Daily maximum temperature | distance from the shoreline, elevation, agriculture area | 0.48 | elevation, distance from the shoreline | 0.55 |
Daily minimum temperature | urbanization area, elevation | 0.68 | urbanization area, elevation, distance from the shoreline | 0.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, C.; Yang, H. Heat Exposure Information at Screen Level for an Impact-Based Forecasting and Warning Service for Heat-Wave Disasters. Atmosphere 2020, 11, 920. https://doi.org/10.3390/atmos11090920
Yi C, Yang H. Heat Exposure Information at Screen Level for an Impact-Based Forecasting and Warning Service for Heat-Wave Disasters. Atmosphere. 2020; 11(9):920. https://doi.org/10.3390/atmos11090920
Chicago/Turabian StyleYi, Chaeyeon, and Hojin Yang. 2020. "Heat Exposure Information at Screen Level for an Impact-Based Forecasting and Warning Service for Heat-Wave Disasters" Atmosphere 11, no. 9: 920. https://doi.org/10.3390/atmos11090920
APA StyleYi, C., & Yang, H. (2020). Heat Exposure Information at Screen Level for an Impact-Based Forecasting and Warning Service for Heat-Wave Disasters. Atmosphere, 11(9), 920. https://doi.org/10.3390/atmos11090920