A Review on Airborne Microbes: The Characteristics of Sources, Pathogenicity and Geography
Abstract
:1. Introduction
2. The Sources and Characterization of Airborne Microbes
3. The Effect of Atmospheric Particulate Matters (PM) on Airborne Microbes
4. The Effect of Airborne Microbes on the Environment
5. The Geographical Characteristics of Airborne Microbes
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jaenicke, R. Abundance of cellular material and proteins in the atmosphere. Science 2005, 308, 73. [Google Scholar] [CrossRef] [PubMed]
- Bojar, R.A.; Holland, K.T. Acne and Propionibacterium acnes. Clin. Dermatol. 2004, 22, 375–379. [Google Scholar] [CrossRef]
- Brown, J.K.M.; Hovmøller, M.S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 2002, 297, 537–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delort, A.-M.; Vaïtilingom, M.; Amato, P.; Sancelme, M.; Parazols, M.; Mailhot, G.; Laj, P.; Deguillaume, L. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes. Atmos. Res. 2010, 98, 249–260. [Google Scholar] [CrossRef]
- Hill, T.C.; Moffett, B.F.; Demott, P.J.; Georgakopoulos, D.G.; Stump, W.L.; Franc, G.D. Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR. Appl. Environ. Microbiol. 2014, 80, 1256–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Wei, M.; Chen, J.; Wang, X.; Zhu, C.; Li, J.; Zheng, L.; Sui, G.; Li, W.; Wang, W.; et al. Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Sci. Total Environ. 2017, 580, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkshoorn, L.; Nemec, A.; Seifert, H. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol 2007, 5, 939–951. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Embracing microbes in exposure science. J. Exp. Sci. Environ. Epidemiol. 2019, 29, 1–10. [Google Scholar] [CrossRef]
- Lacey, J.; Crook, B. Fungal and actinomycete spores as pollutants of the workplace and occupational allergens. Ann. Occup. Hyg. 1988, 32, 515–533. [Google Scholar]
- Niazi, S.; Hassanvand, M.S.; Mahvi, A.H.; Nabizadeh, R.; Alimohammadi, M.; Nabavi, S.; Faridi, S.; Dehghani, A.; Hoseini, M.; Moradi-Joo, M.; et al. Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East. Environ. Sci. Pollut. Res. Int. 2015, 22, 16014–16021. [Google Scholar] [CrossRef]
- Taha, M.P.M.; Drew, G.H.; Longhurst, P.J.; Smith, R.; Pollard, S.J.T. Bioaerosol releases from compost facilities: Evaluating passive and active source terms at a green waste facility for improved risk assessments. Atmos. Environ. 2006, 40, 1159–1169. [Google Scholar] [CrossRef]
- Wesley, I.V.; Wells, S.J.; Harmon, K.M.; Green, A.; Schroeder-Tucker, L.; Glover, M.; Siddique, I. Fecal shedding of Campylobacter andArcobacter spp. in dairy cattle. Appl. Environ. Microbiol. 2000, 66, 1994–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, S.; Couteau, C.; Luo, F.; Neveu, J.; DuBow, M.S. Bacterial Diversity of Surface Sand Samples from the Gobi and Taklamaken Deserts. Microb. Ecol. 2013, 66, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Puspitasari, F.; Maki, T.; Shi, G.; Bin, C.; Kobayashi, F.; Hasegawa, H.; Iwasaka, Y. Phylogenetic analysis of bacterial species compositions in sand dunes and dust aerosol in an Asian dust source area, the Taklimakan Desert. Air Qual. Atmos. Health 2016, 9, 631–644. [Google Scholar] [CrossRef] [Green Version]
- Ladau, J.; Eloe-Fadrosh, E.A. Spatial, Temporal, and Phylogenetic Scales of Microbial Ecology. Trends Microbiol. 2019, 27, 662–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federici, E.; Petroselli, C.; Montalbani, E.; Casagrande, C.; Ceci, E.; Moroni, B.; la Porta, G.; Castellini, S.; Selvaggi, R.; Sebastiani, B.; et al. Airborne bacteria and persistent organic pollutants associated with an intense Saharan dust event in the Central Mediterranean. Sci. Total Environ. 2018, 645, 401–410. [Google Scholar] [CrossRef]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef]
- Hu, L.-F.; Zhang, K.; Wang, H.-B.; Li, N.; Wang, J.; Yang, W.-H.; Yin, Z.; Jiao, Z.-G.; Wen, Z.-B.; Li, J.-S. Concentration and Particle Size Distribution of Microbiological Aerosol During Haze Days in Beijing. Huan Jing Ke Xue 2015, 36, 3144–3149. [Google Scholar]
- Elster, J.; D, R.J.; Petit, J.-R.; Reháková, K. Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes). Biogeosciences Discuss. Eur. Geosci. Union 2007. [Google Scholar] [CrossRef] [Green Version]
- Brodie, E.L.; de Santis, T.Z.; Moberg-Parker, J.P.; Zubietta, I.X.; Piceno, Y.M.; Andersen, G.L. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. USA 2007, 104, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Aller, J.Y.; Kuznetsova, M.R.; Jahns, C.J.; Kemp, P.F. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol. Sci. 2005, 36, 801–812. [Google Scholar] [CrossRef]
- Hughes, K.A. Aerial dispersal and survival of sewage-derived faecal coliforms in Antarctica. Atmos. Environ. 2003, 37, 3147–3155. [Google Scholar] [CrossRef]
- Bru-Adan, V.; Wery, N.; Moletta-Denat, M.; Boiron, P.; Delgenes, J.P.; Godon, J.J. Diversity of bacteria and fungi in aerosols during screening in a green waste composting plant. Curr. Microbiol. 2009, 59, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Toril, E.; Robert, A.R.; Delmas, J.; Petit, J.; Komarek, J.; Elster, J. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples. Biogeosciences Eur. Geosci. Union. 2009. [Google Scholar] [CrossRef] [Green Version]
- le Goff, O.; Bru-Adan, V.; Bacheley, H.; Godon, J.J.; Wery, N. The microbial signature of aerosols produced during the thermophilic phase of composting. J. Appl. Microbiol. 2010, 108, 325–340. [Google Scholar] [CrossRef]
- Gao, J.-F.; Fan, X.-Y.; Li, H.-Y.; Pan, K.-L. Airborne Bacterial Communities of PM2.5 in Beijing-Tianjin-Hebei Megalopolis, China as Revealed By Illumina MiSeq Sequencing: A Case Study. Aerosol. Air Qual. Res. 2017, 17, 788–798. [Google Scholar] [CrossRef]
- Busse, H.J.; Denner, E.B.M.; Buczolits, S.; Salkinoja-Salonen, M.; Bennasar, A.; Kampfer, P. Sphingomonas aurantiaca sp nov., Sphingomonas aerolata sp nov and Sphingomonas faeni sp nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int. J. Syst. Evol. Microbiol. 2003, 53, 1253–1260. [Google Scholar] [CrossRef]
- Abed, R.M.; Ramette, A.; Hubner, V.; de Deckker, P.; de Beer, D. Microbial diversity of eolian dust sources from saline lake sediments and biological soil crusts in arid Southern Australia. FEMS Microbiol. Ecol. 2012, 80, 294–304. [Google Scholar] [CrossRef]
- de Deckker, P.; Abed, R.M.M.; de Beer, D.; Hinrichs, K.-U.; O’Loingsigh, T.; Schefuß, E.; Stuut, J.-B.W.; Tapper, N.J.; van der Kaars, S. Geochemical and microbiological fingerprinting of airborne dust that fell in Canberra, Australia, in October 2002. Geochem. Geophys. Geosystems 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Li, L.; Liu, J.; Zhang, M. Microbial structure and chemical components of aerosols caused by rotating brushes in a wastewater treatment plant. Environ. Sci. Pollut. Res. Int. 2012, 19, 4097–4108. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Steele, J.A.; Caporaso, J.G.; Steinbruck, L.; Reeder, J.; Temperton, B.; Huse, S.; McHardy, A.C.; Knight, R.; Joint, I.; et al. Defining seasonal marine microbial community dynamics. ISME J. 2012, 6, 298–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baylor, E.R.; Peters, V.; Baylor, M.B.J.S. Water-to-air transfer of virus. Science 1977, 197, 763–764. [Google Scholar] [CrossRef] [PubMed]
- Caliz, J.; Triado-Margarit, X.; Camarero, L.; Casamayor, E.O. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc. Natl. Acad. Sci. USA 2018, 115, 12229–12234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genitsaris, S.; Stefanidou, N.; Katsiapi, M.; Kormas, K.A.; Sommer, U.; Moustaka-Gouni, M. Variability of airborne bacteria in an urban Mediterranean area (Thessaloniki, Greece). Atmos. Environ. 2017, 157, 101–110. [Google Scholar] [CrossRef]
- Deguillaume, L.; Charbouillot, T.; Joly, M.; Vaïtilingom, M.; Parazols, M.; Marinoni, A.; Amato, P.; Delort, A.M.; Vinatier, V.; Flossmann, A. Classification of clouds sampled at the puy de Dôme (France) from 10 yr monitoring: Mean features of their physico-chemical properties. Atmos. Chem. Phys. Discuss. 2013, 13, 1485–1506. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Mariman, R.; Gerlofs-Nijland, M.E.; Boere, J.F.; Folkerts, G.; Cassee, F.R.; Pinelli, E. Microbiome composition of airborne particulate matter from livestock farms and their effect on innate immune receptors and cells. Sci. Total Environ. 2019, 688, 1298–1307. [Google Scholar] [CrossRef]
- Meadow, J.F.; Altrichter, A.E.; Kembel, S.W.; Kline, J.; Mhuireach, G.; Moriyama, M.; Northcutt, D.; O’Connor, T.K.; Womack, A.M.; Brown, G.Z.; et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 2014, 24, 41–48. [Google Scholar] [CrossRef]
- Prussin, A.J., 2nd; Vikram, A.; Bibby, K.J.; Marr, L.C. Seasonal Dynamics of the Airborne Bacterial Community and Selected Viruses in a Children’s Daycare Center. PLoS ONE 2016, 11, e0151004. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, E.; Johansson, A.M.; Ahlinder, J.; Lundkvist, M.J.; Singh, N.J.; Brodin, T.; Forsman, M.; Stenberg, P. Airborne microbial biodiversity and seasonality in Northern and Southern Sweden. PeerJ 2020, 8, e8424. [Google Scholar] [CrossRef] [Green Version]
- Robertson, C.E.; Baumgartner, L.K.; Harris, J.K.; Peterson, K.L.; Stevens, M.J.; Frank, D.N.; Pace, N.R. Culture-independent analysis of aerosol microbiology in a metropolitan subway system. Appl. Environ. Microbiol. 2013, 79, 3485–3493. [Google Scholar] [CrossRef] [Green Version]
- Alebouyeh, M. Fatal sepsis by Bacillus circulans in an immunocompromised patient. Iran. J. Microbiol. 2011, 3, 156–158. [Google Scholar] [PubMed]
- Logan, N.A.; Old, D.C.; Dick, H.M. Isolation of Bacillus circulans from a wound infection. J. Clin. Pathol. 1985, 38, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alghamdi, M.A.; Shamy, M.; Redal, M.A.; Khoder, M.; Awad, A.H.; Elserougy, S. Microorganisms associated particulate matter: A preliminary study. Sci. Total Environ. 2014, 479, 109–116. [Google Scholar] [CrossRef]
- Shen, D.K.; Noodeh, A.D.; Kazemi, A.; Grillot, R.; Robson, G.; Brugere, J.F. Characterisation and expression of phospholipases B from the opportunistic fungus Aspergillus fumigatus. FEMS Microbiol. Lett. 2004, 239, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Zuraimi, M.S.; Fang, L.; Tan, T.K.; Chew, F.T.; Tham, K.W. Airborne fungi in low and high allergic prevalence child care centers. Atmos. Environ. 2009, 43, 2391–2400. [Google Scholar] [CrossRef]
- Du, P.; Du, R.; Ren, W.; Lu, Z.; Fu, P. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 2018, 610, 308–315. [Google Scholar] [CrossRef]
- Yan, D.; Zhang, T.; Su, J.; Zhao, L.-L.; Wang, H.; Fang, X.-M.; Zhang, Y.-Q.; Liu, H.-Y.; Yu, L.-Y.; Schaffner, D.W. Structural Variation in the Bacterial Community Associated with Airborne Particulate Matter in Beijing, China, during Hazy and Nonhazy Days. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Ichijo, T.; Nasu, M.; Yamaguchi, N. Investigation of bacterial effects of Asian dust events through comparison with seasonal variability in outdoor airborne bacterial community. Sci. Rep. 2016, 6, 35706. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Kenzaka, T.; Sueyoshi, A.; Li, P.; Fujiyama, H.; Baba, T.; Yamaguchi, N.; Nasu, M. Similarity of bacterial community structure between Asian dust and its sources determined by rRNA gene-targeted approaches. Microbes Environ. 2010, 25, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Cha, S.; Lee, D.; Jang, J.H.; Lim, S.; Yang, D.; Seo, T. Alterations in the airborne bacterial community during Asian dust events occurring between February and March 2015 in South Korea. Sci. Rep. 2016, 6, 37271. [Google Scholar] [CrossRef]
- Li, Y.; Lu, R.; Li, W.; Xie, Z.; Song, Y. Concentrations and size distributions of viable bioaerosols under various weather conditions in a typical semi-arid city of Northwest China. J. Aerosol. Sci. 2017, 106, 83–92. [Google Scholar] [CrossRef]
- Yao, Z.X.M. Monitoring of bioaerosol inhalation risks in different environments using a six-stage Andersen sampler and the PCR-DGGE method. Environ. Monit. Assess. 2013. [Google Scholar] [CrossRef]
- Gao, M.; Qiu, T.; Jia, R.; Han, M.; Song, Y.; Wang, X. Concentration and size distribution of viable bioaerosols during non-haze and haze days in Beijing. Environ. Sci. Pollut. Res. Int. 2015, 22, 4359–4368. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Qi, J.; Shao, C.; Zhong, X.; Gao, D.; Cao, W.; Gao, J.; Bai, R.; Long, G.; Chu, C. Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci. Total Environ. 2016, 541, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Ouyang, Z.; Zheng, H.; Wang, X. Concentration and Size Distribution of Culturable Airborne Microorganisms in Outdoor Environments in Beijing, China. Aerosol. Sci. Technol. 2008, 42, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Qi, J.; Zhang, H.; Huang, S.; Li, L.; Gao, D. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Sci. Total Environ. 2011, 409, 3812–3819. [Google Scholar] [CrossRef]
- Fahlgren, C.; Bratbak, G.; Sandaa, R.-A.; Thyrhaug, R.; Zweifel, U.L. Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia 2010, 27, 107–120. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, L.; Jiang, X.; Gao, P. Comparison of chemical composition and airborne bacterial community structure in PM2.5 during haze and non-haze days in the winter in Guilin, China. Sci. Total Environ. 2019, 655, 202–210. [Google Scholar] [CrossRef]
- Xie, Z.; Li, Y.; Lu, R.; Li, W.; Fan, C.; Liu, P.; Wang, J.; Wang, W. Characteristics of total airborne microbes at various air quality levels. J. Aerosol. Sci. 2018, 116, 57–65. [Google Scholar] [CrossRef]
- Bandowe, B.A.; Meusel, H.; Huang, R.J.; Ho, K.; Cao, J.; Hoffmann, T.; Wilcke, W. PM(2).(5)-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Sci. Total Environ. 2014, 473, 77–87. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Z.; Cao, J.; Zhang, R.; Zhang, L.; Huang, R.J.; Zheng, C.; Wang, L.; Liu, S.; Xu, H.; et al. Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi’an, China. Atmos. Environ. 2015; 112, 64–71. [Google Scholar] [CrossRef]
- Wei, K.; Zou, Z.; Zheng, Y.; Li, J.; Shen, F.; Wu, C.Y.; Wu, Y.; Hu, M.; Yao, M. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci. Total Environ. 2016, 550, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Bibby, K.; Qian, J.; Hospodsky, D.; Rismani-Yazdi, H.; Nazaroff, W.W.; Peccia, J. Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME J 2012, 6, 1801–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sykes, P.; Jones, K.; Wildsmith, J.D. Managing the potential public health risks from bioaerosol liberation at commercial composting sites in the UK: An analysis of the evidence base. Resour. Conserv. Recycl. 2007, 52, 410–424. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, T. Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing. Environ. Sci. Technol. 2011, 45, 7173–7179. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.; Lambert, P. Propionibacterium acnes: Infection beyond the skin. Expert Rev. Anti-Infect. Ther. 2011, 9, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Antunes, L.C.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaberg, D.R.; Culver, D.H.; Gaynes, R.P. Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 1991, 91, S72–S75. [Google Scholar] [CrossRef] [Green Version]
- Morot-Bizot, S.C.; Talon, R.; Leroy, S. Development of a multiplex PCR for the identification of Staphylococcus genus and four staphylococcal species isolated from food. J. Appl. Microbiol. 2004, 97, 1087–1094. [Google Scholar] [CrossRef]
- Schönfeld, J.; Gelsomino, A.; van Overbeek, L.S.; Gorissen, A.; Smalla, K.; van Elsas, J.D. Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiol. Ecol. 2003, 43, 63–74. [Google Scholar] [CrossRef]
- Innocente, E.; Squizzato, S.; Visin, F.; Facca, C.; Rampazzo, G.; Bertolini, V.; Gandolfi, I.; Franzetti, A.; Ambrosini, R.; Bestetti, G. Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. Sci. Total Environ. 2017, 593, 667–687. [Google Scholar] [CrossRef]
- Albrecht, A.; Fischer, G.; Brunnemann-Stubbe, G.; Jackel, U.; Kampfer, P. Recommendations for study design and sampling strategies for airborne microorganisms, MVOC and odours in the surrounding of composting facilities. Int. J. Hyg. Environ. Health 2008, 211, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.S.; Spellberg, B.; Walsh, T.J.; Kontoyiannis, D.P. Pathogenesis of mucormycosis. Clin. Infect. Dis. 2012, 54, S16–S22. [Google Scholar] [CrossRef] [PubMed]
- Madsen, A.M.; Zervas, A.; Tendal, K.; Nielsen, J.L. Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF. Envuiron. Res. 2015, 140, 255–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Ichinose, T.; He, M.; Kobayashi, F.; Maki, T.; Yoshida, S.; Yoshida, Y.; Arashidani, K.; Takano, H.; Nishikawa, M. Lung inflammation by fungus, Bjerkandera adusta isolated from Asian sand dust (ASD) aerosol and enhancement of ovalbumin-induced lung eosinophilia by ASD and the fungus in mice. Allergy Asthma Clin. Immunol. 2014, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Heyrman, J.; Balcaen, A.; Rodriguez-Diaz, M.; Logan, N.A.; Swings, J.; de Vos, P. Bacillus decolorationis sp. nov., isolated from biodeteriorated parts of the mural paintings at the Servilia tomb (Roman necropolis of Carmona, Spain) and the Saint-Catherine chapel (Castle Herberstein, Austria). Int. J. Syst. Evol. Microbiol. 2003, 53, 459–463. [Google Scholar] [CrossRef] [Green Version]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Herr, C.E.W.; Zur-Nieden, A.; Jankofsky, M.; Stilianakis, N.I.; Boedeker, R.H.; Eikmann, T.F. Effects of bioaerosol polluted outdoor air on airways of residents: A cross sectional study. Occup. Environ. Med. 2003, 60, 336–342. [Google Scholar] [CrossRef]
- Borlée, F.; Yzermans, C.J.; Aalders, B.; Rooijackers, J.; Krop, E.; Maassen, C.B.M.; Schellevis, F.; Brunekreef, B.; Heederik, D.; Smit, L.A.M. Air pollution from livestock farms is associated with airway obstruction in neighboring residents. Am. J. Respir. Crit. Care Med. 2017, 196, 1152–1161. [Google Scholar] [CrossRef]
- McClendon, C.J.; Gerald, C.L.; Waterman, J.T. Farm animal models of organic dust exposure and toxicity: Insights and implications for respiratory health. Curr. Opin. Allergy Clin. Immunol. 2015, 15, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Radon, K.; Schulze, A.; Ehrenstein, V.; van Strien, R.T.; Praml, G.; Nowak, D. Environmental exposure to confined animal feeding operations and respiratory health of neighboring residents. Epidemiology 2007, 18, 300–308. [Google Scholar] [CrossRef]
- Cambra-Lopez, M.; Aarnink, A.J.; Zhao, Y.; Calvet, S.; Torres, A.G. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Madsen, A.M.; Tendal, K.; Schlunssen, V.; Heltberg, I. Organic dust toxic syndrome at a grass seed plant caused by exposure to high concentrations of bioaerosols. Ann. Occup. Hyg. 2012, 56, 776–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, K.A.; de Mott, P.J.; French, J.R.; Wang, Z.; Westphal, D.L.; Heymsfield, A.J.; Twohy, C.H.; Prenni, A.J.; Prather, K.A. In situ detection of biological particles in cloud ice-crystals. Nat. Geosci. 2009, 2, 398–401. [Google Scholar] [CrossRef]
- Poschl, U.; Martin, S.T.; Sinha, B.; Chen, Q.; Gunthe, S.S.; Huffman, J.A.; Borrmann, S.; Farmer, D.K.; Garland, R.M.; Helas, G.; et al. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 2010, 329, 1513–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.H.; Gao, H.W. Environment and climate effect of bioaerosol: A review. Ecol. Environ. 2006, 15, 854–861. [Google Scholar]
- Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P.A.; Delort, A.M.; Poschl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A.; Morris, C.E. Microbiology and atmospheric processes: Chemical interactions of primary biological aerosols. Biogeosciences 2008, 5, 1073–1084. [Google Scholar] [CrossRef] [Green Version]
- Möhler, O.; de Mott, P.J.; Vali, G.; Levin, Z. Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosciences 2007, 4. [Google Scholar] [CrossRef] [Green Version]
- Després, V.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 2012; 64. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.J.; O’Sullivan, D.; Atkinson, J.D.; Webb, M.E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Re.v 2012, 41, 6519–6554. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.E.; Georgakopoulos, D.G.; Sands, D.C. Ice nucleation active bacteria and their potential role in precipitation. J. Phys. 2004, 121, 87–103. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Hill, T.C.J.; Pummer, B.G.; Yordanova, P.; Franc, G.D.; Pöschl, U. Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences 2015, 12, 1057–1071. [Google Scholar] [CrossRef] [Green Version]
- Kieft, T.L.; Ruscetti, T. Characterization of biological ice nuclei from a lichen. J. Bacteriol. 1990, 172, 3519–3523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouleur, S.; Richard, C.; Martin, J.-G.; Antoun, H. Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Appl. Envieon. Microbiol. 1992, 58, 2960–2964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pummer, B.G.; Bauer, H.; Bernardi, J.; Bleicher, S.; Grothe, H. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys. 2012, 12, 2541–2550. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Yan, X.; Qiu, T.; Han, M.; Wang, X. Variation of correlations between factors and culturable airborne bacteria and fungi. Atmos. Environ. 2016, 128, 10–19. [Google Scholar] [CrossRef]
- Haas, D.; Galler, H.; Luxner, J.; Zarfel, G.; Buzina, W.; Friedl, H.; Marth, E.; Habib, J.; Reinthaler, F.F. The concentrations of culturable microorganisms in relation to particulate matter in urban air. Atmos. Environ. 2013, 65, 215–222. [Google Scholar] [CrossRef]
- Ulevicius, V.; Peciulyte, D.; Mordas, G.; Lugauskas, A. Field study on changes in viability of airborne fungal propagules exposed to solar radiation. J. Aerosol. Sci. 2000, 31, S961–S962. [Google Scholar] [CrossRef]
- Joly, M.; Amato, P.; Sancelme, M.; Vinatier, V.; Abrantes, M.; Deguillaume, L.; Delort, A.-M. Survival of microbial isolates from clouds toward simulated atmospheric stress factors. Atmos. Environ. 2015, 117, 92–98. [Google Scholar] [CrossRef]
- Hwang, S.H.; Park, J.B. Comparison of culturable airborne bacteria and related environmental factors at underground subway stations between 2006 and 2013. Atmos. Environ. 2014, 84, 289–293. [Google Scholar] [CrossRef]
- Ho, H.-M.; Rao, C.Y.; Hsu, H.-H.; Chiu, Y.-H.; Liu, C.-M.; Chao, H.J. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos. Environ. 2005, 39, 5839–5850. [Google Scholar] [CrossRef]
- Liang, L.; Engling, G.; Cheng, Y.; Duan, F.; Du, Z.; He, K. Rapid detection and quantification of fungal spores in the urban atmosphere by flow cytometry. J. Aerosol. Sci. 2013, 66, 179–186. [Google Scholar] [CrossRef]
- Bowers, R.M.; McCubbin, I.B.; Hallar, A.G.; Fierer, N. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 2012, 50, 41–49. [Google Scholar] [CrossRef]
- Hjelmroos, M. Relationship between airborne fungal spore presence and weather variables: Cladosporium and Alternaria. Grana 1993, 32, 40–47. [Google Scholar] [CrossRef]
- Maki, T.; Hara, K.; Kobayashi, F.; Kurosaki, Y.; Kakikawa, M.; Matsuki, A.; Chen, B.; Shi, G.; Hasegawa, H.; Iwasaka, Y. Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula. Atmos. Environ. 2015, 119, 282–293. [Google Scholar] [CrossRef] [Green Version]
- Maki, T.; Kurosaki, Y.; Onishi, K.; Lee, K.C.; Pointing, S.B.; Jugder, D.; Yamanaka, N.; Hasegawa, H.; Shinoda, M. Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi desert area during dust events. Air Qual. Atmos Health 2017, 10, 249–260. [Google Scholar] [CrossRef]
- Rodo, X.; Ballester, J.; Cayan, D.; Melish, M.E.; Nakamura, Y.; Uehara, R.; Burns, J.C. Association of Kawasaki disease with tropospheric wind patterns. Sci. Rep. 2011, 1, 152. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Itoh, T.; Yokobori, S.; Shimada, H.; Itahashi, S.; Satoh, K.; Ohba, H.; Narumi, I.; Yamagishi, A. Deinococcus aetherius sp nov., isolated from the stratosphere. Int. J. Syst. Evol. Microbiol. 2010, 60, 776–779. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.W. Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth’s atmosphere: Extended incubation periods needed for culture-based assays. Aerobiologia 2008, 24, 19–25. [Google Scholar] [CrossRef]
- das Sarma, P.; DasSarma, S. Survival of microbes in Earth’s stratosphere. Curr. Opin. Microbiol. 2018, 43, 24–30. [Google Scholar] [CrossRef]
- Dehel, T.; Lorge, F.; Dickinson, M. Uplift of microorganisms by electric fields above thunderstorms. J. Electrost. 2008, 66, 463–466. [Google Scholar] [CrossRef]
- Mainelis, G.; Willeke, K.; Baron, P.; Grinshpun, S.A.; Reponen, T. Induction Charging and Electrostatic Classification of Micrometer-Size Particles for Investigating the Electrobiological Properties of Airborne Microorganisms. Aerosol. Sci. Technol. 2010, 36, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Heo, K.J.; Kim, H.B.; Lee, B.U. Concentration of environmental fungal and bacterial bioaerosols during the monsoon season. J. Aerosol. Sci. 2014, 77, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Salonen, H.; Duchaine, C.; Mazaheri, M.; Clifford, S.; Morawska, L. Airborne culturable fungi in naturally ventilated primary school environments in a subtropical climate. Atmos. Environ. 2015, 106, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Jia, R.; Qiu, T.; Han, M.; Song, Y.; Wang, X. Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmos. Environ. 2015, 118, 203–210. [Google Scholar] [CrossRef]
- Lee, T.; Grinshpun, S.A.; Martuzevicius, D.; Adhikari, A.; Crawford, C.M.; Reponen, T. Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes. Atmos. Environ. 2006, 40, 2902–2910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurtado, L.; Rodríguez, G.; López, J.; Castillo, J.E.; Molina, L.; Zavala, M.; Quintana, P.J.E. Characterization of atmospheric bioaerosols at 9 sites in Tijuana, Mexico. Atmos. Environ. 2014, 96, 430–436. [Google Scholar] [CrossRef]
- Winter, C.; Bouvier, T.; Weinbauer, M.G.; Thingstad, T.F. Trade-offs between competition and defense specialists among unicellular planktonic organisms: The "killing the winner" hypothesis revisited. Microbiol Mol. Biol. Rev. 2010, 74, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, N.; Park, J.; Kodama, M.; Ichijo, T.; Baba, T.; Nasu, M. Changes in the airborne bacterial community in outdoor environments following Asian dust events. Microbes Environ. 2014, 29, 82–88. [Google Scholar] [CrossRef] [Green Version]
Representative Species | Sources | Destination | References |
---|---|---|---|
Sphingomonas | Antarctic dust | Airborne microbes | [27] |
Helicobacter | Wastewater treatment plants | Aerosolization | [22] |
Brevundimonas sp. | Antarctica soil | Antarctic aerosol | [24] |
Stenotrophomonas, Acidovorax | Saharan dust | Aerosol | [16] |
Thermoactinomyces spp., Aspergillus spp. | Composting process | Aerosol | [23] [25] |
Sphingomonadales | Common inhabitant of leaves | Megalopolis aerosol | [26] |
Burkholderiales, Pseudomonadales | Soil inhabiting bacteria |
Factors | Ways | |
---|---|---|
Particulate matters in hazy/foggy weather | Formaldehyde, O3, H2O2, PAHs | Noxious effects on microbial growth |
Water–soluble ions, organic carbon | Provide habitat and nutrients for microbes | |
Strong acids | Noxious effects | |
Strong solar radiation (UVs) | Noxious effects | |
Temperature (relative humidity) | Provide comfortable survival environment | |
Dust | Carry microbes to far distances | |
Thunderstorm | Uplift microorganisms in altitude above the tropopause |
Phyla | Pathogen | Potential Pathogenicity | Host | Literature |
---|---|---|---|---|
Firmicutes | Streptococcus gallolyticus | pharyngitis, pink eye, meningitis, pneumonia, endocarditis, erysipelas, necrotizing fasciitis | Human | [26] |
Streptococcus mitis | ||||
Staphylococcus | food poisoning, herpetic and exfoliative dermatitis | Human | [69,71] | |
Bacillus circulans | sepsis, bacteremia, abscesses, meningitis | Human | [41,42] | |
Enterococcus faecium; | nosocomial infections | Human | [65] | |
Staphylococcus epidermidis | infections of implanted prosthesis (e.g., heart valves and catheters) | Human | [26] | |
Proteobacteria | Arcobacter | bacteremia, gastrointestinal illness | Human | [20] |
Helicobacter | gastric ulcers | |||
Gamma–proteobacteria | Enterobacter cloacae | potential infections of soft tissue, urinary tract and respiratory | Human | [26] |
Pseudomonas aeruginosa | nosocomial infections | |||
Aeromonas hydrophila | release exotoxin to cause enteral infections | |||
Enterococcus caselliflavus | respiratory infections | |||
Enterococcus haemoperoxidus | urinary tract | |||
Gamma–proteobacteria | Pseudomonas | respiratory infections | Human | [34] |
Acinetobacter | pneumonia, skin and wound infections | |||
Acinetobacter baumannii | pneumonia, bacteremia, meningitis | Human | [7,67] | |
Actinobacteria | Propionibacterium acnes | acne | Human | [2] |
Thermoactinomyces vulgaris | hypersensitivity–induced pneumonitis | Human | [9,25,72] | |
Saccharopolyspora rectivirgula | alveolitis, bronchial asthma | |||
Proteobacteria | Klebsiella pneumoniae | mucormycosis, organic dust toxic syndrome (ODTS) | Human | [73] [74] |
Ascomycota | Aspergillus fumigatus | |||
Basidiomycota | Bjerkandera adusta | chronic cough | Human | [75] |
Ascomycota | Aspergillus fumigatus | invasive aspergillosis | Human | [11,25] |
Gamma–proteobacteria | Escherichia coli | diarrhea, sepsis | Infant, immature livestock | [26] |
Firmicutes | Clostridium botulinum Types C | release exotoxin to cause disease | Mammals, fish, birds | [20] |
Alpha–proteobacteria | Tick–borne Rickettsia | the medium of disease spread | ||
Beta–proteobacteria | Burkholderia mallei | glanders | Mammals | |
Burkholderia pseudomallei | melioidosis | |||
Firmicutes | Bacillus sp. | biodeterioration | Mural paintings | [76] |
Heterokontophyta | Phytophthora infestans | potato late blight | Plants | [3] |
Ascomycota | Cryphonectria parasitica | chestnut blight | ||
Basidiomycota | Puccinia melanocephala | sugarcane rust | ||
Beta–proteobacteria | Ralstonia | a plant pathogen |
Concentration (cfu/m3) | Regions | Sites | Literature |
---|---|---|---|
(bacteria) 565 ± 464 | Xi’an, China | nearby city major roads | [51] |
(fungi) 399 ± 371 | |||
(bacteria) 81 ± 31 | Seoul, Korea | building (out) | [113] |
(fungi) 96 ± 45 | |||
(bacteria) 125 ± 51 | forest | ||
(fungi) 253 ± 121 | |||
(bacteria) 1110 ± 976 | Beijing, China | building (out) | [53] |
(fungi) 948 ± 978 | |||
(bacteria) 45–591 | Jeddah, Saudi Arabia | university campus | [43] |
(fungi) 4–28 | |||
(fungi) 800 | Brisbane, Australia | indoor school | [114] |
1344 | outdoor school | ||
(bacteria) (heavy hazy) 224 ± 186 | Beijing, China | roof of a building | [115] |
(non–hazy) 358 ± 349 | |||
(fungi) 0−3882 | Cincinnati Americ | homes area | [116] |
(bacteria) 0–2500 | Graz, Austria | city center | [97] |
(bacteria)(downtown) 1700 ± 595 (bacteria) (River valley) 40,100±21,689 | Tijuana, Mexico | / | [117] |
Concentration (cells/m3) | / | / | |
(summer) 12 × 104 | Thessaloniki, Greece | city center | [34] |
(winter) 8.4 × 104 | |||
(spring) 2.38 × 105 | Xi’an, China | urban area | [59] |
(summer) 1.66 × 105 | |||
(autumn) 4.22 × 105 | |||
(winter) 6.77 × 105 | |||
(hazy) 7.09 × 105 | Qingdao, China | roof of a campus building | [54] |
(foggy) 9.00 × 105 | |||
(non–hazy) 6.55 × 105 | |||
(dust) 1 ± 0.6 ×104 | Osaka, Japan | downtown area | [48] |
(non–dust) 2 ± 3 ×103 | |||
(hazy) 6.12 × 105 ± 3.50 × 105 | Xi’an, China | urban area | [59] |
(non–hazy) 2.15 × 105 ± 1.26 ×105 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Kumari, D.; Achal, V. A Review on Airborne Microbes: The Characteristics of Sources, Pathogenicity and Geography. Atmosphere 2020, 11, 919. https://doi.org/10.3390/atmos11090919
Chen X, Kumari D, Achal V. A Review on Airborne Microbes: The Characteristics of Sources, Pathogenicity and Geography. Atmosphere. 2020; 11(9):919. https://doi.org/10.3390/atmos11090919
Chicago/Turabian StyleChen, Xueyan, Deepika Kumari, and Varenyam Achal. 2020. "A Review on Airborne Microbes: The Characteristics of Sources, Pathogenicity and Geography" Atmosphere 11, no. 9: 919. https://doi.org/10.3390/atmos11090919
APA StyleChen, X., Kumari, D., & Achal, V. (2020). A Review on Airborne Microbes: The Characteristics of Sources, Pathogenicity and Geography. Atmosphere, 11(9), 919. https://doi.org/10.3390/atmos11090919