Trends in Atmospheric Humidity and Temperature above Dome C, Antarctica Evaluated from Observations and Reanalyses
Abstract
:1. Introduction
2. Data and Method
3. Results
3.1. Seasonal Variations of IWV, Temperature and H2O from 2005–2017
3.2. Decadal Trends of IWV, Temperature and H2O in the Early 21st Century
3.2.1. Decadal Trends of IWV and 10-m Temperature
3.2.2. Decadal Trends in H2O and Temperature Profiles
3.3. Multidecadal Trend and Variability of IWV, Near-Surface Temperature and SAM Index since the End of the 20th Century
3.3.1. Multidecadal Trends over Dome C
3.3.2. Multidecadal Variability over Dome C
4. Discussion
4.1. Assimilation of Radiosondes
4.2. Decadal Trends
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turner, J.; Lachlan-Cope, T.A.; Colwell, S.; Marshall, G.J.; Connolley, W.M. Significant Warming of the Antarctic Winter Troposphere. Science 2006, 311, 1914–1917. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Scott Hosking, J.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliva, M.; Navarro, F.; Hrbáčekc, F.; Hernández, A.; Nývlt, D.; Pereira, P.; Ruiz-Fernández, J.; Trigo, R.M. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ. 2017, 580, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, J.P.; Bromwich, D.H. New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses. J. Clim. 2014, 27, 8070–8093. [Google Scholar] [CrossRef]
- Clem, K.R.; Renwick, J.A.; McGregor, J. Autumn cooling of western East Antarctica linked to the tropical Pacific. J. Geophys. Res. Atmos. 2018, 123, 89–107. [Google Scholar] [CrossRef]
- Jones, M.E.; Bromwich, D.H.; Nicolas, J.P.; Carrasco, J.; Plavcová, E.; Zou, X.; Wang, S.H. Sixty years of widespread warming in the southern mid- and high-latitudes (1957–2016). J. Clim. 2019, 32, 6875–6898. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.J.; Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.L.; Polvani, L.M. Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: Lessons from multiple reconstructions and the CMIP5 models. Clim. Dyn. 2017, 48, 2653–2670. [Google Scholar] [CrossRef]
- Ding, Q.; Steig, E.J.; Battisti, D.S.; Wallace, J.M. Influence of the tropics on the Southern Annular Mode. J. Clim. 2012, 25, 6330–6348. [Google Scholar] [CrossRef]
- Li, X.; Holland, D.M.; Gerber, E.P.; Yoo, C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 2014, 505, 538. [Google Scholar] [CrossRef]
- Cook, A.J.; Holland, P.R.; Meredith, M.P.; Murray, T.; Luckman, A.; Vaughan, D.G. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 2016, 353, 283–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Bao, Q.; Ji, D.Y.; Gong, D.Y.; Mao, R.; Zhang, Z.Y.; Kim, S.-J. Simulation and causes of eastern Antarctica surface cooling related to ozone depletion during austral summer in FGOALS-s2. Adv. Atmos. Sci. 2014, 31, 1147–1156. [Google Scholar] [CrossRef]
- Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; van den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.; Joughin, I.; Krinner, G.; et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 2018, 556, 219–222. [Google Scholar]
- Rintoul, S.R.; Chown, S.L.; DeConto, R.M.; England, M.H.; Fricker, H.A.; Masson-Delmotte, V.; Naish, T.; Siegert, M.J.; Xavier, J.C. Choosing the future of Antarctica. Nature 2018, 558, 233–241. [Google Scholar] [CrossRef]
- Tomasi, C.; Petkov, B.H.; Benedetti, E. Annual cycles of pressure, temperature, absolute humidity and precipitable water from the radiosoundings performed at Dome C, Antarctica, over the 2005–2009 period. Antarct. Sci. 2012, 24, 637–658. [Google Scholar] [CrossRef]
- Lubin, D.; Chen, B.; Bromwich, D.H.; Somerville, R.C.; Lee, W.H.; Hines, K.M. The Impact of Antarctic Cloud Radiative Properties on a GCM Climate Simulation. J. Clim. 1998, 11, 447–462. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, L.; Wang, Z.; Deng, M. Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites. J. Geophys. Res. Atmos. 2012, 117, D04202. [Google Scholar] [CrossRef] [Green Version]
- Palchetti, L.; Bianchini, G.; Di Natale, G.; Del Guasta, M. Far infrared radiative properties of water vapor and clouds in Antarctica. Bull. Am. Meteorol. Soc. 2015, 96, 1505–1518. [Google Scholar] [CrossRef]
- Walden, V.P.; Warren, S.G.; Tuttle, E. Atmospheric ice crystals over the Antarctic Plateau in winter. J. Appl. Meteorol. 2003, 42, 1391–1405. [Google Scholar] [CrossRef]
- Lawson, R.P.; Baker, B.A.; Zmarzly, P.; O’Connor, D.; Mo, Q.; Gayet, J.F.; Shcherbakov, V. Microphysical and optical properties of atmospheric ice crystals at South Pole Station. J. Appl. Meteorol. 2006, 45, 1505–1524. [Google Scholar] [CrossRef]
- Ricaud, P.; Bazile, E.; del Guasta, M.; Lanconelli, C.; Grigioni, P.; Mahjoub, A. Genesis of diamond dust, ice fog and thick cloud episodes observed and modelled above Dome C, Antarctica. Atmos. Chem. Phys. 2017, 17, 5221–5237. [Google Scholar] [CrossRef] [Green Version]
- Listowski, C.; Delanoë, J.; Kirchgaessner, A.; Lachlan-Cope, T.; King, J. Antarctic clouds, supercooled liquid water and mixed-phase investigated with DARDAR: Geographical and seasonal variations. Atmos. Chem. Phys. 2019, 19, 6771–6808. [Google Scholar] [CrossRef] [Green Version]
- Ricaud, P.; Del Guasta, M.; Bazile, E.; Azouz, N.; Lupi, A.; Durand, P.; Attié, J.-L.; Veron, D.; Guidard, V.; Grigioni, P. Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica. Atmos. Chem. Phys. 2020, 20, 4167–4191. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Li, Y.; Yang, Q.; Gao, A.E.; Han, B.; Yang, Y.; Yu, L.; Wang, L. Radiosonde-Observed Vertical Profiles and Increasing Trends of Temperature and Humidity during 2005–2018 at the South Pole. Atmosphere 2019, 10, 365. [Google Scholar] [CrossRef] [Green Version]
- Clem, K.R.; Fogt, R.L.; Turner, J.; Lintner, B.R.; Marshall, G.J.; Miller, J.R.; Renwick, J.A. Record warming at the South Pole during the past three decades. Nat. Clim. Chang. 2020, 10, 762–770. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.H.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Marshall, G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Ricaud, P.; Gabard, B.; Derrien, S.; Chaboureau, J.-P.; Rose, T.; Mombauer, A.; Czekala, H. HAMSTRAD-Tropo, A 183-GHz Radiometer Dedicated to Sound Tropospheric Water Vapor Over Concordia Station, Antarctica. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1365–1380. [Google Scholar] [CrossRef]
- Ricaud, P.; Grigioni, P.; Zbinden, R.; Attié, J.-L.; Genoni, L.; Galeandro, A.; Moggio, L.; Montaguti, S.; Petenko, I.; Legovini, P. Review of tropospheric temperature, absolute humidity and integrated water vapour from the HAMSTRAD radiometer installed at Dome C, Antarctica, 2009–2014. Antarct. Sci. 2015, 27, 598–616. [Google Scholar] [CrossRef] [Green Version]
- Miloshevich, L.M.; Vömel, H.; Whiteman, D.N.; Leblanc, T. Accuracy assessment and corrections of Vaisala RS92 radiosonde water vapour measurements. J. Geophys. Res. Atmos. 2009, 114, D11305. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University: Cambridge, UK, 1992. [Google Scholar]
- Tomasi, C.; Petkov, B.; Benedetti, E.; Valenziano, L.; Vitale, V. Analysis of a 4 year radiosonde dataset at Dome C for characterizing temperature and moisture conditions of the Antarctic atmosphere. J. Geophys. Res. Atmos. 2011, 116, D15304. [Google Scholar] [CrossRef] [Green Version]
- Ricaud, P.; Carminati, F.; Courcoux, Y.; Pellegrini, A.; Attié, J.-L.; El Amraoui, L.; Abida, R.; Genthon, C.; August, T.; Warner, J. Statistical Analyses and Correlation between Tropospheric Temperature and Humidity at Dome C, Antarctica. Antarct. Sci. 2014, 26, 290–308. [Google Scholar] [CrossRef]
- Van den Broeke, M.R.; van Lipzig, N.P.M. Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Ann. Glaciol. 2004, 39, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Marshall, G.J.; Thompson, D.W.J. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures. J. Geophys. Res. Atmos. 2016, 121, 3276–3289. [Google Scholar] [CrossRef] [Green Version]
Data Sets | Summer (DJF) | Autumn (MAM) | Winter (JJA) | Spring (SON) | Year |
---|---|---|---|---|---|
IWV | |||||
HAMS 2012–2017 | 0.09 ± 0.22 | −0.05 ± 0.07 | −0.04 ± 0.09 | 0.02 ± 0.28 | 0.04 ± 0.06 |
RS 2012–2017 | 0.04 ± 0.17 | −0.08 ± 0.07 | −0.06 ± 0.08 | 0.01 ± 0.12 | −0.07 ± 0.05 |
RS 2005–2017 | 0.08 ± 0.06 | −0.04 ± 0.03 | −0.05 ± 0.03 | 0.01 ± 0.04 | −0.01 ± 0.04 |
10-m Temperature | |||||
HAMS 2012–2017 | 8.68 ± 8.77 | −3.18 ± 3.66 | −7.10 ± 3.15 | 2.69 ± 11.42 | 1.33 ± 0.96 |
RS 2012–2017 | 0.79 ± 1.00 | −10.03 ± 1.30 | −9.88 ± 3.70 | −1.99 ± 3.24 | −2.65 ± 0.72 |
RS 2005–2017 | 1.08 ± 0.55 | −2.43 ± 1.16 | −5.06 ± 1.99 | −0.30 ± 1.35 | −1.80 ± 1.54 |
Data Sets | Summer (DJF) | Autumn (MAM) | Winter (JJA) | Spring (SON) | Year |
---|---|---|---|---|---|
IWV | |||||
MERRA2 | 0.012 ± 0.009 | 0.006 ± 0.008 | −0.004 ± 0.006 | 0.007 ± 0.004 | 0.005 ± 0.004 |
ERA-Int | −0.035 ± 0.011 | −0.008 ± 0.007 | −0.015 ± 0.007 | −0.001 ± 0.005 | −0.015 ± 0.004 |
ERA5 | −0.017 ± 0.010 | −0.007 ± 0.007 | −0.014 ± 0.007 | 0.003 ± 0.005 | −0.008 ± 0.004 |
JRA−55 | −0.010 ± 0.009 | −0.001 ± 0.007 | −0.009 ± 0.006 | 0.008 ± 0.004 | −0.003 ± 0.004 |
Near-Surface Temperature | |||||
MERRA2 | 0.07 ± 0.16 | −0.11 ± 0.25 | −0.56 ± 0.35 | −0.15 ± 0.19 | −0.19 ± 0.17 |
ERA-Int | −0.15 ± 0.14 | −0.20 ± 0.24 | −0.41 ± 0.39 | 0.01 ± 0.20 | −0.19 ± 0.15 |
ERA5 | 0.21 ± 0.15 | −0.24 ± 0.24 | −0.63 ± 0.36 | 0.06 ± 0.20 | −0.15 ± 0.13 |
JRA-55 | −0.16 ± 0.11 | 0.09 ± 0.24 | −0.08 ± 0.29 | 0.40 ± 0.17 | 0.06 ± 0.14 |
SAM Index | |||||
SAM | 0.08 ± 0.13 | −0.09 ± 0.09 | 0.20 ± 0.14 | 0.08 ± 0.12 | 0.04 ± 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricaud, P.; Grigioni, P.; Roehrig, R.; Durand, P.; Veron, D.E. Trends in Atmospheric Humidity and Temperature above Dome C, Antarctica Evaluated from Observations and Reanalyses. Atmosphere 2020, 11, 836. https://doi.org/10.3390/atmos11080836
Ricaud P, Grigioni P, Roehrig R, Durand P, Veron DE. Trends in Atmospheric Humidity and Temperature above Dome C, Antarctica Evaluated from Observations and Reanalyses. Atmosphere. 2020; 11(8):836. https://doi.org/10.3390/atmos11080836
Chicago/Turabian StyleRicaud, Philippe, Paolo Grigioni, Romain Roehrig, Pierre Durand, and Dana E. Veron. 2020. "Trends in Atmospheric Humidity and Temperature above Dome C, Antarctica Evaluated from Observations and Reanalyses" Atmosphere 11, no. 8: 836. https://doi.org/10.3390/atmos11080836
APA StyleRicaud, P., Grigioni, P., Roehrig, R., Durand, P., & Veron, D. E. (2020). Trends in Atmospheric Humidity and Temperature above Dome C, Antarctica Evaluated from Observations and Reanalyses. Atmosphere, 11(8), 836. https://doi.org/10.3390/atmos11080836