Thermal Environment Map in Street Canyon for Implementing Extreme High Temperature Measures
Abstract
:1. Introduction
2. Methods and Results
2.1. Wind Velocity Distribution
2.2. Thermal Sensation Index Distribution
3. Results
3.1. Calculation Results
3.2. Distribution of Ground Surface Temperature, MRT and SET*
3.3. Comparison with Measurement Results
4. Discussion
4.1. Time Change of SET*
4.2. Spatial Distribution Frequency of SET* and Shaded Area
4.3. Relationship between Street Width and SET*
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Kobe Shimbun. What Is the Effect of Artificial Shade? Kobe City’s Proof Experiment for High Temperature Measures in the City Center. Available online: https://www.kobe-np.co.jp/news/sougou/201907/0012478089.shtml (accessed on 20 April 2020). (In Japanese).
- The Kobe Shimbun. How Do You Deal with the Disaster Level Heat? Extreme High Temperature Countermeasure Symposium. Available online: https://www.kobe-np.co.jp/news/iryou/201907/0012497656.shtml (accessed on 20 April 2020). (In Japanese).
- The Ministry of the Environment of Japan. Heat Countermeasure Guideline in the City. Available online: https://www.wbgt.env.go.jp/pdf/city_gline/city_guideline_full.pdf (accessed on 20 April 2020). (In Japanese)
- Broadbent, A.M.; Coutts, A.M.; Tapper, N.J.; Demuzere, M. The cooling effect of irrigation on urban microclimate during heatwave conditions. Urban Clim. 2018, 23, 309–329. [Google Scholar] [CrossRef]
- Daniel, M.; Lemonsu, A.; Viguie, V. Role of watering practices in large-scale urban planning strategies to face the heat-wave risk in future climate. Urban Clim. 2018, 23, 287–308. [Google Scholar] [CrossRef]
- De Munck, C.; Lemonsu, A.; Masson, V.; Le Bras, J.; Bonhomme, M. Evaluating the impacts of greening scenarios on thermal comfort and energy and water consumptions for adapting Paris city to climate change. Urban Clim. 2018, 23, 260–286. [Google Scholar] [CrossRef] [Green Version]
- Baklanov, A.; Grimmond, C.S.B.; Carlson, D.; Terblanche, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.K.; Hovsepyan, A. From urban meteorology, climate and environment research to integrated city services. Urban Clim. 2018, 23, 330–341. [Google Scholar] [CrossRef]
- Gao, Z.; Bresson, R.; Qu, Y.; Milliez, M.; Munck, C.; Carissimo, B. High resolution unsteady RANS simulation of wind, thermal effects and pollution dispersion for studying urban renewal scenarios in a neighborhood of Toulouse. Urban Clim. 2018, 23, 114–130. [Google Scholar] [CrossRef]
- Ng, E.; Ren, C. China’s adaptation to climate & urban climatic changes: A critical review. Urban Clim. 2018, 23, 352–372. [Google Scholar]
- Beermann, B.; Berchtold, M.; Baumüller, J.; Gross, G.; Kratz, M. Städtebaulicher Rahmenplan Klimaanpassung für die Stadt Karlsruhe (Teil II); LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Karlsruhe, Germany, 2014. [Google Scholar]
- Takebayashi, H. A Simple Method to Evaluate Adaptation Measures for Urban Heat Island. Environments 2018, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Ng, E.; Ren, C. The Urban Climatic Map: A Methodology for Sustainable Urban Planning; Routledge: London, UK, 2015. [Google Scholar]
- Ren, C.; Ng, E.; Katzschner, L. Urban climatic map studies: A review. Int. J. Climatol. 2011, 31, 2213–2233. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Takebayashi, H.; Ishii, E.; Moriyama, M.; Sakaki, A.; Nakajima, S.; Ueda, H. Study to examine the potential for solar energy utilization based on the relationship between urban morphology and solar radiation gain on building rooftops and wall surfaces. Sol. Energy 2015, 119, 362–369. [Google Scholar] [CrossRef]
- Takebayashi, H. Thermal Environment Design of Outdoor Spaces by Examining Redevelopment Buildings Opposite Central Osaka Station. Climate 2019, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Nouri, A.S.; Costa, J.P.; Santamouris, M.; Matzarakis, A. Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere 2018, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrosio Alfano, F.R.; Olesen, B.W.; Palella, B.I. Povl Ole Fanger’s Impact Ten Years Later. Energy Build. 2017, 152, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Gagge, A.; Fobelets, P.; Bergland, L. A standard predictive index of human response to thermal environment. ASHRAE Trans. 1986, 92, 709–731. [Google Scholar]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney, Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef] [Green Version]
- De Dear, R.; Pickup, R. An outdoor thermal comfort index (OUT_SET*)—Part I—The model and its assumptions. In Proceedings of the International Conference on Urban Climatology, Sydney, Australia, 8–9 November 1999. [Google Scholar]
- Tinz, B.; Jendrizky, G. Europa- und Weltkarten der Gefühlten Temperatur; Chmielewski, F., Foken, T., Eds.; Beiträge zur Klima- und Meeresforschung: Berlin, Germany, 2003; pp. 111–123. [Google Scholar]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; McGraw-Hill Book Company: New York, NY, USA, 1972; p. 244. [Google Scholar]
- D’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G. Notes on the calculation of the PMV index by means of Apps. Energy Procedia 2016, 101, 243–249. [Google Scholar]
- Givoni, B. Man, Climate and Architecture; Applied Science Publishers: London, UK, 1976. [Google Scholar]
- Kenny, A.; Warland, S.; Brown, R. Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. Int. J. Biometeorol. 2009, 53, 415–428. [Google Scholar] [CrossRef]
- Jendritzky, G.; Maarouf, A.; Fiala, D.; Staiger, H. An update on the development of a Universal Thermal Climate Index. In Proceedings of the 15th Conference on Biometeorology Aerobiology and 16th ICB02, Kansas City, MO, USA, 27 October–1 November 2002; AMS: New York, NY, USA, 2002. [Google Scholar]
- Jendritzky, G.; de-Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Bröde, P.; Fiala, D.; Blazejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Yaglou, C.; Minard, D. Control of heat casualties at military training centers. AMA Arch. Ind. Health 1957, 16, 302–316. [Google Scholar]
- Alfano, F.; Malchaire, J.; Palella, B.; Riccio, G. WBGT index revisited after 60 years of use. Ann. Occup. Hyg. 2014, 58, 955–970. [Google Scholar]
- Malchaire, J.; Piette, A.; Kampmann, B.; Mehnerts, P.; Gebhardt, H.; Havenith, G.; Hartog, E.; Holmer, I.; Parsons, K.; Alfanoss, G.; et al. Development and Validation of the Predicted Heat Strain Model. Ann. Occup. Hyg. 2001, 45, 123–135. [Google Scholar] [CrossRef]
- International Organization for Standardization. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Heat Stress Using Calculation of the Predicted Heat Strain—ISO 7933 Standard; ISO: Geneva, Switzerland, 2004. [Google Scholar]
- D’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G.; Malchaire, J. On the Effect of Thermophysical Properties of Clothing on the Heat Strain Predicted by PHS Model. Ann. Occup. Hyg. 2016, 60, 231–251. [Google Scholar] [CrossRef] [PubMed]
- ACGIH. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposures Indices; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2011.
- Palella, B.I.; Quaranta, F.; Riccio, G. On the management and prevention of heat stress for crews onboard ships. Ocean Eng. 2016, 112, 277–286. [Google Scholar] [CrossRef]
- International Organization for Standardization. Ergonomics of the Thermal Environment—Assessment of Heat Stress Using the WBGT (Wet Bulb Globe Temperature) Index—ISO Standard 7243; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Ishii, A.; Katayama, T.; Shiotsuki, Y.; Yoshimizu, H.; Abe, Y. Experimental study on comfort sensation of people in the outdoor environment. J. Archit. Plan. Environ. Eng. 1988, 386, 28–37. (In Japanese) [Google Scholar]
- Nakano, J.; Tanabe, S. Thermal comfort and adaptation in semi-outdoor environments. ASHRAE Trans. 2004, 110, 543–553. [Google Scholar]
Area | Ratio of Tree Canopy Area |
---|---|
East-west road | 9.5% |
Boulevard | 7.1% |
North-south road | 9.4% |
Intersection | 3.3% |
Central park | 31.9% |
Open space | 4.7% |
All area | 9.7% |
Material | Evaporative Efficiency (-) | Emissivity (-) | Thermal Conductivity (W/(mk)) | Heat Capacity (kJ/(m3K)) | Solar Reflectance (-) |
---|---|---|---|---|---|
Wood deck | 0.0 | 1.0 | 0.5 | 1130 | 0.15 |
Grass | 0.3 | 0.9 | 3.0 | 3000 | 0.3 |
Water surface | 1.0 | 1.0 | 7.0 | 9000 | Depends on incident angle |
Asphalt | 0.0 | 1.0 | 0.74 | 2055 | 0.15 |
Concrete | 0.0 | 0.95 | 1.7 | 1934 | 0.35 |
Soil | 0.0 | 0.92 | 0.74 | 10,000 | 0.225 |
Block (white) | 0.0 | 0.9 | 1.4 | 2000 | 0.39 |
Block (colored) | 0.0 | 0.9 | 1.4 | 2000 | 0.3 |
Brick | 0.0 | 0.9 | 0.62 | 1400 | 0.15 |
Andesite | 0.0 | 0.9 | 1.7 | 3030 | 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takebayashi, H.; Okubo, M.; Danno, H. Thermal Environment Map in Street Canyon for Implementing Extreme High Temperature Measures. Atmosphere 2020, 11, 550. https://doi.org/10.3390/atmos11060550
Takebayashi H, Okubo M, Danno H. Thermal Environment Map in Street Canyon for Implementing Extreme High Temperature Measures. Atmosphere. 2020; 11(6):550. https://doi.org/10.3390/atmos11060550
Chicago/Turabian StyleTakebayashi, Hideki, Mai Okubo, and Hiroki Danno. 2020. "Thermal Environment Map in Street Canyon for Implementing Extreme High Temperature Measures" Atmosphere 11, no. 6: 550. https://doi.org/10.3390/atmos11060550
APA StyleTakebayashi, H., Okubo, M., & Danno, H. (2020). Thermal Environment Map in Street Canyon for Implementing Extreme High Temperature Measures. Atmosphere, 11(6), 550. https://doi.org/10.3390/atmos11060550