Impacts of Weather Types on Soil Erosion Rates in Vineyards at “Celler Del Roure” Experimental Research in Eastern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rainfall Events, Soil Loss and Runoff Data Collection
2.3. Assessment of Weather Types
- (1)
- Dynamic low-pressure without fronts (DLp). They are usually dynamic low-pressure events but without the presence of associated fronts throughout the event, or, at least, on the day of precipitation, or near the location zone of the weather station. The wind direction usually indicates the position of this mentioned depression.
- (2)
- Thermal low-pressure (TLp). These are spring, summer or autumnal rainfall events (usually the first) characterized by low surface pressure but high at 500 hPa levels. They may or may not be associated with frontal systems.
- (3)
- Dynamic low-pressure with fronts (DLp+f). They are dynamic low-pressure weather systems that occur at high levels in the atmosphere. The wind direction usually indicates the position of that low-pressure, although it is the presence of the frontal system that usually determines the final precipitation. Sometimes the passage of up to three fronts is recorded on the same day.
- (4)
- Cold drop (CD). To identify cold drops and separate them from low-pressure weather systems with cold-air damming in height. The fundamental criterion considered in this study was the absence of low surface pressure. Therefore, any positive pressure element (>1014 hPa on the surface) that is accompanied by a cold air cell developed in height has been considered as a cold drop.
- (5)
- High-pressure weather systems with fronts (HP+f). Sometimes, high pressures do not prevent the unstable behavior of air masses, especially when they have an unstable maritime origin due to contact with other masses of a different nature (temperature/humidity). In these cases, it is usual that high-pressure systems show levogyrous curvatures that coincide with the fronts.
- (6)
- Anticyclones/weak pressure weather systems (A). Frequently, barometric swamps determine the appearance of relatively small thermal lows that are difficult to identify or the arrival of maritime air laden with moisture. In both cases, the pressure field is undefined, without a marked instability, a priori, but it can result in downpours. In this situation, several downpours of moderate-intensity have been identified.
3. Results and Discussion
3.1. Rainfall Distribution upon Atmospheric Situations and Weather Types
3.2. Soil Erosion Events and Weather Types
3.3. Challenges and Implications for Future Studies Related to Weather Types and Soil Erosion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- Stewart, B.A. Soil Erosion: A Threat to Mankind. Ecology 1994, 75, 1193. [Google Scholar] [CrossRef]
- Ghafari, H.; Gorji, M.; Arabkhedri, M.; Roshani, G.A.; Heidari, A.; Akhavan, S. Identification and prioritization of critical erosion areas based on onsite and offsite effects. CATENA 2017, 156, 1–9. [Google Scholar] [CrossRef]
- Chehlafi, A.; Kchikach, A.; Derradji, A.; Mequedade, N. Highway cutting slopes with high rainfall erosion in Morocco: Evaluation of soil losses and erosion control using concrete arches. Eng. Geol. 2019, 260, 105200. [Google Scholar] [CrossRef]
- Streeter, M.T.; Schilling, K.E. Assessing and mitigating the effects of agricultural soil erosion on roadside ditches. J Soils Sediments 2020, 20, 524–534. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Lana-Renault, N.; Nadal-Romero, E.; Cerdà, A. Ongoing and Emerging Questions in Water Erosion Studies. Land Degrad. Dev. 2017, 28, 5–21. [Google Scholar] [CrossRef]
- Brevik, E.C.; Steffan, J.J.; Rodrigo-Comino, J.; Neubert, D.; Burgess, L.C.; Cerdà, A. Connecting the public with soil to improve human health. Eur. J. Soil Sci. 2019, 70, 898–910. [Google Scholar] [CrossRef]
- Rubio-Delgado, J.; Schnabel, S.; Gómez-Gutiérrez, Á.; Lavado-Contador, J.F. Temporal and spatial variation of soil erosion in wooded rangelands of southwest Spain. Earth Surf. Process. Landf. 2019, 44, 2141–2155. [Google Scholar] [CrossRef]
- Benda, L.; James, C.; Miller, D.; Andras, K. Road Erosion and Delivery Index (READI): A Model for Evaluating Unpaved Road Erosion and Stream Sediment Delivery. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 459–484. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef]
- Jie, C.; Jing-zhang, C.; Man-zhi, T.; Zi-tong, G. Soil degradation: A global problem endangering sustainable development. J. Geogr. Sci. 2002, 12, 243–252. [Google Scholar] [CrossRef]
- Ricci, G.F.; Jeong, J.; De Girolamo, A.M.; Gentile, F. Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed. Land Use Policy 2020, 90, 104306. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Guaitoli, F.; Santoro, A.; Cerdà, A. Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 2013, 4, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Guadie, M.; Molla, E.; Mekonnen, M.; Cerdà, A. Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia. Land 2020, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Chevigny, E.; Quiquerez, A.; Petit, C.; Curmi, P. Lithology, landscape structure and management practice changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution. CATENA 2014, 121, 354–364. [Google Scholar] [CrossRef]
- Blavet, D.; De Noni, G.; Le Bissonnais, Y.; Leonard, M.; Maillo, L.; Laurent, J.Y.; Asseline, J.; Leprun, J.C.; Arshad, M.A.; Roose, E. Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil Tillage Res. 2009, 106, 124–136. [Google Scholar] [CrossRef]
- Nunes, J.P.; Seixas, J.; Pacheco, N.R. Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrol. Process. 2008, 22, 3115–3134. [Google Scholar] [CrossRef]
- Nearing, M.A.; Yin, S.; Borrelli, P.; Polyakov, V.O. Rainfall erosivity: An historical review. CATENA 2017, 157, 357–362. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Cortesi, N.; González-Hidalgo, J.C. Weather types, runoff and sediment yield in a Mediterranean mountain landscape. Earth Surf. Process. Landf. 2014, 39, 427–437. [Google Scholar] [CrossRef]
- Fernández-Raga, M.; Palencia, C.; Keesstra, S.; Jordán, A.; Fraile, R.; Angulo-Martínez, M.; Cerdà, A. Splash erosion: A review with unanswered questions. Earth-Sci. Rev. 2017, 171, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Marzen, M.; Iserloh, T.; Casper, M.C.; Ries, J.B. Quantification of particle detachment by rain splash and wind-driven rain splash. CATENA 2015, 127, 135–141. [Google Scholar] [CrossRef]
- Minea, G.; Ioana-Toroimac, G.; Moro, G. The dominant runoff processes on grassland versus bare soil hillslopes in a temperate environment—An experimental study. J. Hydrol. Hydromech. 2019, 67, 8. [Google Scholar] [CrossRef] [Green Version]
- Senciales González, J.M.; Ruiz Sinoga, J.D. Análisis espacio-temporal de las lluvias torrenciales en la ciudad de Málaga. Boletín De La Asoc. De Geógrafos Españoles 2013, 61, 7–24. [Google Scholar] [CrossRef]
- Mineo, C.; Ridolfi, E.; Moccia, B.; Russo, F.; Napolitano, F. Assessment of Rainfall Kinetic-Energy–Intensity Relationships. Water 2019, 11, 1994. [Google Scholar] [CrossRef] [Green Version]
- Choo, Y.M.; Jo, D.J.; Yun, G.S.; Lee, E.H. A Study on the Improvement of Flood Forecasting Techniques in Urban Areas by Considering Rainfall Intensity and Duration. Water 2019, 11, 1883. [Google Scholar] [CrossRef] [Green Version]
- Bryan, R.B. Soil erodibility and processes of water erosion on hillslope. Geomorphology 2000, 32, 385–415. [Google Scholar] [CrossRef]
- Angulo-Martínez, M.; Beguería, S. Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). J. Hydrol. 2009, 379, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Sinoga, J.D.; Garcia Marin, R.; Martinez Murillo, J.F.; Gabarron Galeote, M.A. Precipitation dynamics in southern Spain: Trends and cycles. Int. J. Climatol. 2011, 31, 2281–2289. [Google Scholar] [CrossRef]
- Gholami, H.; Telfer, M.W.; Blake, W.H.; Fathabadi, A. Aeolian sediment fingerprinting using a Bayesian mixing model. Earth Surf. Process. Landf. 2017, 42, 2365–2376. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A. Relationships between climate and soil hydrological and erosional characteristics along climatic gradients in Mediterranean limestone areas. Geomorphology 1998, 25, 123–134. [Google Scholar] [CrossRef]
- Lavee, H.; Imeson, A.C.; Sarah, P. The impact of climate change on geomorphology and desertification along a mediterranean-arid transect. Land Degrad. Dev. 1998, 9, 407–422. [Google Scholar] [CrossRef]
- Peña-Angulo, D.; Nadal-Romero, E.; González-Hidalgo, J.C.; Albaladejo, J.; Andreu, V.; Bagarello, V.; Barhi, H.; Batalla, R.J.; Bernal, S.; Bienes, R.; et al. Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. J. Hydrol. 2019, 571, 390–405. [Google Scholar] [CrossRef] [Green Version]
- Nadal-Romero, E.; González-Hidalgo, J.C.; Cortesi, N.; Desir, G.; Gómez, J.A.; Lasanta, T.; Lucía, A.; Marín, C.; Martínez-Murillo, J.F.; Pacheco, E.; et al. Relationship of runoff, erosion and sediment yield to weather types in the Iberian Peninsula. Geomorphology 2015, 228, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Hidalgo, J.C.; Batalla, R.J.; Cerda, A.; de Luis, M. A regional analysis of the effects of largest events on soil erosion. Catena 2012, 95, 85–90. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Ibáñez, J.; Del Barrio, G.; Sanjuán, M.E.; Alcalá, F.J.; Martínez-Vicente, S.; Ruiz, A.; Puigdefábregas, J. Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation. Sci. Total Environ. 2016, 563–564, 169–178. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Senciales, J.M.; Sillero-Medina, J.A.; Gyasi-Agyei, Y.; Ruiz-Sinoga, J.D.; Ries, J.B. Analysis of Weather-Type-Induced Soil Erosion in Cultivated and Poorly Managed Abandoned Sloping Vineyards in the Axarquía Region (Málaga, Spain). Air Soil Water Res. 2019, 12, 1178622119839403. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Novara, A.; Brevik, E.C.; Vaezi, A.R.; Pulido, M.; Giménez-Morera, A.; Keesstra, S.D. Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Prog. Phys. Geogr. Earth Environ. 2018, 42, 202–219. [Google Scholar] [CrossRef]
- Novara, A.; Cerdà, A.; Dazzi, C.; Lo Papa, G.; Santoro, A.; Gristina, L. Effectiveness of carbon isotopic signature for estimating soil erosion and deposition rates in Sicilian vineyards. Soil Tillage Res. 2015, 152, 1–7. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Lassu, T.; González, J.M.S.; Sinoga, J.D.R.; Seeger, K.M.; Ries, J.B. Estudio de procesos geomorfodinámicos en campos cultivados de viñedos sobre laderas en pendientes en el valle del Ruwer (Alemania). Cuad. Geográficos 2015, 54, 6–26. [Google Scholar]
- Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Sci. Rev. 2018, 179, 436–447. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Keesstra, S.; Cerdà, A. Soil Erosion as an Environmental Concern in Vineyards: The Case Study of Celler del Roure, Eastern Spain, by Means of Rainfall Simulation Experiments. Beverages 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Novara, A.; Gyasi-Agyei, Y.; Terol, E.; Cerdà, A. Effects of parent material on soil erosion within Mediterranean new vineyard plantations. Eng. Geol. 2018, 246, 255–261. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB World Reference Base for Soil Resources 2014; World Soil Resources Report; FAO: Rome, Italy, 2014.
- Rodrigo-Comino, J.; García-Díaz, A.; Brevik, E.C.; Keestra, S.D.; Pereira, P.; Novara, A.; Jordán, A.; Cerdà, A. Role of rock fragment cover on runoff generation and sediment yield in tilled vineyards. Eur. J. Soil Sci. 2017, 68, 864–872. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Keesstra, S.D.; Cerdà, A. Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surf. Process. Landf. 2018, 43, 2193–2206. [Google Scholar] [CrossRef]
- Pita, M.F.; Cuadrat, J.M. Climatología; Ediciones Cátedra: Madrid, Spain, 2006. [Google Scholar]
- Gil Olcina, A.; Olcina Cantos, J. Tratado de Climatología; Universidad de Alicante: Alicante, Spain, 2017. [Google Scholar]
- Haurwitz, B. Insolation in relation to cloudiness and cloud density. J. Meteor. 1945, 2, 154–166. [Google Scholar] [CrossRef]
- Haurwitz, B. Insolation in relation to cloud type. J. Meteor. 1946, 3, 123–124. [Google Scholar] [CrossRef] [Green Version]
- Haurwitz, B. Collaborators Advection of air and the forecasting of pressure changes. J. Meteor. 1945, 2, 83–93. [Google Scholar] [CrossRef]
- Giambelluca, T.W.; Nullet, D. Influence of the trade-wind inversion on the climate of a leeward mountain slope in Hawaii. Clim. Res. 1991, 1, 207–216. [Google Scholar] [CrossRef]
- Harrison, M.S.J. Elevated Inversions over Southern Africa: Climatological Properties and Relationships with Rainfall. S. Afr. Geogr. J. 1993, 75, 1–8. [Google Scholar] [CrossRef]
- Li, Z.; Zuidema, P.; Zhu, P. Simulated Convective Invigoration Processes at Trade Wind Cumulus Cold Pool Boundaries. J. Atmos. Sci. 2014, 71, 2823–2841. [Google Scholar] [CrossRef]
- Tompkins, A.M. Organization of Tropical Convection in Low Vertical Wind Shears: The Role of Cold Pools. J. Atmos. Sci. 2001, 58, 1650–1672. [Google Scholar] [CrossRef]
- Xoplaki, E.; González-Rouco, J.F.; Luterbacher, J.; Wanner, H. Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends. Clim. Dyn. 2004, 23, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Engelbrecht, F.A.; McGregor, J.L.; Engelbrecht, C.J. Dynamics of the Conformal-Cubic Atmospheric Model projected climate-change signal over southern Africa. Int. J. Climatol. 2009, 29, 1013–1033. [Google Scholar] [CrossRef]
- Barros, A.P.; Lettenmaier, D.P. Dynamic modeling of orographically induced precipitation. Rev. Geophys. 1994, 32, 265–284. [Google Scholar] [CrossRef]
- McCabe, G.J., Jr.; Muller, R.A. Synoptic Weather Types: An Index of Evaporation in Southern Louisiana. Phys. Geogr. 1987, 8, 99–112. [Google Scholar] [CrossRef]
- Chu, P.-S.; Chen, H. Interannual and Interdecadal Rainfall Variations in the Hawaiian Islands. J. Clim. 2005, 18, 4796–4813. [Google Scholar] [CrossRef] [Green Version]
- Yeh, H.-C.; Chen, Y.-L. Characteristics of Rainfall Distributions over Taiwan during the Taiwan Area Mesoscale Experiment (TAMEX). J. Appl. Meteor. 1998, 37, 1457–1469. [Google Scholar] [CrossRef]
- Gaál, N.; Ihász, I. Evaluation of the cold drops based on ERA-Interim reanalysis and ECMWF ensemble model forecasts over Europe. Idojaras (Budapest 1905) 2015, 119, 111–126. [Google Scholar]
- Romero, R.; Sumner, G.; Ramis, C.; Genovés, A. A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. Int. J. Climatol. 1999, 19, 765–785. [Google Scholar] [CrossRef]
- Wallis, T.W.R.; Griffiths, J.F. An assessment of the weather generator (WXGEN) used in the erosion/productivity impact calculator (EPIC). Agric. For. Meteorol. 1995, 73, 115–133. [Google Scholar] [CrossRef]
- Fernández-Raga, M.; Fraile, R.; Keizer, J.J.; Varela Teijeiro, M.E.; Castro, A.; Palencia, C.; Calvo, A.I.; Koenders, J.; Da Costa Marques, R.L. The kinetic energy of rain measured with an optical disdrometer: An application to splash erosion. Atmos. Res. 2010, 96, 225–240. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Nouri, H.; Faramarzi, M. Assessing the Spatial Distribution of Rainfall and the Effect of Altitude in Iran (Hamadan Province). Air Soil Water Res. 2017, 10, 1178622116686066. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dalgleish, H.Y.; Foster, I.D.L. The impact of weather patterns on historic and contemporary catchment sediment yields. Earth Surf. Process. Landf. 1997, 22, 353–363. [Google Scholar] [CrossRef]
- Pattison, I.; Lane, S.N. The relationship between Lamb weather types and long-term changes in flood frequency, River Eden, UK. Int. J. Climatol. 2012, 32, 1971–1989. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.G.; Thornton, P.K. Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agric. Syst. 2013, 114, 1–5. [Google Scholar] [CrossRef]
- McNew, K.P.; Mapp, H.P.; Duchon, C.E.; Merritt, E.S. Sources and Uses of Weather Information for Agricultural Decision Makers. Bull. Amer. Meteor. Soc. 1991, 72, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.M.; Barriopedro, D.; Dutra, E. Circulation weather types as a tool in atmospheric, climate, and environmental research. Front. Environ. Sci. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Philipp, A.; Bartholy, J.; Beck, C.; Erpicum, M.; Esteban, P.; Fettweis, X.; Huth, R.; James, P.; Jourdain, S.; Kreienkamp, F.; et al. Cost733cat—A database of weather and circulation type classifications. Phys. Chem. Earth Parts A/B/C 2010, 35, 360–373. [Google Scholar] [CrossRef]
- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Stahl, K.; Hannah, D.M. Inter-comparison of weather and circulation type classifications for hydrological drought development. Phys. Chem. Earth Parts A/B/C 2010, 35, 507–515. [Google Scholar] [CrossRef]
- Gu, C.; Mu, X.; Gao, P.; Zhao, G.; Sun, W.; Tan, X. Distinguishing the effects of vegetation restoration on runoff and sediment generation on simulated rainfall on the hillslopes of the loess plateau of China. Plant Soil 2020, 447, 393–412. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, K.; Fullen, M.A.; Wu, B. Synergistic effects of vegetation layers of maize and potato intercropping on soil erosion on sloping land in Yunnan Province, China. J. Mt. Sci. 2020, 17, 423–434. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.; Rubinato, M.; Li, G.; Tian, Y.; Zhou, J. Impact of Multiple Vegetation Covers on Surface Runoff and Sediment Yield in the Small Basin of Nverzhai, Hunan Province, China. Forests 2020, 11, 329. [Google Scholar] [CrossRef] [Green Version]
- Amare, T.; Zegeye, A.D.; Yitaferu, B.; Steenhuis, T.S.; Hurni, H.; Zeleke, G. Combined effect of soil bund with biological soil and water conservation measures in the northwestern Ethiopian highlands. Ecohydrol. Hydrobiol. 2014, 14, 192–199. [Google Scholar] [CrossRef]
Atmospheric Situation | Total (mm) | mm/Day | >100 | 50–99.9 | 30–50 | 10–30 | 5–10 | 1–5 | <1 |
---|---|---|---|---|---|---|---|---|---|
DLp 1 | 304.7 | 4.5 | 0 | 0 | 36 | 124.2 | 58.9 | 79.3 | 6.3 |
CD (>1014 hPa) | 1024.8 | 11.4 | 114 | 190.2 | 249.5 | 290.5 | 109.3 | 64.7 | 6.6 |
TLp with/without fronts | 291.4 | 6 | 0 | 0 | 74.1 | 155 | 15.4 | 40.6 | 6.3 |
A1 | 195.2 | 2.2 | 0 | 0 | 0 | 37.5 | 76 | 68.1 | 13.6 |
DLp+f | 2247.8 | 6.9 | 0 | 326.5 | 233.9 | 961.1 | 394.2 | 306.8 | 25.3 |
HP+f | 884.5 | 5.7 | 0 | 59.5 | 104.2 | 409.4 | 160.6 | 131.5 | 19.3 |
Total | 4948.4 | 6.4 | 114 | 576.2 | 697.7 | 1977.7 | 814.4 | 691 | 77.4 |
Atmospheric Situation | Total (mm) | >100 | 50–99 | 30–49.9 | 10–29.9 | 5–9.9 | 1–4.9 | <1 |
---|---|---|---|---|---|---|---|---|
DLp 1 | 68 | 0 | 0 | 1 | 8 | 9 | 33 | 17 |
CD (>1014 hPa) | 90 | 1 | 3 | 5 | 15 | 15 | 31 | 19 |
TLp with/without fronts | 49 | 0 | 0 | 2 | 10 | 2 | 20 | 15 |
A1 | 89 | 0 | 0 | 1 | 3 | 11 | 32 | 43 |
DLp+f | 325 | 0 | 5 | 6 | 57 | 58 | 131 | 68 |
HP+f | 154 | 0 | 1 | 3 | 25 | 24 | 56 | 45 |
Total | 775 | 1 | 9 | 18 | 118 | 119 | 303 | 207 |
Weather Type | n | T (mm) | σ (mm) | |
---|---|---|---|---|
N | 123 | 378 | 3.07 | - |
E | 275 | 2569.4 | 9.34 | - |
S | 122 | 768 | 6.30 | - |
W | 124 | 378 | 3.05 | - |
Variable (mixed types) | 131 | 855 | 6.53 | - |
N | 40 | 143.7 | 3.59 | 5.63 |
N–NE | 6 | 6.2 | 1.03 | 1.35 |
NE | 87 | 896.9 | 10.31 | 16.11 |
E–NE | 8 | 149.6 | 18.7 | 19.50 |
E | 166 | 1465.2 | 8.83 | 14.13 |
E–SE | 14 | 57.7 | 4.12 | 4.49 |
SE | 62 | 458.3 | 7.39 | 9.30 |
S–SE | 3 | 9.7 | 3.23 | 4.20 |
S | 55 | 298.5 | 5.43 | 8.87 |
S–SW | 2 | 1.5 | 0.75 | 0.64 |
SW | 44 | 128.6 | 2.92 | 3.50 |
W–SW | 8 | 41.3 | 5.16 | 5.26 |
W | 60 | 178.6 | 2.98 | 3.30 |
W–NW | 12 | 29.5 | 2.46 | 4.08 |
NW | 75 | 226.2 | 3.02 | 3.80 |
N–NW | 2 | 1.9 | 0.95 | 1.20 |
Mixed | 131 | 855 | 6.53 | 10.38 |
Total | 775 | 4948.4 | - | - |
Duration (Days) | n | Valid Events | Not Valid Events | Total (Days) |
---|---|---|---|---|
1 | 265 | 263 | 2 | 265 |
2 | 91 | 78 | 13 | 182 |
3 | 32 | 19 | 13 | 96 |
4 | 21 | 11 | 10 | 84 |
5 | 6 | 1 | 13 | 70 |
6 | 5 | 3 | 2 | 30 |
7 | 2 | 0 | 2 | 14 |
8 | 3 | 0 | 3 | 24 |
9 | 0 | 0 | 0 | 0 |
10 | 1 | 0 | 1 | 10 |
Total (events) | 434 | 375 | 59 | - |
Total (days) | 775 | 543 | 232 | 775 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo-Comino, J.; Senciales-González, J.M.; Terol, E.; Mora-Navarro, G.; Gyasi-Agyei, Y.; Cerdà, A. Impacts of Weather Types on Soil Erosion Rates in Vineyards at “Celler Del Roure” Experimental Research in Eastern Spain. Atmosphere 2020, 11, 551. https://doi.org/10.3390/atmos11060551
Rodrigo-Comino J, Senciales-González JM, Terol E, Mora-Navarro G, Gyasi-Agyei Y, Cerdà A. Impacts of Weather Types on Soil Erosion Rates in Vineyards at “Celler Del Roure” Experimental Research in Eastern Spain. Atmosphere. 2020; 11(6):551. https://doi.org/10.3390/atmos11060551
Chicago/Turabian StyleRodrigo-Comino, Jesús, José María Senciales-González, Enric Terol, Gaspar Mora-Navarro, Yeboah Gyasi-Agyei, and Artemi Cerdà. 2020. "Impacts of Weather Types on Soil Erosion Rates in Vineyards at “Celler Del Roure” Experimental Research in Eastern Spain" Atmosphere 11, no. 6: 551. https://doi.org/10.3390/atmos11060551
APA StyleRodrigo-Comino, J., Senciales-González, J. M., Terol, E., Mora-Navarro, G., Gyasi-Agyei, Y., & Cerdà, A. (2020). Impacts of Weather Types on Soil Erosion Rates in Vineyards at “Celler Del Roure” Experimental Research in Eastern Spain. Atmosphere, 11(6), 551. https://doi.org/10.3390/atmos11060551