Total p-PAH Levels Nearby a Complex Industrial Area: A Tailored Monitoring Experiment to Assess the Impact of Emission Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Site Description
2.2. Monitoring Equipment at the Fixed Stations
2.3. Data Analysis
2.4. Mobile Monitoring Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Agency for Research on Cancer (IARC). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 91, 1. [Google Scholar]
- Misaki, K.; Takamura-Enya, T.; Ogawa, H.; Takamori, K.; Yanagida, M. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives. Mutagenesis 2015, 31, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.T.; Kwon, H.-O.; Lammel, G.; Jung, K.-S.; Lee, S.J.; Choi, S.-D. Spatially high-resolved monitoring and risk assessment of polycyclic aromatic hydrocarbons in an industrial city. J. Hazard. Mat. 2020, 393, 122409. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.F.; Fang, G.C.; Chen, J.C.; Wu, Y.S. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004. Environ. Pollut. 2006, 142, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Herrera Murillo, J.; Chaves Villalobos, M.; Rojas Marín, J.F.; Beita Guerrero, V.H.; Solórzano Arias, D. Polycyclic aromatic hydrocarbons in PM 2.5 and PM 10 atmospheric particles in the Metropolitan Area of Costa Rica: Sources, temporal and spatial variations. Atmos. Pollut. Res. 2017, 8, 320–327. [Google Scholar] [CrossRef]
- Varea, M.; Galindo, N.; Gil-Moltó, J.; Pastor, C.; Crespo, J. Particle-bound polycyclic aromatic hydrocarbons in an urban, industrial and rural area in the western Mediterranean. J. Environ. Monitor. 2011, 13, 2471–2476. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, Z.; Chen, J.; Kong, S.; Fu, X.; Deng, H.; Shao, G.; Wu, G. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM 2.5 and PM 10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China. Atmos. Res. 2014, 149, 217–229. [Google Scholar] [CrossRef]
- Ari, P.E.; Ari, A.; Dumanoğlu, Y.; Obadasi, M.; Gaga, E.O. Organic chemical characterization of size segregated particulate matter samples collected from a thermal power plant area. Environ. Pollut. 2020, 262, 114360. [Google Scholar] [CrossRef]
- Chetwittayachan, T.; Shimazaki, D.; Yamamoto, K. A comparison of temporal variation of particle-bound polycyclic aromatic hydrocarbons concentration in different urban environments: Tokyo, Japan and Bangkok, Thailand. Atmos. Environ. 2002, 36, 2027–2037. [Google Scholar] [CrossRef]
- Hong, W.-J.; Jia, H.; Yang, M.; Li, Y.-F. Distribution, seasonal trends, and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in North China: A three-year case study in Dalian city. Ecotoxicol. Environ. Saf. 2020, 196, 110526. [Google Scholar] [CrossRef] [PubMed]
- Sakai, R.; Siegmann, H.C.; Sato, H.; Voorhees, A.S. Particulate matter and particle-attached polycyclic aromatic hydrocarbons in the indoor and outdoor air of Tokyo measured with personal monitors. Environ. Res. 2002, 89, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Marr, L.C.; Grogan, L.A.; Wöhrnschimmel, H.; Molina, L.T.; Molina, M.J.; Smith, T.J.; Garshick, E. Vehicle traffic as a source of particulate polycyclic aromatic hydrocarbon exposure in the Mexico City Metropolitan Area. Environ. Sci. Technol. 2004, 38, 2584–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhiqiang, Q.; Siegmann, K.; Keller, A.; Matter, U.; Scherrer, L.; Siegmann, H.C. Nanoparticle air pollution in major cities and its origin. Atmos. Environ. 2000, 34, 433–451. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, S.-B.; Woo, D.; Bae, G.-N. Influence of wind direction and speed on the transport of particle-bound PAHs in a roadway environment. Atmos. Pollut. Res. 2015, 6, 1024–1034. [Google Scholar] [CrossRef]
- Junker, M.; Kasper, M.; Röösli, M.; Camenzind, M.; Künzli, N.; Monn, C.; Theis, G.; Braun-Fahrländer, C. Airborne particle number profiles, particle mass distributions and particle-bound PAH concentrations within the city environment of Basel. Atmos. Environ. 2000, 34, 3171–3181. [Google Scholar] [CrossRef]
- Santacatalina, M.; Reche, C.; Minguillón, M.C.; Escrig, A.; Sanfelix, V.; Carratalá, A.; Nicolás, J.F.; Yubero, E.; Crespo, J.; Alastuey, A.; et al. Impact of fugitive emissions in ambient PM levels and composition: A case study in Southeast Spain. Sci. Total Environ. 2010, 408, 4999–5009. [Google Scholar] [CrossRef]
- Kong, S.; Shi, J.; Lu, B.; Qiu, W.; Zhang, B.; Peng, Y.; Zhang, B.; Bai, Z. Characterization of PAHs within PM 10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning province, China. Atmos. Environ. 2011, 45, 3777–3785. [Google Scholar] [CrossRef]
- Khaparde, V.V.; Bhanarkar, A.D.; Majumdar, D.; Rao, C.V.C. Characterization of polycyclic aromatic hydrocarbons in fugitive PM10 emissions from an integrated iron and steel plant. Sci. Total Environ. 2016, 562, 155–163. [Google Scholar] [CrossRef]
- Amodio, M.; Andriani, E.; Dambruoso, P.R.; de Gennaro, G.; Di Gilio, A.; Intini, M.; Palmisani, J.; Tutino, M. A monitoring strategy to assess the fugitive emission from a steel plant. Atmos. Environ. 2013, 79, 455–461. [Google Scholar] [CrossRef]
- Di Gilio, A.; Ventrella, G.; Giungato, P.; Assennato, G.; de Gennaro, G. An intensive monitoring campaign of PAHs for assessing the impact of a steel plant. Chemosphere 2017, 168, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Tutino, M.; Di Gilio, A.; Laricchiuta, A.; Assennato, G.; de Gennaro, G. An improved method to determine PM-bound nitro-PAHs in ambient air. Chemosphere 2016, 161, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Amodio, M.; Andriani, E.; Angiuli, L.; Assennato, G.; de Gennaro, G.; Di Gilio, A.; Giua, R.; Intini, M.; Menegotto, M.; Nocioni, A.; et al. Chemical characterization of PM in Apulia Region: Local and long-range transport contributions to Particulate Matter. Boreal Environ. Res. 2011, 16, 251–261. [Google Scholar]
- Amodio, M.; de Gennaro, G.; Di Gilio, A.; Tutino, M. Monitoring of the deposition of PAHs and metals produced by a steel plant in Taranto (Italy). Adv. Meteorol. 2014, 2014, 598301. [Google Scholar] [CrossRef] [Green Version]
- Amodio, M.; Andriani, E.; de Gennaro, G.; Di Gilio, A.; Ielpo, P.; Placentino, C.M.; Tutino, M. How a steel plant affects air quality of a nearby urban area: A study on metals and PAH concentrations. Aerosol Air Qual. Res. 2013, 13, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Dzepina, K.; Arey, J.; Marr, L.C.; Worsnop, D.R.; Salcedo, D.; Zhang, Q.; Onasch, T.B.; Molina, L.T.; Molina, M.J.; Jimenez, J.L. Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer. Int. J. Mass Spectrom. 2007, 263, 152–170. [Google Scholar] [CrossRef]
- Chetwittayachan, T.; Kido, R.; Shimazaki, D.; Yamamoto, K. Diurnal profile of particle-bound polycyclic aromatic hydrocarbon (pPAH) concentration in urban environment in Tokyo metropolitan area. Water Air Soil Pollut. Focus 2002, 2, 203–227. [Google Scholar] [CrossRef]
- Leutwyler, M.; Siegmann, K.; Monn, C. Suspended particulate matter in railway coaches. Atmos. Environ. 2002, 36, 1–7. [Google Scholar] [CrossRef]
- Ott, W.R.; Siegmann, H.C. Using multiple continuous fine particle monitors to characterize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in-transit settings. Atmos. Environ. 2006, 40, 821–843. [Google Scholar] [CrossRef]
- Cheng, Y.; Ho, K.F.; Wul, W.J.; Hang Ho, S.S.; Lee, S.C.; Huang, Y.; Zhang, Y.W.; Yau, P.S.; Gao, Y.; Chan, C.S. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons at a heavily trafficked roadside sit. Aerosol Air Qual. Res. 2012, 12, 1181–1188. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, D.C.; Beevers, S.D.; Ropkins, K.; Bell, M.C. Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos. Environ. 2006, 40, 5424–5434. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27, 52–61. [Google Scholar] [CrossRef]
- Westmoreland, E.J.; Carslaw, N.; Carslaw, D.C.; Gillah, A.; Bates, E. Analysis of air quality within a street canyon using statistical and dispersion modelling techniques. Atmos. Environ. 2007, 41, 9195–9205. [Google Scholar] [CrossRef]
- Siegmann, K.; Scherrer, L.; Siegmann, H.C. Physical and chemical properties of airborne nanoscale particles and how to measure the impact on human health. J. Mol. Struct. THEOCHEM 1999, 458, 191–201. [Google Scholar] [CrossRef]
- Dunbar, J.C.; Lin, C.I.; Vergucht, I.; Wong, J.; Duran, J.L. Estimating the contributions of mobile sources of PAH to urban air using real-time PAH monitoring. Sci. Total Environ. 2001, 279, 1–19. [Google Scholar] [CrossRef]
- Dambruoso, P.; de Gennaro, G.; Di Gilio, A.; Palmisani, J.; Tutino, M. The impact of infield biomass burning on PM levels and its chemical composition. Environ. Sci. Pollut. Res. 2014, 21, 13175–13185. [Google Scholar] [CrossRef]
- Agnesod, G.; De Maria, R.; Fontana, M.; Zublena, M. Determination of PAH in airborne particulate: Comparison between off-line sampling techniques and an automatic analyzer based on a photoelectric aerosol sensor. Sci. Total Environ. 1996, 189, 443–449. [Google Scholar] [CrossRef]
- Brachtl, M.V.; Durant, J.L.; Perez, C.P.; Oviedo, J.; Sempertegui, F.; Naumova, E.N.; Griffiths, J.K. Spatial and temporal variations and mobile source emissions of polycyclic aromatic hydrocarbons in Quito, Ecuador. Environ. Pollut. 2009, 157, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P.M.; Sioutas, C. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos. Environ. 2005, 39, 3597–3610. [Google Scholar] [CrossRef]
- Levy, J.I.; Houseman, E.A.; Spengler, J.D.; Loh, P.; Ryan, L. Fine particulate matter and polycyclic aromatic hydrocarbon concentration patterns in Roxbury, Massachusetts: A community-based GIS analysis. Environ. Health Perspect. 2001, 109, 341–347. [Google Scholar] [CrossRef]
- Di Gilio, A.; Palmisani, J.; Trizio, L.; Saracino, G.; Giua, R.; de Gennaro, G. Total p-PAH Levels Nearby a Complex Industrial Area: A Tailored Monitoring Experiment to Assess the Impact of Emission Sources. Atmosphere 2020, in press. [Google Scholar]
Welch’s t-test | Two-tailed p-Value | t-Stat | t-Critical |
---|---|---|---|
ORSINI vs. COKERIA | 1.26 × 10−32 | 11.92 | 1.96 |
ORSINI vs. MACHIAVELLI | 2.93 × 10−4 | 3.62 | 1.96 |
ORSINI vs. PARCHI | 6.54 × 10−13 | 7.19 | 1.96 |
COKERIA vs. PARCHI | 1.33 × 10−4 | 57.02 | 1.96 |
COKERIA vs. MACHIAVELLI | 4.17 × 10−201 | 30.93 | 1.96 |
MACHIAVELLI vs. PARCHI | 6.75 × 10−215 | 32.97 | 1.96 |
ORSINI: Weekdays vs. Sundays | 1.1 × 10−20 | 9.6 | 1.96 |
Monitoring Points (MPs) | Total p-PAH Mean Concentration (ng/m3) |
---|---|
MP 1 | 53 |
MP 2 | 38 |
MP 3 | 23 |
MP 4 | 44 |
MP 5 | 25 |
MP 6 | 12 |
MP 7 | 3 |
MP 8 | 8 |
MP 9 | 9 |
MP 10 | 19 |
MP 11 | 21 |
MP 12 | 27 |
MP 13 | 28 |
MP 14 | 119 |
MP 15 | 91 |
MP 16 | 65 |
MP 17 | 70 |
City | Mean Total PAH Concentration (min–max Range), ng/m3 | Reference |
---|---|---|
Bangkok | (1–195) | [10] |
Tokyo | (1–186) | [10] |
926 (3.4–1769) | [14] | |
Mexico city | (60–950) | [13] |
Beijing | 208 (1.8–5000) | [14] |
Zurich | 255 (10–900); 1950 (tunnel) | [14] |
Basel | 252 | [16] |
Hong Kong | 260 (40–450) | [30] |
Paris | 659 (110–1400) | [34] |
Aosta, Italy | 475 | [37] |
Los Angeles | (10–430) | [39] |
Roxbury (Massachussetts) | (0.3–340) | [40] |
Taranto, Italy | 33.4 (<DL-1358) | [41] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Gilio, A.; Palmisani, J.; Trizio, L.; Saracino, G.; Giua, R.; de Gennaro, G. Total p-PAH Levels Nearby a Complex Industrial Area: A Tailored Monitoring Experiment to Assess the Impact of Emission Sources. Atmosphere 2020, 11, 469. https://doi.org/10.3390/atmos11050469
Di Gilio A, Palmisani J, Trizio L, Saracino G, Giua R, de Gennaro G. Total p-PAH Levels Nearby a Complex Industrial Area: A Tailored Monitoring Experiment to Assess the Impact of Emission Sources. Atmosphere. 2020; 11(5):469. https://doi.org/10.3390/atmos11050469
Chicago/Turabian StyleDi Gilio, Alessia, Jolanda Palmisani, Livia Trizio, Gaetano Saracino, Roberto Giua, and Gianluigi de Gennaro. 2020. "Total p-PAH Levels Nearby a Complex Industrial Area: A Tailored Monitoring Experiment to Assess the Impact of Emission Sources" Atmosphere 11, no. 5: 469. https://doi.org/10.3390/atmos11050469
APA StyleDi Gilio, A., Palmisani, J., Trizio, L., Saracino, G., Giua, R., & de Gennaro, G. (2020). Total p-PAH Levels Nearby a Complex Industrial Area: A Tailored Monitoring Experiment to Assess the Impact of Emission Sources. Atmosphere, 11(5), 469. https://doi.org/10.3390/atmos11050469