Pedigree-Based Estimation of Y-STR Mutation and Male Differentiation Rates: Application to Historical Remains Identification
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Sample Collection and Preparation
2.3. Y-STR Genotyping
2.4. Mutation Rate Estimation
- When two males in a lineage showed no haplotypic differences, we assumed that no mutations occurred along those missing links because no intermediate relatives were available with genotype data.
- Our analysis used extended pedigrees with no typed father–son pairs, and therefore the meiosis in which a mutation occurred could not be identified. Multi-step differences between patrilineal individuals were interpreted as multiple single-step mutations that were distributed along the connecting lineage. This rule applies only to non-adjacent relatives; in father–son pairs, a genuine multi-step event would be accepted as the only valid scenario.
- Across all pedigrees, we applied a parsimony principle, always favouring the minimum number of mutational steps required to explain observed haplotypic differences.
2.5. Differentiation Rate Estimation
3. Results and Discussion
3.1. Summary Statistics
3.2. Mutation Breakdown
3.3. Mutation Rate
3.4. Male Differentiation Rate
3.5. Historical Remains Identification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
μ | Mutation rates |
CI | Confidence interval |
NIST | National Institute of Standards and Technology |
RM | Rapidly mutating |
UWC-A | Unrecovered War Casualties—Army |
YHRD | Y Chromosome Haplotype Reference Database |
Y-STRs | Y-chromosome short tandem repeats |
References
- Kayser, M.; Caglià, A.; Corach, D.; Fretwell, N.; Gehrig, C.; Graziosi, G.; Heidorn, F.; Herrmann, S.; Herzog, B.; Hidding, M.; et al. Evaluation of Y-chromosomal STRs: A multicenter study. Int. J. Leg. Med. 1997, 110, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Gusmão, L.; Sánchez-Diz, P.; Calafell, F.; Martín, P.; Alonso, C.A.; Álvarez-Fernández, F.; Alves, C.; Borjas-Fajardo, L.; Bozzo, W.R.; Bravo, M.L.; et al. Mutation rates at Y chromosome specific microsatellites. Hum. Mutat. 2005, 26, 520–528. [Google Scholar] [CrossRef]
- Kayser, M. Forensic use of Y-chromosome DNA: A general overview. Hum. Genet. 2017, 136, 621–635. [Google Scholar] [CrossRef]
- Ballantyne, K.N.; Goedbloed, M.; Fang, R.; Schaap, O.; Lao, O.; Wollstein, A.; Choi, Y.; van Duijn, K.; Vermeulen, M.; Brauer, S.; et al. Mutability of Y-Chromosomal Microsatellites: Rates, Characteristics, Molecular Bases, and Forensic Implications. Am. J. Hum. Genet. 2010, 87, 341–353. [Google Scholar] [CrossRef]
- Claerhout, S.; Vandenbosch, M.; Nivelle, K.; Gruyters, L.; Peeters, A.; Larmuseau, M.H.D.; Decorte, R. Determining Y-STR mutation rates in deep-routing genealogies: Identification of haplogroup differences. Forensic Sci. Int. Genet. 2018, 34, 1–10. [Google Scholar] [CrossRef]
- Wu, W.; Ren, W.; Hao, H.; Nan, H.; He, X.; Liu, Q.; Lu, D. Mutation rates at 42 Y chromosomal short tandem repeats in Chinese Han population in Eastern China. Int. J. Leg. Med. 2018, 132, 1317–1319. [Google Scholar] [CrossRef] [PubMed]
- Willuweit, S.; Roewer, L. International Forensic Y Chromosome User Group Y chromosome haplotype reference database (YHRD): Update. Forensic Sci. Int. Genet. 2007, 1, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, K.N.; Keerl, V.; Wollstein, A.; Choi, Y.; Zuniga, S.B.; Ralf, A.; Vermeulen, M.; de Knijff, P.; Kayser, M. A new future of forensic Y-chromosome analysis: Rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci. Int. Genet. 2012, 6, 208–218. [Google Scholar] [CrossRef]
- Purps, J.; Siegert, S.; Willuweit, S.; Nagy, M.; Alves, C.; Salazar, R.; Angustia, S.M.T.; Santos, L.H.; Anslinger, K.; Bayer, B.; et al. A global analysis of Y-chromosomal haplotype diversity for 23 STR loci. Forensic Sci. Int. Genet. 2014, 12, 12–23. [Google Scholar] [CrossRef]
- Gopinath, S.; Zhong, C.; Nguyen, V.; Ge, J.; Lagacé, R.E.; Short, M.L.; Mulero, J.J. Developmental validation of the Yfiler® Plus PCR Amplification Kit: An enhanced Y-STR multiplex for casework and database applications. Forensic Sci. Int. Genet. 2016, 24, 164–175. [Google Scholar] [CrossRef]
- Jobling, M.A.; Tyler-Smith, C. The human Y chromosome: An evolutionary marker comes of age. Nat. Rev. Genet. 2003, 4, 598–612. [Google Scholar] [CrossRef]
- Balanovsky, O. Toward a consensus on SNP and STR mutation rates on the human Y-chromosome. Hum. Genet. 2017, 136, 575–590. [Google Scholar] [CrossRef]
- Calafell, F.; Larmuseau, M.H.D. The Y chromosome as the most popular marker in genetic genealogy benefits interdisciplinary research. Hum. Genet. 2017, 136, 559–573. [Google Scholar] [CrossRef]
- Larmuseau, M.H.D.; Ottoni, C. Mediterranean Y-chromosome 2.0—Why the Y in the Mediterranean is still relevant in the postgenomic era. Ann. Hum. Biol. 2018, 45, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Neuhuber, F.; Dunkelmann, B.; Grießner, I.; Helm, K.; Kayser, M.; Ralf, A. Improving the differentiation of closely related males by RMplex analysis of 30 Y-STRs with high mutation rates. Forensic Sci. Int. Genet. 2022, 58, 102682. [Google Scholar] [CrossRef]
- Otagiri, T.; Sato, N.; Asamura, H.; Parvanova, E.; Kayser, M.; Ralf, A. RMplex reveals population differences in RM Y-STR mutation rates and provides improved father-son differentiation in Japanese. Forensic Sci. Int. Genet. 2022, 61, 102766. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Zhang, C.; Li, R.; Yang, Y.; Ou, X.; Tong, D.; Sun, H. Genetic polymorphisms and mutation rates of 27 Y-chromosomal STRs in a Han population from Guangdong Province, Southern China. Forensic Sci. Int. Genet. 2016, 21, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.N.; Lee, H.Y.; Lee, E.Y.; Kim, E.H.; Yang, W.I.; Shin, K.-J. Haplotype and mutation analysis for newly suggested Y-STRs in Korean father–son pairs. Forensic Sci. Int. Genet. 2015, 15, 64–68. [Google Scholar] [CrossRef]
- Ralf, A.; Montiel González, D.; Zandstra, D.; van Wersch, B.; Kousouri, N.; de Knijff, P.; Adnan, A.; Claerhout, S.; Ghanbari, M.; Larmuseau, M.H.D.; et al. Large-scale pedigree analysis highlights rapidly mutating Y-chromosomal short tandem repeats for differentiating patrilineal relatives and predicting their degrees of consanguinity. Hum. Genet. 2023, 142, 145–160. [Google Scholar] [CrossRef]
- Larmuseau, M.H.D.; Vanoverbeke, J.; Van Geystelen, A.; Defraene, G.; Vanderheyden, N.; Matthys, K.; Wenseleers, T.; Decorte, R. Low historical rates of cuckoldry in a Western European human population traced by Y-chromosome and genealogical data. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132400. [Google Scholar] [CrossRef]
- Claerhout, S.; Van der Haegen, M.; Vangeel, L.; Larmuseau, M.H.D.; Decorte, R. A game of hide and seq: Identification of parallel Y-STR evolution in deep-rooting pedigrees. Eur. J. Hum. Genet. 2019, 27, 637–646. [Google Scholar] [CrossRef]
- Ge, J. Interpretation of Y Chromosome STRs for Missing Persons Cases; Office of Justice Programs, National Institute of Justice, Department of Justice: Washington, DC, USA, 2022. [Google Scholar]
- Connell, J.R.; White, T.; Zielke, T.; Mitchell, N.; Griffiths, L.R. Family Reference DNA Database for Identifying Missing Australian Service Members: Policy, Ethical, and Social Implications. Aust. J. Forensic Sci. 2025, 1–12. [Google Scholar] [CrossRef]
- AusVet Animal Health Services. Epi Tools—Calculate Confidence Limits for a Sample Proportion. 2016. Available online: http://epitools.ausvet.com.au/content.php?page=CIProportion (accessed on 11 May 2025).
- Brown, L.D.; Cai, T.T.; DasGupta, A. Interval estimation for a binomial proportion. Stat. Sci. 2001, 16, 101–133. [Google Scholar] [CrossRef]
- Henry, J.; Dao, H.; Scandrett, L.; Taylor, D. Population genetic analysis of Yfiler® Plus haplotype data for three South Australian populations. Forensic Sci. Int. Genet. 2019, 41, e23–e25. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Decker, A.; Kline, M.; Vallone, P. Chromosomal Duplications Along the Y-Chromosome and Their Potential Impact on Y-STR Interpretation. J. Forensic Sci. 2005, 50, JFS2004481-7. [Google Scholar] [CrossRef]
- Jobling, M.A. Y-chromosomal SNP haplotype diversity in forensic analysis. Forensic Sci. Int. 2001, 118, 158–162. [Google Scholar] [CrossRef]
- Capelli, C.; Brisighelli, F.; Scarnicci, F.; Blanco-Verea, A.; Brion, M.; Pascali, V.L. Phylogenetic evidence for multiple independent duplication events at the DYS19 locus. Forensic Sci. Int. Genet. 2007, 1, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.R.; Gerelsaikhan, T.; Munkhtuja, B.; Oyunsuren, T.; Epplen, J.T.; Pena, S.D. Geographic differences in the allele frequencies of the human Y-linked tetranucleotide polymorphism DYS19. Hum. Genet. 1996, 97, 309–313. [Google Scholar] [CrossRef]
- DYS19 Variants. 2025. Available online: https://strbase.nist.gov/Human/VariantalleleTable/DYS19 (accessed on 11 September 2025).
- DYS448 Variants. 2025. Available online: https://strbase.nist.gov/Human/VariantalleleTable/DYS448 (accessed on 11 September 2025).
- Nazir, S.; Adnan, A.; Rehman, R.A.; Al-Qahtani, W.S.; Alsaleh, A.B.; Al-Harthi, H.S.; Safhi, F.A.; Almheiri, R.; Lootah, R.; Alreyami, A.; et al. Mutation Rate Analysis of RM Y-STRs in Deep-Rooted Multi-Generational Punjabi Pedigrees from Pakistan. Genes 2022, 13, 1403. [Google Scholar] [CrossRef]
- SWGDAM. Interpretation Guidelines for Y-Chromosome STR Typing by Forensic DNA Laboratories. 2022. Available online: https://www.swgdam.org/_files/ugd/4344b0_bc90bcfef52c43559aa28618ef87c424.pdf (accessed on 13 June 2025).
- Ge, J.; Eisenberg, A.; Yan, J.; Chakraborty, R.; Budowle, B. Pedigree likelihood ratio for lineage markers. Int. J. Leg. Med. 2011, 125, 519–525. [Google Scholar] [CrossRef]
- Ge, J.; Budowle, B.; Chakraborty, R. DNA identification by pedigree likelihood ratio accommodating population substructure and mutations. Investig. Genet. 2010, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Brenner, C.H. Symbolic kinship program. Genetics 1997, 145, 535–542. [Google Scholar] [CrossRef] [PubMed]
Family ID | Sample 1 | Sample 2 | Meioses | Locus | Allele Sample 1 | Allele Sample 2 | Comments |
---|---|---|---|---|---|---|---|
FS_2 | RS_13 | RS_29 | 8 | DYS19 | 15, 17 | 15, 17 | Duplication mutation (gain/loss of 1 repeat), also observed at DYF387S1 |
FS_375 | RS_942 | RS_961 | 8 | DYS448 | NEG | NEG | Deletion mutation (duplication in one individual), also observed in DYF387S1 |
FS_269 | RS_588 | RS_574 | 5 | DYS19 | 15, 16 | 15, 16 | Duplication |
Current Study | Neuhuber et al. [15] | Ralf et al. [19] | |||||||
---|---|---|---|---|---|---|---|---|---|
Marker | Total Meioses | Mutations | Mutation Rate | Lower 95% CI | Upper 95% CI | Mutation Rate | p Value | Mutation Rate | p Value |
DYF387S1 | 1576 | 13 | 0.008 | 0.004 | 0.014 | 0.010 | 0.587 | 0.008 | 1.000 |
DYS19 | 1576 | 0 | 0.000 | 0.000 | 0.002 | 0.002 | 0.102 | 0.002 | 0.255 |
DYS385 | 1576 | 6 | 0.004 | 0.001 | 0.008 | 0.008 | 0.109 | 0.004 | 1.000 |
DYS389I | 1576 | 0 | 0.000 | 0.000 | 0.002 | 0.002 | 0.070 | 0.002 | 0.130 |
DYS389II | 1576 | 1 | 0.001 | 0.000 | 0.002 | 0.006 | 0.006 | 0.004 | 0.077 |
DYS390 | 1576 | 4 | 0.003 | 0.001 | 0.007 | 0.003 | 1.000 | 0.004 | 0.564 |
DYS391 | 1576 | 2 | 0.001 | 0.000 | 0.005 | 0.003 | 0.575 | 0.004 | 0.193 |
DYS392 | 1576 | 0 | 0.000 | 0.000 | 0.002 | 0.001 | 0.611 | 0.000 | 1.000 |
DYS393 | 1576 | 1 | 0.001 | 0.000 | 0.002 | 0.002 | 0.503 | 0.001 | 1.000 |
DYS437 | 1576 | 2 | 0.001 | 0.000 | 0.005 | 0.001 | 1.000 | 0.001 | 0.597 |
DYS438 | 1576 | 0 | 0.000 | 0.000 | 0.002 | 0.000 | 1.000 | 0.001 | 0.503 |
DYS439 | 1576 | 12 | 0.008 | 0.004 | 0.013 | 0.005 | 0.135 | 0.004 | 0.166 |
DYS448 | 1576 | 1 | 0.001 | 0.000 | 0.002 | 0.001 | 1.000 | 0.003 | 0.134 |
DYS449 | 1576 | 6 | 0.004 | 0.001 | 0.008 | 0.011 | 0.003 | 0.010 | 0.016 |
DYS456 | 1576 | 6 | 0.004 | 0.001 | 0.008 | 0.004 | 1.000 | 0.002 | 0.317 |
DYS458 | 1576 | 11 | 0.007 | 0.004 | 0.013 | 0.009 | 0.658 | 0.008 | 0.844 |
DYS460 | 1576 | 8 | 0.005 | 0.002 | 0.010 | 0.004 | 0.678 | 0.006 | 0.820 |
DYS481 | 1576 | 8 | 0.005 | 0.002 | 0.010 | 0.005 | 0.842 | 0.002 | 0.126 |
DYS518 | 1576 | 18 | 0.011 | 0.007 | 0.018 | 0.013 | 0.636 | 0.016 | 0.185 |
DYS533 | 1576 | 5 | 0.003 | 0.001 | 0.007 | 0.004 | 1.000 | 0.003 | 1.000 |
DYS570 | 1576 | 5 | 0.003 | 0.001 | 0.007 | 0.008 | 0.030 | 0.010 | 0.008 |
DYS576 | 1576 | 20 | 0.013 | 0.008 | 0.020 | 0.013 | 1.000 | 0.009 | 0.241 |
DYS627 | 1576 | 21 | 0.013 | 0.008 | 0.020 | 0.015 | 0.822 | 0.014 | 1.000 |
DYS635 | 1576 | 5 | 0.003 | 0.001 | 0.007 | 0.004 | 0.828 | 0.003 | 1.000 |
YGATAH4 | 1576 | 6 | 0.004 | 0.001 | 0.008 | 0.002 | 0.140 | 0.002 | 0.528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Connell, J.R.; White, T.; Zielke, T.; Armstrong, L.; Mitchell, N.; Griffiths, L.R. Pedigree-Based Estimation of Y-STR Mutation and Male Differentiation Rates: Application to Historical Remains Identification. Genes 2025, 16, 1211. https://doi.org/10.3390/genes16101211
Connell JR, White T, Zielke T, Armstrong L, Mitchell N, Griffiths LR. Pedigree-Based Estimation of Y-STR Mutation and Male Differentiation Rates: Application to Historical Remains Identification. Genes. 2025; 16(10):1211. https://doi.org/10.3390/genes16101211
Chicago/Turabian StyleConnell, Jasmine R., Toni White, Thais Zielke, Luke Armstrong, Natasha Mitchell, and Lyn R. Griffiths. 2025. "Pedigree-Based Estimation of Y-STR Mutation and Male Differentiation Rates: Application to Historical Remains Identification" Genes 16, no. 10: 1211. https://doi.org/10.3390/genes16101211
APA StyleConnell, J. R., White, T., Zielke, T., Armstrong, L., Mitchell, N., & Griffiths, L. R. (2025). Pedigree-Based Estimation of Y-STR Mutation and Male Differentiation Rates: Application to Historical Remains Identification. Genes, 16(10), 1211. https://doi.org/10.3390/genes16101211