Expanding the Clinical and Molecular Spectrum of Primary Autosomal Recessive Microcephaly: Novel CDK5RAP2 Gene Variants and Functional Insights on the Intronic Variants
Abstract
1. Introduction
2. Materials and Methods
2.1. DNA Isolation and WES
2.2. cDNA Preparation
2.3. Primer Design and PCR
3. Results
3.1. Clinical Features
3.2. Common Findings
3.3. CDK5RAP2 Variants
3.4. cDNA Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACMG | American College of Medical Genetics and Genomics |
HPO | Human Phenotype Ontology |
IGV | Integrative Genomics Viewer |
IHA | identified adhesion |
MCPH | Microcephaly primary hereditary |
MCPH3 | Primary Autosomal Recessive Microcephaly 3 (MCPH3) |
MRI | Cranial magnetic resonance imaging |
PM | Primary microcephaly |
WES | Whole-exome sequencing |
References
- Von der Hagen, M.; Pivarcsi, M.; Liebe, J.; von Bernuth, H.; Didonato, N.; Hennermann, J.B.; Bührer, C.; Wieczorek, D.; Kaindl, A.M. Diagnostic approach to microcephaly in childhood: A two-center study and review of the literature. Dev. Med. Child Neurol. 2014, 56, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.G.; Basto, R. Microcephaly. Curr. Biol. 2014, 24, R1109–R1111. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Boonsawat, P.; Joset, P.; Steindl, K.; Oneda, B.; Gogoll, L.; Azzarello-Burri, S.; Sheth, F.; Datar, C.; Verma, I.C.; Puri, R.D.; et al. Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genet. Med. 2019, 21, 2043–2058. [Google Scholar] [CrossRef]
- Zaqout, S.; Kaindl, A.M. Autosomal recessive primary microcephaly: Not just a small brain. Front. Cell Dev. Biol. 2022, 9, 784700. [Google Scholar] [CrossRef]
- Duerinckx, S.; Désir, J.; Perazzolo, C.; Badoer, C.; Jacquemin, V.; Soblet, J.; Maystadt, I.; Tunca, Y.; Blaumeiser, B.; Ceulemans, B.; et al. Phenotypes and genotypes in non-consanguineous and consanguineous primary microcephaly: High incidence of epilepsy. Mol. Genet. Genom. Med. 2021, 9, e1768. [Google Scholar] [CrossRef]
- Cox, J.; Jackson, A.P.; Bond, J.; Woods, C.G. What primary microcephaly can tell us about brain growth. Trends Mol. Med. 2006, 12, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.P.; McHale, D.P.; Campbell, D.A.; Jafri, H.; Rashid, Y.; Mannan, J.; Karbani, G.; Corry, P.; Levene, M.I.; Mueller, R.F.; et al. Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am. J. Hum. Genet. 1998, 63, 541–546. [Google Scholar] [CrossRef]
- Bolat, H.; Sağer, S.G.; Türkyılmaz, A.; Çebi, A.H.; Akın, Y.; Onay, H.; Özkınay, F.; Ünsel-Bolat, G. Autosomal recessive primary microcephaly (MCPH) and novel pathogenic variants in ASPM and WDR62 genes. Mol. Syndromol. 2022, 13, 363–369. [Google Scholar] [CrossRef]
- Zaqout, S.; Morris-Rosendahl, D.; Kaindl, A.M. Autosomal recessive primary microcephaly (MCPH): An update. Neuropediatrics 2017, 48, 135–142. [Google Scholar] [CrossRef]
- Erdogan, M.; Unal, A.; Dogan, M.E.; Oguz, S.; Balta, B.; Ada, Y.; Kiraz, A.; Dundar, M. A rare cause of primary microcephaly: Four new variants in CDK5RAP2 gene and review of the literature. Am. J. Med. Genet. A 2025, 17, e64072. [Google Scholar] [CrossRef]
- Makhdoom, E.U.H.; Anwar, H.; Baig, S.M.; Hussain, G. Whole exome sequencing identifies a novel mutation in ASPM and ultra-rare mutation in CDK5RAP2 causing primary microcephaly in consanguineous Pakistani families. Pak. J. Med. Sci. 2022, 38, 84–89. [Google Scholar] [CrossRef]
- Tan, C.A.; Topper, S.; Ward Melver, C.; Stein, J.; Reeder, A.; Arndt, K.; Das, S. The first case of CDK5RAP2-related primary microcephaly in a non-consanguineous patient identified by next generation sequencing. Brain Dev. 2014, 36, 351–355. [Google Scholar] [CrossRef]
- Saima; Khan, A.; Ali, S.; Jiang, J.; Miao, Z.; Kamil, A.; Khan, S.N.; Arold, S.T. Clinical genomics expands the link between erroneous cell division, primary microcephaly and intellectual disability. Neurogenetics 2024, 25, 179–191. [Google Scholar] [CrossRef]
- Alfares, A.; Alhufayti, I.; Alsubaie, L.; Alowain, M.; Almass, R.; Alfadhel, M.; Kaya, N.; Eyaid, W. A new association between CDK5RAP2 microcephaly and congenital cataracts. Ann. Hum. Genet. 2018, 82, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed]
- Bond, J.; Roberts, E.; Springell, K.; Lizarraga, S.B.; Scott, S.; Higgins, J.; Hampshire, D.J.; Morrison, E.E.; Leal, G.F.; Silva, E.O.; et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 2005, 37, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Graser, S.; Stierhof, Y.D.; Nigg, E.A. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 2007, 120, 4321–4331. [Google Scholar] [CrossRef]
- Barr, A.R.; Kilmartin, J.V.; Gergely, F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. J. Cell Biol. 2010, 189, 23–39. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Lv, S.; Wang, H.; Zhong, X.; Liu, B.; Wang, B.; Liao, J.; Li, J.; Pfeifer, G.P.; et al. CDK5RAP2 is required for spindle checkpoint function. Cell Cycle 2009, 8, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Megraw, T.L.; Sharkey, J.T.; Nowakowski, R.S. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol. 2011, 21, 470–480. [Google Scholar] [CrossRef]
- Issa, L.; Kraemer, N.; Rickert, C.H.; Sifringer, M.; Ninnemann, O.; Stoltenburg-Didinger, G.; Kaindl, A.M. CDK5RAP2 expression during murine and human brain development correlates with pathology in primary autosomal recessive microcephaly. Cereb. Cortex 2013, 23, 2245–2260. [Google Scholar] [CrossRef]
- Sabbagh, Q.; Tharreau, M.; Cenni, C.; Sanchez, E.; Ruiz-Pallares, N.; Alkar, F.; Amouroux, C.; David, S.; Prodhomme, O.; Leboucq, N.; et al. Association of Meier-Gorlin and microcephalic osteodysplastic primordial dwarfism type II clinical features in an individual with CDK5RAP2 primary microcephaly. Eur. J. Med. Genet. 2023, 66, 104733. [Google Scholar] [CrossRef]
- Pagnamenta, A.T.; Murray, J.E.; Yoon, G.; Sadighi Akha, E.; Harrison, V.; Bicknell, L.S.; Ajilogba, K.; Stewart, H.; Kini, U.; Taylor, J.C.; et al. A novel nonsense CDK5RAP2 mutation in a Somali child with primary microcephaly and sensorineural hearing loss. Am. J. Med. Genet. A 2012, 158A, 2577–2582. [Google Scholar] [CrossRef]
- Nasser, H.; Vera, L.; Elmaleh-Bergès, M.; Steindl, K.; Letard, P.; Teissier, N.; Ernault, A.; Guimiot, F.; Afenjar, A.; Moutard, M.L.; et al. CDK5RAP2 primary microcephaly is associated with hypothalamic, retinal and cochlear developmental defects. J. Med. Genet. 2020, 57, 389–399. [Google Scholar] [CrossRef]
- Abdullah, U.; Farooq, M.; Mang, Y.; Marriam Bakhtiar, S.; Fatima, A.; Hansen, L.; Kjaer, K.W.; Larsen, L.A.; Faryal, S.; Tommerup, N.; et al. A novel mutation in CDK5RAP2 gene causes primary microcephaly with speech impairment and sparse eyebrows in a consanguineous Pakistani family. Eur. J. Med. Genet. 2017, 60, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.J.; Khurshid, M.; Azeem, Z.; John, P.; Ali, G.; Chishti, M.S.; Ahmad, W. Previously described sequence variant in CDK5RAP2 gene in a Pakistani family with autosomal recessive primary microcephaly. BMC Med. Genet. 2007, 8, 58. [Google Scholar] [CrossRef]
- Issa, L.; Mueller, K.; Seufert, K.; Kraemer, N.; Rosenkotter, H.; Ninnemann, O.; Buob, M.; Kaindl, A.M.; Morris-Rosendahl, D.J. Clinical and cellular features in patients with primary autosomal recessive microcephaly and a novel CDK5RAP2 mutation. Orphanet J. Rare Dis. 2013, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.; Arndt, K.; Das, S.; Weiss, E.M.; Wu, Y.; Gwal, K.; Shekdar, K.V.; Zackai, E.H. Compound heterozygote CDK5RAP2 mutations in a Guatemalan/Honduran child with autosomal recessive primary microcephaly, failure to thrive and speech delay. Am. J. Med. Genet. A 2015, 167, 1414–1417. [Google Scholar] [CrossRef]
- Yigit, G.; Brown, K.E.; Kayserili, H.; Pohl, E.; Caliebe, A.; Zahnleiter, D.; Rosser, E.; Bögershausen, N.; Uyguner, Z.O.; Altunoglu, U.; et al. Mutations in CDK5RAP2 cause Seckel syndrome. Mol. Genet. Genom. Med. 2015, 3, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Pagnamenta, A.T.; Howard, M.F.; Knight, S.J.; Keays, D.A.; Quaghebeur, G.; Taylor, J.C.; Kini, U. Activation of an exonic splice-donor site in exon 30 of CDK5RAP2 in a patient with severe microcephaly and pigmentary abnormalities. Clin. Case Rep. 2016, 4, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Jouan, L.; Ouled Amar Bencheikh, B.; Daoud, H.; Dionne-Laporte, A.; Dobrzeniecka, S.; Spiegelman, D.; Rochefort, D.; Hince, P.; Szuto, A.; Lassonde, M.; et al. Exome sequencing identifies recessive CDK5RAP2 variants in patients with isolated agenesis of corpus callosum. Eur. J. Hum. Genet. 2016, 24, 607–610. [Google Scholar] [CrossRef] [PubMed]
Patient | Family 1/Patient 1 | Family 2/Patient 2 | Family 3/Patient 3 | Family 3/Patient 4 | Family 4/Patient 5 | Family 5/Patient 6 | Family 6/Patient 7 |
---|---|---|---|---|---|---|---|
CDK5RAP2 homozygous variant (NM_018249.6) | c.3148+5G>C | c.383+4dupA | c.3168del (p.Asp1057Metfs*17) | c.3168del (p.Asp1057Metfs*17) | c.1591C>T (p.Gln531*) | c.1591C>T (p.Gln531*) | c.1296dup (p.Asp433Argfs*6) |
Variant type | Intronic | Intronic | Frameshift | Frameshift | Nonsense | Nonsense | Frameshift |
ACMG pathogenicity criteria | PS3, PM2 | PS3, PM2 | PVS1,PM2,PP1 | PVS1,PM2,PP1 | PVS1,PM2 | PVS1,PM2 | PVS1,PM2 |
Novel variant | - | + | + | + | + | + | + |
Gender | M | F | F | M | M | M | F |
Consanguineous marriage | + | + | + | + | + | + | + |
Gestational age | 36 + 6 | 39 + 4 | 40 + 1 | 39 | 38 | 41 + 2 | 37 + 5 |
Birth weight | 2200 g | 2910 g | 2650 g | 2800 g | 3000 g | 3650 g | 3200 g |
Birth length | 42 cm | 49 cm | 48 cm | 49 cm | ? | 50 cm | ? |
Birth head circumference | 30 cm | 28 cm | 29 cm | 33 cm | ? | 32.5 cm | ? |
Age | 15 months | 6 years 3 months | 6 years 8 months | 4 years | 12 years | 7.5 years | 14 years |
Head circumference SDS | −5.5 | −6.7 | −5.7 | −3.7 | −7.9 | −6.4 | −7 |
Height SDS | −2 | −1.2 | −2 | −1.5 | −3.3 | −1.6 | −3.4 |
Weight SDS | −2.5 | −1.2 | 1 | −1.1 | −1.4 | −3.5 | 2 |
Short stature | + | - | + | - | + | - | + |
Facial gestalt | Brachycephaly, high-arched eyebrows, synophrys, high nasal bridge | High-arched eyebrows and high nasal bridge | Short neck, high-arched eyebrows, upslanting palpebral fissures, hypertelorism, epicanthus, and high nasal bridge | High-arched eyebrows, hypertelorism, epicanthus, ptosis, high nasal bridge, and long philtrum | Brachycephaly, hypertelorism, epicanthus, high nasal bridge, anteverted nares, low columella, thick vermilion border, and micrognathia | Sloping forehead, mild micrognathia | - |
Sitting age | 12 months | 7 months | 9 months | 7 months | ? | 7-8 months | 7 months |
Independent walking | - | 12 months | 18 months | 10 months | 12 months | 12 months | 11 months |
First words | - | 2 years | 4 years | 12 months | 3 years | 2.5 years | 2 years |
Intellectual disability | ? | + | + | - | + | + | + |
Speech delay | + | + | + | - | + | + | + |
Seizures | - | + | - | - | - | - | - |
Ataxia | ? | - | + | - | + | - | - |
Hearing loss | - | + | + | - | - | - | + |
Skin involvement | Hyper/hypopigmentation lesions | Hyper/hypopigmentation lesions | Hyperpigmentation lesions | Hyper/hypopigmentation lesions | Hyper/hypopigmentation lesions | - | Hyperpigmentation lesions |
Tooth involvement | - | - | - | Conical teeth | Conical teeth, microdontia, and persistence of primary teeth | - | - |
Cranial MRI | Diffuse parenchymal volume loss in both cerebral hemispheres | The frontal lobes appear smaller than normal in both cerebral hemispheres, hypoplastic corpus callosum, pachygyria, absence of pineal gland | Normal | Normal | Normal | Retrocerebellar arachnoid cyst | Normal |
Attention deficit and hyperactivity | - | - | + | + | - | - | - |
Other anomalies | Asymmetrically positioned nipples and hyperkeratosis over the knees | Clinodactyly and increased deep tendon reflexes | Brachydactyly | Hypermobile fingers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeter, B.; Kendir Demirkol, Y.; Usluer, E.; Görüşen Kavak, İ.; Ergin, S.G.; Elçioğlu, N.H. Expanding the Clinical and Molecular Spectrum of Primary Autosomal Recessive Microcephaly: Novel CDK5RAP2 Gene Variants and Functional Insights on the Intronic Variants. Genes 2025, 16, 1120. https://doi.org/10.3390/genes16101120
Yeter B, Kendir Demirkol Y, Usluer E, Görüşen Kavak İ, Ergin SG, Elçioğlu NH. Expanding the Clinical and Molecular Spectrum of Primary Autosomal Recessive Microcephaly: Novel CDK5RAP2 Gene Variants and Functional Insights on the Intronic Variants. Genes. 2025; 16(10):1120. https://doi.org/10.3390/genes16101120
Chicago/Turabian StyleYeter, Burcu, Yasemin Kendir Demirkol, Esra Usluer, İpek Görüşen Kavak, Sena Gjota Ergin, and Nursel H. Elçioğlu. 2025. "Expanding the Clinical and Molecular Spectrum of Primary Autosomal Recessive Microcephaly: Novel CDK5RAP2 Gene Variants and Functional Insights on the Intronic Variants" Genes 16, no. 10: 1120. https://doi.org/10.3390/genes16101120
APA StyleYeter, B., Kendir Demirkol, Y., Usluer, E., Görüşen Kavak, İ., Ergin, S. G., & Elçioğlu, N. H. (2025). Expanding the Clinical and Molecular Spectrum of Primary Autosomal Recessive Microcephaly: Novel CDK5RAP2 Gene Variants and Functional Insights on the Intronic Variants. Genes, 16(10), 1120. https://doi.org/10.3390/genes16101120