Association of CYP24A1 Gene rs6127099 (A > T) Polymorphism with Lower Risk to COVID-19 Infection in Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Questionnaire
- Socio-demographic characteristics;
- Previous Medical History;
- The lifestyles of the participants.
2.3. Genotype Data
2.4. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Association Study
3.3. Association of VDR, GC, and CYP24A1 Haplotypes with Asymptomatic COVID-19
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lechien, J.R.; Chiesa-Estomba, C.M.; Hans, S.; Barillari, M.R.; Jouffe, L.; Saussez, S. Loss of smell and taste in 2013 European patients with mild to moderate COVID-19. Ann. Intern. Med. 2020, 173, 672–675. [Google Scholar] [CrossRef]
- Prasad, K.; Khatoon, F.; Rashid, S.; Ali, N.; AlAsmari, A.F.; Ahmed, M.Z.; Alqahtani, A.S.; Alqahtani, M.S.; Kumar, V. Targeting hub genes and pathways of innate immune response in COVID-19: A network biology perspective. Int. J. Biol. Macromol. 2020, 163, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Montano-Loza, A.J. Perspective: Improving vitamin D status in the management of COVID-19. Eur. J. Clin. Nutr. 2020, 74, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, H.A.; de Silva, N.L.; Sumanatilleke, M.; de Silva, S.D.N.; Gamage, K.K.K.; Dematapitiya, C.; Kuruppu, D.C.; Ranasinghe, P.; Pathmanathan, S.; Katulanda, P. Prognostic and therapeutic role of vitamin D in COVID-19: Systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2022, 107, 1484–1502. [Google Scholar] [CrossRef]
- Campi, I.; Gennari, L.; Merlotti, D.; Mingiano, C.; Frosali, A.; Giovanelli, L.; Torlasco, C.; Pengo, M.F.; Heilbron, F.; Soranna, D.; et al. Vitamin D and COVID-19 severity and related mortality: A prospective study in Italy. BMC Infect. Dis. 2021, 21, 566. [Google Scholar] [CrossRef]
- Teama, M.A.E.M.; A Abdelhakam, D.; A Elmohamadi, M.; Badr, F.M. Vitamin D deficiency as a predictor of severity in patients with COVID-19 infection. Sci. Prog. 2021, 104, 00368504211036854. [Google Scholar] [CrossRef]
- Speeckaert, M.M.; Delanghe, J.R. Vitamin D binding protein and its polymorphisms may explain the link between vitamin D deficiency and COVID-19. Sci. Prog. 2021, 104, 00368504211053510. [Google Scholar] [CrossRef] [PubMed]
- Ali, N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J. Infect. Public Health 2020, 13, 1373–1380. [Google Scholar] [CrossRef]
- Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D deficiency aggravates COVID-19: Systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1308–1316. [Google Scholar] [CrossRef]
- Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients 2013, 5, 2502–2521. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D and immune function: Understanding common pathways. Curr. Osteoporos. Rep. 2009, 7, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Jeng, L.; Yamshchikov, A.V.; Judd, S.E.; Blumberg, H.M.; Martin, G.S.; Ziegler, T.R.; Tangpricha, V. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J. Transl. Med. 2009, 7, 28. [Google Scholar] [PubMed] [Green Version]
- Song, G.G.; Bae, S.C.; Lee, Y.H. Vitamin D receptor FokI, BsmI, and TaqI polymorphisms and susceptibility to rheumatoid arthritis. Z. Für Rheumatol. 2016, 75, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, N.M.S.; El Lateef, H.M.A.; Selim, D.M.; Razek, S.A.; Abd-Elrehim, G.A.B.; Nashat, M.; ElGyar, N.; Waked, N.M.; Soliman, A.A.; Elhewala, A.A.; et al. Vitamin D deficiency and vitamin D receptor FokI polymorphism as risk factors for COVID-19. Pediatr. Res. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Karcioglu Batur, L.; Hekim, N. The role of DBP gene polymorphisms in the prevalence of new coronavirus disease 2019 infection and mortality rate. J. Med. Virol. 2021, 93, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
- Speeckaert, M.M.; Delanghe, J.R. The potential significance of vitamin D binding protein polymorphism in COVID-19. Int. J. Infect. Dis. 2021, 109, 90. [Google Scholar] [CrossRef] [PubMed]
- Brait, B.D.J.; Lima, S.P.d.S.; Aguiar, F.L.; Fernandes-Ferreira, R.; Oliveira-Brancati, C.I.F.; Ferraz, J.A.M.L.; Tenani, G.D.; Pinhel, M.A.D.S.; Assoni, L.C.P.; Nakahara, A.H.; et al. Genetic polymorphisms related to the vitamin D pathway in patients with cirrhosis with or without hepatocellular carcinoma (HCC). Ecancermedicalscience 2022, 16, 1383. [Google Scholar]
- Zacharioudaki, M.; Messaritakis, I.; Galanakis, E. Vitamin D receptor, vitamin D binding protein and CYP27B1 single nucleotide polymorphisms and susceptibility to viral infections in infants. Sci. Rep. 2021, 11, 13835. [Google Scholar] [CrossRef]
- Yang, J.J.; Fan, H.Z.; Tian, T.; Wu, M.P.; Xie, C.N.; Huang, P.; Yu, R.B.; Yi, H.G.; Zhang, Y.; Wang, J. Impact of CYP2R1, CYP27A1 and CYP27B1 genetic polymorphisms controlling vitamin D metabolism on susceptibility to hepatitis C virus infection in a high-risk Chinese population. Arch. Virol. 2019, 164, 2909–2918. [Google Scholar] [CrossRef] [PubMed]
- Fricke-Galindo, I.; Buendía-Roldán, I.; Ruiz, A.; Palacios, Y.; Pérez-Rubio, G.; Hernández-Zenteno, R.D.J.; Reyes-Melendres, F.; Zazueta-Márquez, A.; Alarcón-Dionet, A.; Guzmán-Vargas, J.; et al. TNFRSF1B and TNF Variants Are Associated With Differences in Levels of Soluble Tumor Necrosis Factor Receptors in Patients With Severe COVID-19. J. Infect. Dis. 2022, 226, 778–787. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar]
- Gao, Z.; Xu, Y.; Sun, C.; Wang, X.; Guo, Y.; Qiu, S.; Ma, K. A systematic review of asymptomatic infections with COVID-19. J. Microbiol. Immunol. Infect. 2021, 54, 12–16. [Google Scholar] [CrossRef]
- Sarría-Santamera, A.; Abdukadyrov, N.; Glushkova, N.; Peck, D.R.; Colet, P.; Yeskendir, A.; Asúnsolo, A.; Ortega, M.A. Towards an Accurate Estimation of COVID-19 Cases in Kazakhstan: Back-Casting and Capture–Recapture Approaches. Medicina 2022, 58, 253. [Google Scholar] [CrossRef] [PubMed]
- van der Made, C.I.; Netea, M.G.; van der Veerdonk, F.L.; Hoischen, A. Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19. Genome Med. 2022, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.S.; Kanneganti, T.D. Innate immunity: The first line of defense against SARS-CoV-2. Nat. Immunol. 2022, 23, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. Vitamin D and the immune system: New perspectives on an old theme. Rheum. Dis. Clin. 2012, 38, 125–139. [Google Scholar] [CrossRef]
- Robinson-Cohen, C.; Lutsey, P.L.; Kleber, M.E.; Nielson, C.M.; Mitchell, B.D.; Bis, J.C.; Eny, K.M.; Portas, L.; Eriksson, J.; Lorentzon, M.; et al. Genetic variants associated with circulating parathyroid hormone. J. Am. Soc. Nephrol. 2017, 28, 1553–1565. [Google Scholar] [CrossRef] [Green Version]
- Achilla, C.; Chorti, A.; Papavramidis, T.; Chatzikyriakidou, A. A pilot study of the association of rs6127099 polymorphism with primary hyperparathyroidism. Aristotle Biomed. J. 2021, 3, 1–9. [Google Scholar]
- Schlingmann, K.P.; Kaufmann, M.; Weber, S.; Irwin, A.; Goos, C.; John, U.; Misselwitz, J.; Klaus, G.; Kuwertz-Bröking, E.; Fehrenbach, H.; et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N. Engl. J. Med. 2011, 365, 410–421. [Google Scholar] [CrossRef]
- Bennouar, S.; Cherif, A.B.; Kessira, A.; Bennouar, D.E.; Abdi, S. Vitamin D deficiency and low serum calcium as predictors of poor prognosis in patients with severe COVID-19. J. Am. Coll. Nutr. 2021, 40, 104–110. [Google Scholar] [CrossRef]
- Cappellini, F.; Brivio, R.; Casati, M.; Cavallero, A.; Contro, E.; Brambilla, P. Low levels of total and ionized calcium in blood of COVID-19 patients. Clin. Chem. Lab. Med. (CCLM) 2020, 58, e171–e173. [Google Scholar] [CrossRef]
- Deodatus, J.A.; Kooistra, S.A.; Kurstjens, S.; Mossink, J.C.L.; van Dijk, J.D.; Groeneveld, P.H.P.; van der Kolk, B.Y.M. Lower plasma calcium associated with COVID-19, but not with disease severity: A two-centre retrospective cohort study. Infect. Dis. 2022, 54, 90–98. [Google Scholar] [CrossRef] [PubMed]
- di Filippo, L.; Allora, A.; Locatelli, M.; Querini, P.R.; Frara, S.; Banfi, G.; Giustina, A. Hypocalcemia in COVID-19 is associated with low vitamin D levels and impaired compensatory PTH response. Endocrine 2021, 74, 219–225. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Yang, X.; Hung, D.; Yang, Q.; Wu, T.; Deng, M. Asymptomatic COVID-19 infection: Diagnosis, transmission, population characteristics. BMJ Support. Palliat. Care 2021. [Google Scholar] [CrossRef]
- Usategui-Martín, R.; De Luis-Román, D.A.; Fernández-Gómez, J.M.; Ruiz-Mambrilla, M.; Pérez-Castrillón, J.L. Vitamin D receptor (VDR) gene polymorphisms modify the response to Vitamin D supplementation: A systematic review and meta-analysis. Nutrients 2022, 14, 360. [Google Scholar] [CrossRef]
- Peralta, E.M.; Rosales, Y.Z.; Mesa, T.C.; González, E.N.S.; Pérez, Y.H.; Torres, M.D.L.G.; Balbuena, H.R.; Teruel, B.M. TaqI polymorphism of the VDR gene: Aspects related to the clinical behavior of COVID-19 in Cuban patients. Egypt. J. Med. Hum. Genet. 2021, 22, 83. [Google Scholar] [CrossRef]
- Mamurova, B.; Akan, G.; Tuncel, G.; Mogol, E.; Evren, E.U.; Evren, H.; Suer, H.K.; Sanlidag, T.; Ergoren, M.C. A Strong Association between the VDR Gene Markers and SARS-CoV-2 Variants. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Apaydin, T.; Polat, H.; Yazan, C.D.; Ilgin, C.; Elbasan, O.; Dashdamirova, S.; Bayram, F.; Tigen, E.T.; Unlu, O.; Tekin, A.F.; et al. Effects of vitamin D receptor gene polymorphisms on the prognosis of COVID-19. Clin. Endocrinol. 2022, 96, 819–830. [Google Scholar] [CrossRef]
- Fishchuk, L.; Rossokha, Z.; Pokhylko, V.; Cherniavska, Y.; Tsvirenko, S.; Kovtun, S.; Medvedieva, N.; Vershyhora, V.; Gorovenko, N. Modifying effects of TNF-α, IL-6 and VDR genes on the development risk and the course of COVID-19. Pilot study. Drug Metab. Pers. Ther. 2021, 37, 133–139. [Google Scholar] [CrossRef]
- Jafarpoor, A.; Jazayeri, S.M.; Bokharaei-Salim, F.; Ataei-Pirkooh, A.; Ghaziasadi, A.; Soltani, S.; Sadeghi, A.; Marvi, S.S.; Poortahmasebi, V.; Khorrami, S.M.S.; et al. VDR gene polymorphisms are associated with the increased susceptibility to COVID-19 among iranian population: A case-control study. Int. J. Immunogenet. 2022, 49, 243–253. [Google Scholar] [CrossRef]
- Abdollahzadeh, R.; Shushizadeh, M.H.; Barazandehrokh, M.; Choopani, S.; Azarnezhad, A.; Paknahad, S.; Pirhoushiaran, M.; Makani, S.Z.; Yeganeh, R.Z.; Al-Kateb, A.; et al. Association of Vitamin D receptor gene polymorphisms and clinical/severe outcomes of COVID-19 patients. Infect. Genet. Evol. 2021, 96, 105098. [Google Scholar] [CrossRef]
- Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The health effects of vitamin D supplementation: Evidence from human studies. Nat. Rev. Endocrinol. 2022, 18, 96–110. [Google Scholar] [CrossRef]
- Jain, A.; Chaurasia, R.; Sengar, N.S.; Singh, M.; Mahor, S.; Narain, S. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci. Rep. 2020, 10, 20191. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Choe, H.J.; Holick, M.F.; Lim, S. Association of vitamin D status with COVID-19 and its severity. Rev. Endocr. Metab. Disord. 2022, 23, 579–599. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.J. Vitamin D insufficiency. N. Engl. J. Med. 2011, 364, 248–254. [Google Scholar] [CrossRef] [PubMed]
Variables | Case (134) | Control (46) | Total (180) | p-Value | |||
---|---|---|---|---|---|---|---|
Age | 41.49 ± 13.09 | 43.09 ± 14.41 | 41.89 ± 13.26 | 0.639 | |||
Gender | 0.377 | ||||||
Male | 47 | 35.1% | 20 | 43.5% | 67 | 37.2% | |
Female | 87 | 64.9% | 26 | 56.5% | 113 | 62.8% | |
BMI | 24.5 ± 4.7 | 24.27 ± 3.86 | 24.41 ± 4.44 | 0.868 | |||
BCG scar size | 5.7 ± 3.04 | 5.24 ± 2.71 | 5.58 ± 2.91 | 0.504 | |||
Vitamin D | 28.66 ± 15.3 | 28.34 ± 12.77 | 28.58 ± 14.66 | 0.950 | |||
Ethnicity | 0.580 | ||||||
Kazakh | 121 | 90.3% | 40 | 87% | 161 | 89.4% | |
Other | 13 | 9.7% | 6 | 13% | 19 | 10.6% | |
Heart disorder | 10 | 7.5% | 7 | 15.2% | 17 | 9.4% | 0.145 |
Stroke | 1 | 0.8% | 0 | 0.0% | 1 | 0.6% | 1.000 |
Cancer | 3 | 2.2% | 3 | 6.5% | 6 | 3.3% | 0.175 |
Diabetes | 6 | 4.5% | 3 | 6.5% | 9 | 95% | 0.695 |
Asthma | 4 | 3% | 0 | 0.0% | 4 | 2.2% | 0.574 |
Hypertension | 18 | 13.4% | 9 | 19.6% | 27 | 15% | 0.342 |
High cholesterol | 18 | 13.4% | 4 | 8.7% | 22 | 12.2% | 0.602 |
Chronic kidney disease | 18 | 13.4% | 9 | 19.6% | 27 | 15% | 0.342 |
Lung disorder | 13 | 9.7% | 2 | 4.3% | 15 | 8.3% | 0.361 |
Allergy | 54 | 40.3% | 20 | 43.5% | 74 | 41.1% | 0.731 |
Alcohol | 65 | 48.9% | 22 | 47.8% | 87 | 48.6% | 1.000 |
Sport | 61 | 45.5% | 25 | 54.3% | 86 | 47.8% | 0.311 |
Self–reported COVID-like symptoms | 87 | 64.9% | 30 | 65.2% | 117 | 65% | 1.000 |
Employment | 91 | 68.4% | 30 | 66.7% | 121 | 58% | 0.855 |
Smoke | 50 | 37.6% | 12 | 26.1% | 62 | 34.6% | 0.208 |
Gene | Name | SNP | Function | MAF 1000G | HWE p-Values |
---|---|---|---|---|---|
VDR | Vitamin D receptor | rs731236 (TaqI) | Intracellular hormone receptor that specifically binds 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and mediates its effects | 0.276558 | 1.00 |
rs1544410 (BsmI) | 0.295927 | 0.57 | |||
rs2228570 (FokI) | 0.328474 | 0.71 | |||
rs7975232 (ApaI) | 0.484625 | 0.002 ¶ | |||
CYP27B1 | 1–α–hydroxylase | rs10877012 | Hydroxylation of 25(OH)D3 into 1,25(OH)2D3 | 0.348642 | 0.76 |
CYP24A1 | 24–hydroxylase | rs6013897 | Mitochondrial enzyme responsible for inactivating vitamin D metabolites. Parathyroid hormone (PTH) concentration, catabolic enzyme for 1,25(OH)2D3 and 25(OH)D3 | 0.26238 | 1.00 |
rs6127099 | 0.330072 | 0.54 | |||
GC | Vitamin D binding protein | rs7041 | Binding, solubilization, and transport of vitamin D and its metabolites | 0.381589 | 0.76 |
rs4588 | 0.207867 | 0.39 | |||
CYP2R1 | Vitamin D 25–hydroxylase | rs1074165 | The synthesis of bioactive vitamin D (vitamin D3→25D) (at C25 position). | 0.122404 | 0.33 |
CYP27A1 | Sterol 27–hydroxylase | rs17470271 | The synthesis of bioactive vitamin D (vitamin D3 →25D) (at C24 and C27 positions). | 0.252995 | 0.69 |
TNF-α | Tumor necrosis factor α | rs1800629 | Potent inducer of CYP27B1 | 0.090256 | 0.66 |
Model | SNP [Gene] | Case/Control | OR (95% CI) | p-Value | AOR (95% CI) | p-Value |
---|---|---|---|---|---|---|
rs731236 TaqI [VDR] | ||||||
Additive | AA | 74/34 | Reference | Reference | ||
AG | 50/12 | 1.91 (0.9–4.05) | 0.089 | 1.97 (0.91–4.27) | 0.085 | |
GG | 4/0 | 1 | 1 | |||
Dominant | AA | 74/34 | Reference | Reference | ||
AG + GG | 54/12 | 2.07 (0.98–4.36) | 0.056 | 2.13 (0.99–4.6) | 0.053 | |
Recessive | AA + AG | 124/46 | Reference | Reference | ||
GG | 4/0 | 1 | 1 | |||
Allelic | A | 198/80 | Reference | Reference | ||
G | 58/12 | 1.95 (1.00–3.83) | 0.051 | 1.98 (1.00–3.92) | 0.05 | |
rs1544410 BsmI [VDR] | ||||||
Additive | TT | 4/0 | Reference | Reference | ||
TC | 57/13 | 2.13 (1.02–4.42) | 0.043 ¶ | 2.23 (1.04–4.79) | 0.04 ¶ | |
CC | 68/33 | 1 | 1 | |||
Dominant | TT | 4/0 | Reference | Reference | ||
TC + CC | 125/46 | 1 | 1 | |||
Recessive | TT + TC | 61/13 | Reference | Reference | ||
CC | 68/33 | 0.44 (0.21–0.91) | 0.027 ¶ | 0.42 (0.2–0.9) | 0.025 ¶ | |
Allelic | T | 65/13 | Reference | Reference | ||
C | 193/79 | 0.49 (0.25–0.94) | 0.031 ¶ | 0.48 (0.25–0.94) | 0.031 ¶ | |
rs2228570 FokI [VDR] | ||||||
Additive | AA | 14/4 | Reference | Reference | ||
AG | 61/17 | 1.02 (0.3–3.52) | 0.968 | 1 (0.29–3.51) | 0.995 | |
GG | 56/25 | 0.64 (0.19–2.14) | 0.469 | 0.6 (0.17–2.03) | 0.409 | |
Dominant | AA | 14/4 | Reference | Reference | ||
AG + GG | 117/42 | 0.8 (0.25–2.55) | 0.701 | 0.76 (0.23–2.48) | 0.652 | |
Recessive | AA + AG | 75/21 | Reference | Reference | ||
GG | 56/25 | 0.63 (0.32–1.23) | 0.176 | 0.59 (0.3–1.18) | 0.137 | |
Allelic | A | 89/25 | Reference | Reference | ||
G | 173/67 | 0.73 (0.43–1.23) | 0.231 | 0.7 (0.41–1.19) | 0.186 | |
rs6013897 [CYP24A1] | ||||||
Additive | AA | 3/1 | Reference | Reference | ||
AT | 34/13 | 0.87 (0.08–9.15) | 0.909 | 0.83 (0.08–8.99) | 0.875 | |
TT | 94/32 | 0.98 (0.1–9.75) | 0.986 | 0.96 (0.09–9.83) | 0.972 | |
Dominant | AA | 3/1 | Reference | Reference | ||
AT + TT | 128/45 | 0.95 (0.1–9.35) | 0.964 | 0.92 (0.09–9.37) | 0.946 | |
Recessive | AA + AT | 37/14 | Reference | Reference | ||
TT | 94/32 | 1.11(0.53–2.32) | 0.778 | 1.14 (0.55–2.4) | 0.723 | |
Allelic | A | 40/15 | Reference | Reference | ||
T | 222/77 | 1.08 (0.57–2.07) | 0.813 | 1.1 (0.57–2.11) | 0.769 | |
rs6127099 [CYP24A1] | ||||||
Additive | AA | 68/13 | Reference | Reference | ||
AT | 49/25 | 0.37 (0.17–0.8) | 0.012 ¶ | 0.35 (0.16–0.76) | 0.0092 ¶ | |
TT | 8/7 | 0.22 (0.07–0.71) | 0.011 ¶ | 0.2 (0.06–0.66) | 0.0092 ¶ | |
Dominant | AA | 68/13 | Reference | Reference | ||
AT + TT | 57/32 | 0.34 (0.16–0.71) | 0.004 * | 0.32 (0.15–0.68) | 0.003 * | |
Recessive | AA + AT | 117/38 | Reference | Reference | ||
TT | 8/7 | 0.37 (0.13–1.09) | 0.072 | 0.36 (0.12–1.07) | 0.067 | |
Allelic | A | 185/51 | Reference | Reference | ||
T | 65/39 | 0.46 (0.28–0.76) | 0.002 ** | 0.44 (0.26–0.74) | 0.002 ** | |
rs7041 [GC] | ||||||
Additive | AA | 52/15 | Reference | Reference | ||
AC | 65/21 | 0.89 (0.42–1.9) | 0.769 | 0.92 (0.43–1.99) | 0.838 | |
CC | 12/10 | 0.34 (0.13–0.96) | 0.041 ¶ | 0.33 (0.12–0.92) | 0.033 ¶ | |
Dominant | AA | 52/15 | Reference | Reference | ||
AC + CC | 77/31 | 0.72 (0.35–1.46) | 0.357 | 0.72 (0.35–1.48) | 0.374 | |
Recessive | AA + AC | 117/36 | Reference | Reference | ||
CC | 12/10 | 0.37 (0.15–0.93) | 0.034 ¶ | 0.34 (0.13–0.87) | 0.025 ¶ | |
Allelic | A | 169/51 | Reference | Reference | ||
C | 89/41 | 0.66 (0.4–1.06) | 0.087 | 0.65 (0.4–1.06) | 0.083 | |
rs4588 [GC] | ||||||
Additive | GG | 58/26 | Reference | Reference | ||
GT | 55/16 | 1.54 (0.75–3.18) | 0.242 | 1.61 (0.77–3.36) | 0.206 | |
TT | 8/1 | 3.59 (0.43–30.17) | 0.240 | 4.14 (0.48–36) | 0.197 | |
Dominant | GG | 58/26 | Reference | Reference | ||
GT + TT | 63/17 | 1.66 (0.82–3.37) | 0.160 | 1.75 (0.85–3.59) | 0.130 | |
Recessive | GG + GT | 113/42 | Reference | Reference | ||
TT | 8/1 | 2.97 (0.36–24.5) | 0.311 | 3.32 (0.39–28.03) | 0.270 | |
Allelic | G | 171/68 | Reference | Reference | ||
T | 71/18 | 1.57 (0.87–2.83) | 0.134 | 1.64 (0.9–2.97) | 0.105 | |
rs10877012 [CYP27B1] | ||||||
Additive | GG | 15/11 | Reference | Reference | ||
GT | 77/24 | 2.35 (0.95–5.8) | 0.063 | 2.57 (1.02–6.49) | 0.046 ¶ | |
TT | 36/9 | 2.93 (1.01–8.53) | 0.048 ¶ | 3.13 (1.05–9.35) | 0.041 ¶ | |
Dominant | GG | 15/11 | Reference | Reference | ||
GT + TT | 113/33 | 2.51 (1.05–5.99) | 0.038 ¶ | 2.72 (1.11–6.65) | 0.028 ¶ | |
Recessive | GG + GT | 92/35 | Reference | Reference | ||
TT | 36/9 | 1.52 (0.67–3.48) | 0.320 | 1.51 (0.65–3.52) | 0.338 | |
Allelic | G | 107/46 | Reference | Reference | ||
T | 149/42 | 1.53 (0.94–2.48) | 0.089 | 1.54 (0.94–2.53) | 0.084 | |
rs1074165 [CYP2R1] | ||||||
Additive | GG | 89/30 | Reference | Reference | ||
GA | 34/15 | 0.76 (0.37–1.59) | 0.473 | 0.79 (0.37–1.67) | 0.535 | |
AA | 2/0 | 1 | 1 | |||
Dominant | GG | 89/30 | Reference | Reference | ||
GA + AA | 36/15 | 0.81 (0.39–1.68) | 0.570 | 0.84 (0.4–1.76) | 0.641 | |
Recessive | GG + GA | 123/45 | Reference | Reference | ||
AA | 2/0 | 1 | 1 | |||
Allelic | G | 212/75 | Reference | Reference | ||
A | 38/15 | 0.9 (0.47–1.72) | 0.742 | 0.92 (0.48–1.78) | 0.809 | |
rs1747027 [CYP27A1] | ||||||
Additive | AA | 70/18 | Reference | Reference | ||
AT | 34/16 | 0.55 (0.25–1.2) | 0.133 | 0.51 (0.22–1.17) | 0.111 | |
TT | 9/2 | 1.16 (0.23–5.83) | 0.860 | 0.89 (0.17–4.68) | 0.890 | |
Dominant | AA | 70/18 | Reference | Reference | ||
AT + TT | 43/18 | 0.61 (0.29–1.31) | 0.206 | 0.55 (0.25–1.23) | 0.146 | |
Recessive | AA + AT | 104/34 | Reference | Reference | ||
TT | 9/2 | 1.47 (0.3–7.14) | 0.632 | 1.2 (0.24–6.00) | 0.826 | |
Allelic | A | 174/52 | Reference | Reference | ||
T | 52/20 | 0.78 (0.43–1.42) | 0.411 | 0.71 (0.38–1.32) | 0.280 | |
rs1800629 [TNF-α] | ||||||
Additive | AA | 2/2 | Reference | Reference | ||
AG | 30/9 | 3.33 (0.41–27.13) | 0.260 | 2.95 (0.33–26.5) | 0.333 | |
GG | 95/35 | 2.71 (0.37–20.01) | 0.327 | 2.43 (0.31–19.26) | 0.399 | |
Dominant | AA | 2/2 | Reference | Reference | ||
AG + GG | 125/44 | 2.84 (0.39–20.78) | 0.304 | 2.5 (0.32–19.75) | 0.385 | |
Recessive | AA + AG | 32/11 | Reference | Reference | ||
GG | 95/35 | 0.93 (0.42–2.05) | 0.863 | 0.94 (0.43–2.08) | 0.880 | |
Allelic | A | 34/13 | Reference | Reference | ||
G | 220/79 | 1.06 (0.53–2.12) | 0.858 | 1.05 (0.53–2.11) | 0.885 |
Haplotype Analysis | LD Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gene | Block | SNP1 | SNP2 | SNP3 | Control | Case | Or (95% CI) | p-Value | D´ | LD p-Value |
VDR | rs731236 (TaqI) | rs2228570 (FokI) | rs1544410 (BsmI) | - | - | |||||
1 | A | G | C | 0.6429 | 0.4764 | Reference | ||||
2 | A | A | C | 0.2158 | 0.2719 | 1.70 (0.86–3.34) | 0.13 | |||
3 | G | G | T | 0.0745 | 0.1603 | 3.12 (1.07–9.10) | 0.039 ¶ | |||
4 | G | A | T | 0.0559 | 0.0678 | 1.92 (0.53–6.86) | 0.32 | |||
5 | A | G | T | 0.0109 | 0.0237 | 3.38 (0.39–29.65) | 0.27 | |||
6 | A | G | - | 0.6542 | 0.5045 | Reference | 0.0195 | 0.7917 | ||
7 | A | A | - | 0.2153 | 0.2689 | 1.63 (0.83–3.18) | 0.16 | |||
8 | G | G | - | 0.074 | 0.1558 | 2.82 (0.98–8.12) | 0.056 | |||
9 | G | A | - | 0.0564 | 0.0708 | 1.84 (0.52–6.45) | 0.34 | |||
10 | A | - | C | 0.8587 | 0.7481 | Reference | 0.9997 | 0.0000 | ||
11 | G | - | T | 0.1304 | 0.2283 | 2.25 (1.10–4.61) | 0.028 ¶ | |||
12 | A | - | T | 0.0109 | 0.0236 | 3.01 (0.35–25.97) | 0.32 | |||
13 | - | G | C | 0.6386 | 0.4807 | Reference | 0.0524 | 0.7169 | ||
14 | - | A | C | 0.2201 | 0.2675 | 1.61 (0.82–3.19) | 0.17 | |||
15 | - | G | T | 0.0896 | 0.1796 | 2.90 (1.06–7.91) | 0.039 ¶ | |||
16 | - | A | T | 0.0517 | 0.0722 | 2.20 (0.58–8.38) | 0.25 | |||
GC | rs7041 | rs4588 | ||||||||
1 | C | G | - | 0.4457 | 0.345 | Reference | 0.9992 | 0.0000 | ||
2 | A | G | - | 0.3465 | 0.3625 | 1.38 (0.78–2.42) | 0.27 | |||
3 | A | T | - | 0.2079 | 0.2925 | 1.94 (0.99–3.79) | 0.055 | |||
CYP24A1 | rs6013897 | rs6127099 | ||||||||
1 | T | A | - | 0.5464 | 0.694 | Reference | 0.6472 | 0.0000 | ||
2 | T | T | - | 0.2906 | 0.154 | 0.37 (0.19–0.73) | 0.0045 * | |||
3 | A | T | - | 0.1469 | 0.1078 | 0.58 (0.27–1.25) | 0.17 | |||
4 | A | A | - | 0.0162 | 0.0442 | 2.01 (0.24–17.03) | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarría-Santamera, A.; Mukhtarova, K.; Baizhaxynova, A.; Kanatova, K.; Zhumambayeva, S.; Akilzhanova, A.; Azizan, A. Association of CYP24A1 Gene rs6127099 (A > T) Polymorphism with Lower Risk to COVID-19 Infection in Kazakhstan. Genes 2023, 14, 307. https://doi.org/10.3390/genes14020307
Sarría-Santamera A, Mukhtarova K, Baizhaxynova A, Kanatova K, Zhumambayeva S, Akilzhanova A, Azizan A. Association of CYP24A1 Gene rs6127099 (A > T) Polymorphism with Lower Risk to COVID-19 Infection in Kazakhstan. Genes. 2023; 14(2):307. https://doi.org/10.3390/genes14020307
Chicago/Turabian StyleSarría-Santamera, Antonio, Kymbat Mukhtarova, Ardak Baizhaxynova, Kaznagul Kanatova, Saule Zhumambayeva, Ainur Akilzhanova, and Azliyati Azizan. 2023. "Association of CYP24A1 Gene rs6127099 (A > T) Polymorphism with Lower Risk to COVID-19 Infection in Kazakhstan" Genes 14, no. 2: 307. https://doi.org/10.3390/genes14020307
APA StyleSarría-Santamera, A., Mukhtarova, K., Baizhaxynova, A., Kanatova, K., Zhumambayeva, S., Akilzhanova, A., & Azizan, A. (2023). Association of CYP24A1 Gene rs6127099 (A > T) Polymorphism with Lower Risk to COVID-19 Infection in Kazakhstan. Genes, 14(2), 307. https://doi.org/10.3390/genes14020307