Orphan G Protein Coupled Receptors in Affective Disorders
Abstract
1. Introduction
2. Systematic Analysis of oGPCRs in Anxiety and Mood Disorders
2.1. ADGRB2 (BAI2)
2.2. ADGRG1 (GPR56)
2.3. GPR3
2.4. GPR26
2.5. GPR37
2.6. GPR50, GPR61, GPR62, and GPR135: Orphan Receptors That Modulate the Melatonergic System
2.7. GPR52
2.8. GPR88
2.9. GPR158
2.10. GPRC5B
3. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loomer, H.P.; Saunders, J.C.; Kline, N.S. A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiatr. Res. Rep. Am. Psychiatr. Assoc. 1957, 8, 129–141. [Google Scholar] [PubMed]
- Kuhn, R. [Treatment of depressive states with an iminodibenzyl derivative (G 22355)]. Schweiz Med. Wochenschr. 1957, 87, 1135–1140. [Google Scholar] [PubMed]
- Lemieux, G.; Davignon, A.; Genest, J. Depressive states during Rauwolfia therapy for arterial hypertension; a report of 30 cases. Can. Med. Assoc. J. 1956, 74, 522–526. [Google Scholar] [PubMed]
- Belujon, P.; Grace, A.A. Dopamine System dysregulation in major depressive disorders. Int. J. Neuropsychopharmacol. 2017, 20, 1036–1046. [Google Scholar] [CrossRef]
- Keller, J.; Gomez, R.; Williams, G.; Lembke, A.; Lazzeroni, L.; Murphy, G.M., Jr.; Schatzberg, A.F. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatry 2017, 22, 527–536. [Google Scholar] [CrossRef]
- Harrison, P.J. The neuropathology of primary mood disorder. Brain 2002, 125, 1428–1449. [Google Scholar] [CrossRef]
- Siegle, G.J.; Thompson, W.; Carter, C.S.; Steinhauer, S.R.; Thase, M.E. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biol. Psychiatry 2007, 61, 198–209. [Google Scholar] [CrossRef]
- Radley, J.J.; Rocher, A.B.; Rodriguez, A.; Ehlenberger, D.B.; Dammann, M.; McEwen, B.S.; Morrison, J.H.; Wearne, S.L.; Hof, P.R. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J. Comp. Neurol. 2008, 507, 1141–1150. [Google Scholar] [CrossRef]
- Radley, J.J.; Sisti, H.M.; Hao, J.; Rocher, A.B.; McCall, T.; Hof, P.R.; McEwen, B.S.; Morrison, J.H. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 2004, 125, 1–6. [Google Scholar] [CrossRef]
- Santos, M.A.O.; Bezerra, L.S.; Carvalho, A.; Brainer-Lima, A.M. Global hippocampal atrophy in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Trends Psychiatry Psychother. 2018, 40, 369–378. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Krey, L.C.; McEwen, B.S. Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging. J. Neurosci. off. J. Soc. Neurosci. 1985, 5, 1222–1227. [Google Scholar] [CrossRef]
- Duman, C.H.; Duman, R.S. Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci. Lett. 2015, 601, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Drevets, W.C.; Videen, T.O.; Price, J.L.; Preskorn, S.H.; Carmichael, S.T.; Raichle, M.E. A functional anatomical study of unipolar depression. J.Neurosci. off. J. Soc. Neurosci. 1992, 12, 3628–3641. [Google Scholar] [CrossRef]
- Abercrombie, H.C.; Schaefer, S.M.; Larson, C.L.; Oakes, T.R.; Lindgren, K.A.; Holden, J.E.; Perlman, S.B.; Turski, P.A.; Krahn, D.D.; Benca, R.M.; et al. Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport 1998, 9, 3301–3307. [Google Scholar] [CrossRef] [PubMed]
- Colyn, L.; Venzala, E.; Marco, S.; Perez-Otano, I.; Tordera, R.M. Chronic social defeat stress induces sustained synaptic structural changes in the prefrontal cortex and amygdala. Behav. Brain Res. 2019, 373, 112079. [Google Scholar] [CrossRef]
- Joels, M. Corticosteroids and the brain. J. Endocrinol. 2018, 238, R121–R130. [Google Scholar] [CrossRef]
- Joels, M.; Karst, H.; Sarabdjitsingh, R.A. The stressed brain of humans and rodents. Acta Physiol. (Oxf) 2018, 223, e13066. [Google Scholar] [CrossRef]
- Krystal, J.H.; Abdallah, C.G.; Sanacora, G.; Charney, D.S.; Duman, R.S. Ketamine: A paradigm shift for depression research and treatment. Neuron 2019, 101, 774–778. [Google Scholar] [CrossRef]
- Krystal, J.H.; Charney, D.S.; Duman, R.S. A new rapid-acting antidepressant. Cell 2020, 181, 7. [Google Scholar] [CrossRef]
- Singh, J.B.; Daly, E.J.; Mathews, M.; Fedgchin, M.; Popova, V.; Hough, D.; Drevets, W.C. Approval of esketamine for treatment-resistant depression. Lancet Psychiatry 2020, 7, 232–235. [Google Scholar] [CrossRef]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Georgiou, P.; Fischell, J.; Elmer, G.I.; Alkondon, M.; Yuan, P.; Pribut, H.J.; Singh, N.S.; et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 2016, 533, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Deyama, S.; Duman, R.S. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol. Biochem. Behav. 2020, 188, 172837. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Munoz, F.; Shen, W.W.; D’Ocon, P.; Romero, A.; Alamo, C. A history of the pharmacological treatment of bipolar disorder. Int. J. Mol. Sci. 2018, 19, 2143. [Google Scholar] [CrossRef] [PubMed]
- Alda, M. Lithium in the treatment of bipolar disorder: Pharmacology and pharmacogenetics. Mol. Psychiatry 2015, 20, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Medic, B.; Stojanovic, M.; Stimec, B.V.; Divac, N.; Vujovic, K.S.; Stojanovic, R.; Colovic, M.; Krstic, D.; Prostran, M. Lithium-Pharmacological and toxicological aspects: The current state of the art. Curr. Med. Chem. 2020, 27, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Heilbronner, U.; Degenhardt, F.; Adli, M.; Akiyama, K.; Akula, N.; Ardau, R.; Arias, B.; Backlund, L.; Banzato, C.E.M.; et al. Genetic variants associated with response to lithium treatment in bipolar disorder: A genome-wide association study. Lancet 2016, 387, 1085–1093. [Google Scholar] [CrossRef]
- Kato, T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin. Neurosci. 2019, 73, 526–540. [Google Scholar] [CrossRef]
- Farhy Tselnicker, I.; Tsemakhovich, V.; Rishal, I.; Kahanovitch, U.; Dessauer, C.W.; Dascal, N. Dual regulation of G proteins and the G-protein-activated K+ channels by lithium. Proc. Natl. Acad. Sci. USA 2014, 111, 5018–5023. [Google Scholar] [CrossRef]
- Tiller, J.W. Depression and anxiety. Med. J. Aust. 2013, 199, S28–S31. [Google Scholar] [CrossRef]
- Poisbeau, P.; Gazzo, G.; Calvel, L. Anxiolytics targeting GABAA receptors: Insights on etifoxine. World J. Biol. Psychiatry 2018, 19, S36–S45. [Google Scholar] [CrossRef]
- Sriram, K.; Insel, P.A. G Protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Mol. Pharmacol. 2018, 93, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schioth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017, 16, 829–842. [Google Scholar] [CrossRef] [PubMed]
- Senese, N.B.; Rasenick, M.M.; Traynor, J.R. The role of G-proteins and G-protein regulating proteins in depressive disorders. Front. Pharmacol. 2018, 9, 1289. [Google Scholar] [CrossRef]
- Grammatopoulos, D.K. Regulation of G-protein coupled receptor signalling underpinning neurobiology of mood disorders and depression. Mol. Cell. Endocrinol. 2017, 449, 82–89. [Google Scholar] [CrossRef]
- Zmudzka, E.; Salaciak, K.; Sapa, J.; Pytka, K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci. 2018, 210, 106–124. [Google Scholar] [CrossRef] [PubMed]
- Maletic, V.; Eramo, A.; Gwin, K.; Offord, S.J.; Duffy, R.A. The role of norepinephrine and its alpha-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: A systematic review. Front. Psychiatry 2017, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Mlyniec, K.; Singewald, N.; Holst, B.; Nowak, G. GPR39 Zn(2+)-sensing receptor: A new target in antidepressant development? J. Affect. Disord. 2015, 174, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Demsie, D.G.; Altaye, B.M.; Weldekidan, E.; Gebremedhin, H.; Alema, N.M.; Tefera, M.M.; Bantie, A.T. Galanin receptors as drug target for novel antidepressants: Review. Biologics 2020, 14, 37–45. [Google Scholar] [CrossRef]
- Pytka, K.; Mlyniec, K.; Podkowa, K.; Podkowa, A.; Jakubczyk, M.; Zmudzka, E.; Lustyk, K.; Sapa, J.; Filipek, B. The role of melatonin, neurokinin, neurotrophic tyrosine kinase and glucocorticoid receptors in antidepressant-like effect. Pharmacol. Rep. 2017, 69, 546–554. [Google Scholar] [CrossRef]
- Rodgers, G.; Austin, C.; Anderson, J.; Pawlyk, A.; Colvis, C.; Margolis, R.; Baker, J. Glimmers in illuminating the druggable genome. Nat. Rev. Drug Discov. 2018, 17, 301–302. [Google Scholar] [CrossRef]
- Davenport, A.P.; Alexander, S.P.; Sharman, J.L.; Pawson, A.J.; Benson, H.E.; Monaghan, A.E.; Liew, W.C.; Mpamhanga, C.P.; Bonner, T.I.; Neubig, R.R.; et al. International union of basic and clinical pharmacology. LXXXVIII. G protein-coupled receptor list: Recommendations for new pairings with cognate ligands. Pharmacol. Rev. 2013, 65, 967–986. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.P.H.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Mathie, A.; Peters, J.A.; Veale, E.L.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; et al. The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br. J. Pharmacol. 2019, 176 (Suppl. 1), S21–S141. [Google Scholar] [CrossRef] [PubMed]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Le Pichon, M.; Jalfre, M. Depression: A new animal model sensitive to antidepressant treatments. Nature 1977, 266, 730–732. [Google Scholar] [CrossRef] [PubMed]
- Belovicova, K.; Bogi, E.; Csatlosova, K.; Dubovicky, M. Animal tests for anxiety-like and depression-like behavior in rats. Interdiscip. Toxicol. 2017, 10, 40–43. [Google Scholar] [CrossRef]
- Bodnoff, S.R.; Suranyi-Cadotte, B.; Aitken, D.H.; Quirion, R.; Meaney, M.J. The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology 1988, 95, 298–302. [Google Scholar] [CrossRef]
- Blasco-Serra, A.; Gonzalez-Soler, E.M.; Cervera-Ferri, A.; Teruel-Marti, V.; Valverde-Navarro, A.A. A standardization of the novelty-suppressed feeding test protocol in rats. Neurosci. lett. 2017, 658, 73–78. [Google Scholar] [CrossRef]
- Liu, M.Y.; Yin, C.Y.; Zhu, L.J.; Zhu, X.H.; Xu, C.; Luo, C.X.; Chen, H.; Zhu, D.Y.; Zhou, Q.G. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat. protoc. 2018, 13, 1686–1698. [Google Scholar] [CrossRef]
- Handley, S.L.; Mithani, S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ’fear’-motivated behaviour. Naunyn Schmiedebergs Arch. Pharmacol. 1984, 327, 1–5. [Google Scholar] [CrossRef]
- Shepherd, J.K.; Grewal, S.S.; Fletcher, A.; Bill, D.J.; Dourish, C.T. Behavioural and pharmacological characterisation of the elevated "zero-maze" as an animal model of anxiety. Psychopharmacology 1994, 116, 56–64. [Google Scholar] [CrossRef]
- Crawley, J.; Goodwin, F.K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav. 1980, 13, 167–170. [Google Scholar] [CrossRef]
- Broekkamp, C.L.; Rijk, H.W.; Joly-Gelouin, D.; Lloyd, K.L. Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur. J. Pharmacol. 1986, 126, 223–229. [Google Scholar] [CrossRef]
- Prut, L.; Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol. 2003, 463, 3–33. [Google Scholar] [CrossRef]
- Bailey, K.R.; Crawley, J.N. Anxiety-Related Behaviors in Mice. In Methods of Behavior Analysis in Neuroscience, 2nd ed.; Buccafusco, J.J., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2009. [Google Scholar]
- Holter, S.M.; Einicke, J.; Sperling, B.; Zimprich, A.; Garrett, L.; Fuchs, H.; Gailus-Durner, V.; Hrabe de Angelis, M.; Wurst, W. Tests for anxiety-related behavior in mice. Curr. Protoc. Mouse Biol. 2015, 5, 291–309. [Google Scholar] [CrossRef]
- Peric, I.; Costina, V.; Stanisavljevic, A.; Findeisen, P.; Filipovic, D. Proteomic characterization of hippocampus of chronically socially isolated rats treated with fluoxetine: Depression-like behaviour and fluoxetine mechanism of action. Neuropharmacology 2018, 135, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Hidalgo-Mazzei, D.; Strawbridge, R.; Young, A.; Resche-Rigon, M.; Etain, B.; Andreassen, O.A.; Bauer, M.; Bennabi, D.; Blamire, A.M.; et al. Prospective cohort study of early biosignatures of response to lithium in bipolar-I-disorders: Overview of the H2020-funded R-LiNK initiative. Int. J. Bipolar Disord. 2019, 7, 20. [Google Scholar] [CrossRef]
- Bagot, R.C.; Cates, H.M.; Purushothaman, I.; Vialou, V.; Heller, E.A.; Yieh, L.; LaBonte, B.; Pena, C.J.; Shen, L.; Wittenberg, G.M.; et al. Ketamine and imipramine reverse transcriptional signatures of susceptibility and induce resilience-specific gene expression profiles. Biol. Psychiatry 2017, 81, 285–295. [Google Scholar] [CrossRef]
- Tomita, H.; Ziegler, M.E.; Kim, H.B.; Evans, S.J.; Choudary, P.V.; Li, J.Z.; Meng, F.; Dai, M.; Myers, R.M.; Neal, C.R.; et al. G protein-linked signaling pathways in bipolar and major depressive disorders. Front. Genet. 2013, 4, 297. [Google Scholar] [CrossRef]
- Duric, V.; Banasr, M.; Licznerski, P.; Schmidt, H.D.; Stockmeier, C.A.; Simen, A.A.; Newton, S.S.; Duman, R.S. A negative regulator of MAP kinase causes depressive behavior. Nat. Med. 2010, 16, 1328–1332. [Google Scholar] [CrossRef]
- Zhou, Y.; Lutz, P.E.; Ibrahim, E.C.; Courtet, P.; Tzavara, E.; Turecki, G.; Belzeaux, R. Suicide and suicide behaviors: A review of transcriptomics and multiomics studies in psychiatric disorders. J. Neurosci. Res. 2020, 98, 601–615. [Google Scholar] [CrossRef]
- Hyde, C.L.; Nagle, M.W.; Tian, C.; Chen, X.; Paciga, S.A.; Wendland, J.R.; Tung, J.Y.; Hinds, D.A.; Perlis, R.H.; Winslow, A.R. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 2016, 48, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.M.; Sullivan, P.F.; Lewis, C.M. Uncovering the genetic architecture of major depression. Neuron 2019, 102, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Del Zompo, M.; Deleuze, J.F.; Chillotti, C.; Cousin, E.; Niehaus, D.; Ebstein, R.P.; Ardau, R.; Mace, S.; Warnich, L.; Mujahed, M.; et al. Association study in three different populations between the GPR88 gene and major psychoses. Mol. Genet. Genomic Med. 2014, 2, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Okajima, D.; Kudo, G.; Yokota, H. Antidepressant-like behavior in brain-specific angiogenesis inhibitor 2-deficient mice. J. Physiol. Sci. 2011, 61, 47–54. [Google Scholar] [CrossRef]
- Belzeaux, R.; Gorgievski, V.; Fiori, L.M.; Lopez, J.P.; Grenier, J.; Lin, R.; Nagy, C.; Ibrahim, E.C.; Gascon, E.; Courtet, P.; et al. GPR56/ADGRG1 is associated with response to antidepressant treatment. Nat. Commun. 2020, 11, 1635. [Google Scholar] [CrossRef]
- Valverde, O.; Celerier, E.; Baranyi, M.; Vanderhaeghen, P.; Maldonado, R.; Sperlagh, B.; Vassart, G.; Ledent, C. GPR3 receptor, a novel actor in the emotional-like responses. PLoS ONE 2009, 4, e4704. [Google Scholar] [CrossRef]
- Zhang, L.L.; Wang, J.J.; Liu, Y.; Lu, X.B.; Kuang, Y.; Wan, Y.H.; Chen, Y.; Yan, H.M.; Fei, J.; Wang, Z.G. GPR26-deficient mice display increased anxiety- and depression-like behaviors accompanied by reduced phosphorylated cyclic AMP responsive element-binding protein level in central amygdala. Neuroscience 2011, 196, 203–214. [Google Scholar] [CrossRef]
- Aston, C.; Jiang, L.; Sokolov, B.P. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol. Psychiatry 2005, 10, 309–322. [Google Scholar] [CrossRef]
- Surget, A.; Wang, Y.; Leman, S.; Ibarguen-Vargas, Y.; Edgar, N.; Griebel, G.; Belzung, C.; Sibille, E. Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2009, 34, 1363–1380. [Google Scholar] [CrossRef]
- Sibille, E.; Wang, Y.; Joeyen-Waldorf, J.; Gaiteri, C.; Surget, A.; Oh, S.; Belzung, C.; Tseng, G.C.; Lewis, D.A. A molecular signature of depression in the amygdala. Am. J. Psychiatry 2009, 166, 1011–1024. [Google Scholar] [CrossRef]
- Mandillo, S.; Golini, E.; Marazziti, D.; Di Pietro, C.; Matteoni, R.; Tocchini-Valentini, G.P. Mice lacking the Parkinson’s related GPR37/PAEL receptor show non-motor behavioral phenotypes: Age and gender effect. Genes Brain Behav. 2013, 12, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.P.; Morato, X.; Souza, C.; Pinhal, C.; Machado, N.J.; Canas, P.M.; Silva, H.B.; Stagljar, I.; Gandia, J.; Fernandez-Duenas, V.; et al. The role of parkinson’s disease-associated receptor GPR37 in the hippocampus: Functional interplay with the adenosinergic system. J. Neurochem. 2015, 134, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhou, J.; Luan, Y.; Yang, J.; Ge, Y.; Wang, M.; Wu, B.; Wu, Z.; Chen, X.; Li, F.; et al. Spatiotemporal control of GPR37 Signaling and its behavioral effects by optogenetics. Front. Mol. Neurosci. 2018, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Boyce, P.; Hopwood, M. Manipulating melatonin in managing mood. Acta Psychiatr. Scand. Suppl. 2013, 16–23. [Google Scholar] [CrossRef]
- Alaerts, M.; Venken, T.; Lenaerts, A.S.; De Zutter, S.; Norrback, K.F.; Adolfsson, R.; Del-Favero, J. Lack of association of an insertion/deletion polymorphism in the G protein-coupled receptor 50 with bipolar disorder in a Northern Swedish population. Psychiatr. Genet. 2006, 16, 235–236. [Google Scholar] [CrossRef]
- Feng, Y.; Wigg, K.; King, N.; Vetro, A.; Kiss, E.; Kapornai, K.; Mayer, L.; Gadoros, J.; Kennedy, J.L.; Kovacs, M.; et al. GPR50 is not associated with childhood-onset mood disorders in a large sample of Hungarian families. Psychiatr. Genet. 2007, 17, 347–350. [Google Scholar] [CrossRef]
- Macintyre, D.J.; McGhee, K.A.; Maclean, A.W.; Afzal, M.; Briffa, K.; Henry, B.; Thomson, P.A.; Muir, W.J.; Blackwood, D.H. Association of GPR50, an X-linked orphan G protein-coupled receptor, and affective disorder in an independent sample of the Scottish population. Neurosci. Lett. 2010, 475, 169–173. [Google Scholar] [CrossRef]
- Delavest, M.; Even, C.; Benjemaa, N.; Poirier, M.F.; Jockers, R.; Krebs, M.O. Association of the intronic rs2072621 polymorphism of the X-linked GPR50 gene with affective disorder with seasonal pattern. Eur. Psychiatry 2012, 27, 369–371. [Google Scholar] [CrossRef]
- Ryan, J.; Carriere, I.; Ritchie, K.; Ancelin, M.L. Involvement of GPR50 polymorphisms in depression: Independent replication in a prospective elderly cohort. Brain Behav. 2015, 5, e00313. [Google Scholar] [CrossRef]
- Komatsu, H.; Maruyama, M.; Yao, S.; Shinohara, T.; Sakuma, K.; Imaichi, S.; Chikatsu, T.; Kuniyeda, K.; Siu, F.K.; Peng, L.S.; et al. Anatomical transcriptome of G protein-coupled receptors leads to the identification of a novel therapeutic candidate GPR52 for psychiatric disorders. PLoS ONE 2014, 9, e90134. [Google Scholar] [CrossRef]
- Constantinof, A.; Moisiadis, V.G.; Kostaki, A.; Szyf, M.; Matthews, S.G. Antenatal glucocorticoid exposure results in sex-specific and transgenerational changes in prefrontal cortex gene transcription that relate to behavioural outcomes. Sci. Rep. 2019, 9, 764. [Google Scholar] [CrossRef] [PubMed]
- Ubaldi, M.; Ricciardelli, E.; Pasqualini, L.; Sannino, G.; Soverchia, L.; Ruggeri, B.; Falcinelli, S.; Renzi, A.; Ludka, C.; Ciccocioppo, R.; et al. Biomarkers of hippocampal gene expression in a mouse restraint chronic stress model. Pharmacogenomics 2015, 16, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Mamillapalli, R.; Ding, S.; Chang, H.; Liu, Z.W.; Gao, X.B.; Taylor, H.S. Endometriosis alters brain electrophysiology, gene expression and increases pain sensitization, anxiety, and depression in female mice. Biol. Reprod. 2018, 99, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Brandish, P.E.; Su, M.; Holder, D.J.; Hodor, P.; Szumiloski, J.; Kleinhanz, R.R.; Forbes, J.E.; McWhorter, M.E.; Duenwald, S.J.; Parrish, M.L.; et al. Regulation of gene expression by lithium and depletion of inositol in slices of adult rat cortex. Neuron 2005, 45, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.A.; Rich, M.E.; Schork, N.J.; Paulus, M.P.; Geyer, M.A.; Lohr, J.B.; Kuczenski, R.; Niculescu, A.B. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: An expanded convergent functional genomics approach. Mol. Psychiatry 2004, 9, 1007–1029. [Google Scholar] [CrossRef] [PubMed]
- Conti, B.; Maier, R.; Barr, A.M.; Morale, M.C.; Lu, X.; Sanna, P.P.; Bilbe, G.; Hoyer, D.; Bartfai, T. Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol. Psychiatry 2007, 12, 167–189. [Google Scholar] [CrossRef]
- Meirsman, A.C.; Le Merrer, J.; Pellissier, L.P.; Diaz, J.; Clesse, D.; Kieffer, B.L.; Becker, J.A. Mice lacking GPR88 show motor deficit, improved spatial learning, and low anxiety reversed by delta opioid antagonist. Biol. Psychiatry 2016, 79, 917–927. [Google Scholar] [CrossRef]
- Meirsman, A.C.; Robe, A.; de Kerchove d’Exaerde, A.; Kieffer, B.L. GPR88 in A2AR neurons enhances anxiety-like behaviors. eNeuro 2016, 3. [Google Scholar] [CrossRef]
- Meirsman, A.C.; Ben Hamida, S.; Clarke, E.; de Kerchove d’Exaerde, A.; Darcq, E.; Kieffer, B.L. GPR88 in D1R-type and D2R-type medium spiny neurons differentially regulates affective and motor behavior. eNeuro 2019, 6. [Google Scholar] [CrossRef]
- Galet, B.; Ingallinesi, M.; Pegon, J.; Thi, A.D.; Ravassard, P.; Biguet, N.F.; Meloni, R. G-protein coupled receptor 88 knock-down in the associative striatum reduces the psychiatric symptoms in a translational model of parkinson’s disease. bioRxiv 2019. [Google Scholar] [CrossRef]
- Sutton, L.P.; Orlandi, C.; Song, C.; Oh, W.C.; Muntean, B.S.; Xie, K.; Filippini, A.; Xie, X.; Satterfield, R.; Yaeger, J.D.W.; et al. Orphan receptor GPR158 controls stress-induced depression. eLife 2018, 7. [Google Scholar] [CrossRef]
- Khrimian, L.; Obri, A.; Ramos-Brossier, M.; Rousseaud, A.; Moriceau, S.; Nicot, A.S.; Mera, P.; Kosmidis, S.; Karnavas, T.; Saudou, F.; et al. Gpr158 mediates osteocalcin’s regulation of cognition. J. Exp. Med. 2017, 214, 2859–2873. [Google Scholar] [CrossRef] [PubMed]
- Cetereisi, D.; Kramvis, I.; Gebuis, T.; van der Loo, R.J.; Gouwenberg, Y.; Mansvelder, H.D.; Li, K.W.; Smit, A.B.; Spijker, S. Gpr158 deficiency impacts hippocampal CA1 neuronal excitability, dendritic architecture, and affects spatial learning. Front. Cell. Neurosci. 2019, 13, 465. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, C.; Sutton, L.P.; Muntean, B.S.; Song, C.; Martemyanov, K.A. Homeostatic cAMP regulation by the RGS7 complex controls depression-related behaviors. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2019, 44, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Kee, H.J.; Koh, J.T.; Kim, M.Y.; Ahn, K.Y.; Kim, J.K.; Bae, C.S.; Park, S.S.; Kim, K.K. Expression of brain-specific angiogenesis inhibitor 2 (BAI2) in normal and ischemic brain: Involvement of BAI2 in the ischemia-induced brain angiogenesis. J. Cereb. Blood Flow Metab. 2002, 22, 1054–1067. [Google Scholar] [CrossRef] [PubMed]
- Shiratsuchi, T.; Nishimori, H.; Ichise, H.; Nakamura, Y.; Tokino, T. Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1). Cytogenet. Cell Genet. 1997, 79, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Stoveken, H.M.; Hajduczok, A.G.; Xu, L.; Tall, G.G. Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc. Natl. Acad. Sci. USA 2015, 112, 6194–6199. [Google Scholar] [CrossRef]
- Liebscher, I.; Schon, J.; Petersen, S.C.; Fischer, L.; Auerbach, N.; Demberg, L.M.; Mogha, A.; Coster, M.; Simon, K.U.; Rothemund, S.; et al. A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep. 2014, 9, 2018–2026. [Google Scholar] [CrossRef]
- Kishore, A.; Hall, R.A. Versatile signaling activity of adhesion GPCRs. Handb. Exp. Pharmacol. 2016, 234, 127–146. [Google Scholar] [CrossRef]
- Okajima, D.; Kudo, G.; Yokota, H. Brain-specific angiogenesis inhibitor 2 (BAI2) may be activated by proteolytic processing. J. Recept. Signal Transduct. Res. 2010, 30, 143–153. [Google Scholar] [CrossRef]
- Purcell, R.H.; Toro, C.; Gahl, W.A.; Hall, R.A. A disease-associated mutation in the adhesion GPCR BAI2 (ADGRB2) increases receptor signaling activity. Hum. Mutat. 2017, 38, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Malberg, J.E. Implications of adult hippocampal neurogenesis in antidepressant action. J. Psychiatry Neurosci. 2004, 29, 196–205. [Google Scholar] [PubMed]
- Jeong, B.C.; Kim, M.Y.; Lee, J.H.; Kee, H.J.; Kho, D.H.; Han, K.E.; Qian, Y.R.; Kim, J.K.; Kim, K.K. Brain-specific angiogenesis inhibitor 2 regulates VEGF through GABP that acts as a transcriptional repressor. FEBS Lett. 2006, 580, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Shashidhar, S.; Lorente, G.; Nagavarapu, U.; Nelson, A.; Kuo, J.; Cummins, J.; Nikolich, K.; Urfer, R.; Foehr, E.D. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 2005, 24, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, T.; Sakata, K.; Yoshizaki, K.; Tago, K.; Mizuno, N.; Itoh, H. Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J. Biol. Chem. 2008, 283, 14469–14478. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.P.; Doyle, J.R.; Barry, B.; Beauvais, A.; Rozkalne, A.; Piao, X.; Lawlor, M.W.; Kopin, A.S.; Walsh, C.A.; Gussoni, E. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo. FEBS J. 2013, 280, 6097–6113. [Google Scholar] [CrossRef]
- Luo, R.; Jeong, S.J.; Jin, Z.; Strokes, N.; Li, S.; Piao, X. G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc. Natl. Acad. Sci. USA 2011, 108, 12925–12930. [Google Scholar] [CrossRef]
- Giera, S.; Deng, Y.; Luo, R.; Ackerman, S.D.; Mogha, A.; Monk, K.R.; Ying, Y.; Jeong, S.J.; Makinodan, M.; Bialas, A.R.; et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat. Commun. 2015, 6, 6121. [Google Scholar] [CrossRef]
- Giera, S.; Luo, R.; Ying, Y.; Ackerman, S.D.; Jeong, S.J.; Stoveken, H.M.; Folts, C.J.; Welsh, C.A.; Tall, G.G.; Stevens, B.; et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. eLife 2018, 7. [Google Scholar] [CrossRef]
- Peng, Y.M.; van de Garde, M.D.; Cheng, K.F.; Baars, P.A.; Remmerswaal, E.B.; van Lier, R.A.; Mackay, C.R.; Lin, H.H.; Hamann, J. Specific expression of GPR56 by human cytotoxic lymphocytes. J. Leukoc. Biol. 2011, 90, 735–740. [Google Scholar] [CrossRef]
- Chiesa, M.D.; Falco, M.; Parolini, S.; Bellora, F.; Petretto, A.; Romeo, E.; Balsamo, M.; Gambarotti, M.; Scordamaglia, F.; Tabellini, G.; et al. GPR56 as a novel marker identifying the CD56dull CD16+ NK cell subset both in blood stream and in inflamed peripheral tissues. Int. Immunol. 2010, 22, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S.D.; Garcia, C.; Piao, X.; Gutmann, D.H.; Monk, K.R. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Galpha12/13 and RhoA. Nat. Commun. 2015, 6, 6122. [Google Scholar] [CrossRef] [PubMed]
- Stoveken, H.M.; Larsen, S.D.; Smrcka, A.V.; Tall, G.G. Gedunin- and khivorin-derivatives are small-molecule partial agonists for adhesion g protein-coupled receptors GPR56/ADGRG1 and GPR114/ADGRG5. Mol. Pharmacol. 2018, 93, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Valles, A.; Haji, N.; De Gregorio, D.; Matta-Camacho, E.; Eslamizade, M.J.; Popic, J.; Sharma, V.; Cao, R.; Rummel, C.; Tanti, A.; et al. Translational control of depression-like behavior via phosphorylation of eukaryotic translation initiation factor 4E. Nat. Commun. 2018, 9, 2459. [Google Scholar] [CrossRef]
- Amorim, I.S.; Kedia, S.; Kouloulia, S.; Simbriger, K.; Gantois, I.; Jafarnejad, S.M.; Li, Y.; Kampaite, A.; Pooters, T.; Romano, N.; et al. Loss of eIF4E phosphorylation engenders depression-like behaviors via selective mRNA translation. J. Neurosci. Off. J. Soc. Neurosci. 2018, 38, 2118–2133. [Google Scholar] [CrossRef]
- Beaulieu, J.M. A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J. Psychiatry Neurosci. 2012, 37, 7–16. [Google Scholar] [CrossRef]
- Fang, Z.H.; Lee, C.H.; Seo, M.K.; Cho, H.; Lee, J.G.; Lee, B.J.; Park, S.W.; Kim, Y.H. Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats. Neurosci. Res. 2013, 76, 187–194. [Google Scholar] [CrossRef]
- Bae, B.I.; Tietjen, I.; Atabay, K.D.; Evrony, G.D.; Johnson, M.B.; Asare, E.; Wang, P.P.; Murayama, A.Y.; Im, K.; Lisgo, S.N.; et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 2014, 343, 764–768. [Google Scholar] [CrossRef]
- Iismaa, T.P.; Kiefer, J.; Liu, M.L.; Baker, E.; Sutherland, G.R.; Shine, J. Isolation and chromosomal localization of a novel human G-protein-coupled receptor (GPR3) expressed predominantly in the central nervous system. Genomics 1994, 24, 391–394. [Google Scholar] [CrossRef]
- Marchese, A.; Docherty, J.M.; Nguyen, T.; Heiber, M.; Cheng, R.; Heng, H.H.; Tsui, L.C.; Shi, X.; George, S.R.; O’Dowd, B.F. Cloning of human genes encoding novel G protein-coupled receptors. Genomics 1994, 23, 609–618. [Google Scholar] [CrossRef]
- Eggerickx, D.; Denef, J.F.; Labbe, O.; Hayashi, Y.; Refetoff, S.; Vassart, G.; Parmentier, M.; Libert, F. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase. Biochem. J. 1995, 309, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Uhlenbrock, K.; Gassenhuber, H.; Kostenis, E. Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell. Signal. 2002, 14, 941–953. [Google Scholar] [CrossRef]
- Bresnick, J.N.; Skynner, H.A.; Chapman, K.L.; Jack, A.D.; Zamiara, E.; Negulescu, P.; Beaumont, K.; Patel, S.; McAllister, G. Identification of signal transduction pathways used by orphan g protein-coupled receptors. Assay Drug Dev. Technol. 2003, 1, 239–249. [Google Scholar] [CrossRef]
- Hinckley, M.; Vaccari, S.; Horner, K.; Chen, R.; Conti, M. The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes. Dev. Biol. 2005, 287, 249–261. [Google Scholar] [CrossRef]
- Tanaka, S.; Ishii, K.; Kasai, K.; Yoon, S.O.; Saeki, Y. Neural expression of G protein-coupled receptors GPR3, GPR6, and GPR12 up-regulates cyclic AMP levels and promotes neurite outgrowth. J. Biol. Chem. 2007, 282, 10506–10515. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.L.; Li, Y.; Ding, J.H.; Dong, F.L.; Hou, Y.J.; Jiang, B.C.; Shi, F.X.; Xu, Y.X. Sphingosine 1-phosphate acts as an activator for the porcine Gpr3 of constitutively active G protein-coupled receptors. J. Zhejiang Univ. Sci. B 2012, 13, 555–566. [Google Scholar] [CrossRef]
- Yin, H.; Chu, A.; Li, W.; Wang, B.; Shelton, F.; Otero, F.; Nguyen, D.G.; Caldwell, J.S.; Chen, Y.A. Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J. Biol. Chem. 2009, 284, 12328–12338. [Google Scholar] [CrossRef]
- Dwivedi, Y.; Pandey, G.N. Adenylyl cyclase-cyclicAMP signaling in mood disorders: Role of the crucial phosphorylating enzyme protein kinase A. Neuropsychiatr. Dis. Treat. 2008, 4, 161–176. [Google Scholar] [CrossRef]
- Miyagi, T.; Tanaka, S.; Hide, I.; Shirafuji, T.; Sakai, N. The subcellular dynamics of the gs-linked receptor GPR3 contribute to the local activation of PKA in cerebellar granular neurons. PLoS ONE 2016, 11, e0147466. [Google Scholar] [CrossRef]
- Tanaka, S.; Miyagi, T.; Dohi, E.; Seki, T.; Hide, I.; Sotomaru, Y.; Saeki, Y.; Antonio Chiocca, E.; Matsumoto, M.; Sakai, N. Developmental expression of GPR3 in rodent cerebellar granule neurons is associated with cell survival and protects neurons from various apoptotic stimuli. Neurobiol. Dis. 2014, 68, 215–227. [Google Scholar] [CrossRef]
- Matsuda, S.; Ikeda, Y.; Murakami, M.; Nakagawa, Y.; Tsuji, A.; Kitagishi, Y. Roles of PI3K/AKT/GSK3 pathway involved in psychiatric illnesses. Diseases 2019, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Mao, L. The ERK pathway: Molecular mechanisms and treatment of depression. Mol. Neurobiol. 2019, 56, 6197–6205. [Google Scholar] [CrossRef] [PubMed]
- Laun, A.S.; Song, Z.H. GPR3 and GPR6, novel molecular targets for cannabidiol. Biochem. Biophys. Res. Commun. 2017, 490, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Silote, G.P.; Sartim, A.; Sales, A.; Eskelund, A.; Guimaraes, F.S.; Wegener, G.; Joca, S. Emerging evidence for the antidepressant effect of cannabidiol and the underlying molecular mechanisms. J. Chem. Neuroanat. 2019, 98, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Lynch, K.R.; Nguyen, T.; Im, D.S.; Cheng, R.; Saldivia, V.R.; Liu, Y.; Liu, I.S.; Heng, H.H.; Seeman, P.; et al. Cloning and characterization of additional members of the G protein-coupled receptor family. Biochim. Biophys. Acta 2000, 1490, 311–323. [Google Scholar] [CrossRef]
- Jones, P.G.; Nawoschik, S.P.; Sreekumar, K.; Uveges, A.J.; Tseng, E.; Zhang, L.; Johnson, J.; He, L.; Paulsen, J.E.; Bates, B.; et al. Tissue distribution and functional analyses of the constitutively active orphan G protein coupled receptors, GPR26 and GPR78. Biochim. Biophys. Acta 2007, 1770, 890–901. [Google Scholar] [CrossRef]
- Grant, B.F.; Stinson, F.S.; Dawson, D.A.; Chou, S.P.; Dufour, M.C.; Compton, W.; Pickering, R.P.; Kaplan, K. Prevalence and co-occurrence of substance use disorders and independent mood and anxiety disorders: Results from the national epidemiologic survey on alcohol and related conditions. Arch. Gen. Psychiatry 2004, 61, 807–816. [Google Scholar] [CrossRef]
- McHugh, R.K.; Weiss, R.D. Alcohol use disorder and depressive disorders. Alcohol Res. 2019, 40. [Google Scholar] [CrossRef]
- Marazziti, D.; Golini, E.; Mandillo, S.; Magrelli, A.; Witke, W.; Matteoni, R.; Tocchini-Valentini, G.P. Altered dopamine signaling and MPTP resistance in mice lacking the Parkinson’s disease-associated GPR37/parkin-associated endothelin-like receptor. Proc. Natl. Acad. Sci. USA 2004, 101, 10189–10194. [Google Scholar] [CrossRef]
- Fujita-Jimbo, E.; Yu, Z.L.; Li, H.; Yamagata, T.; Mori, M.; Momoi, T.; Momoi, M.Y. Mutation in parkinson disease-associated, G-protein-coupled receptor 37 (GPR37/PaelR) is related to autism spectrum disorder. PLoS ONE 2012, 7, e51155. [Google Scholar] [CrossRef]
- Rezgaoui, M.; Susens, U.; Ignatov, A.; Gelderblom, M.; Glassmeier, G.; Franke, I.; Urny, J.; Imai, Y.; Takahashi, R.; Schaller, H.C. The neuropeptide head activator is a high-affinity ligand for the orphan G-protein-coupled receptor GPR37. J. Cell Sci. 2006, 119, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.C.; Giddens, M.M.; Schaefer, S.A.; Hall, R.A. GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proc. Natl. Acad. Sci. USA 2013, 110, 9529–9534. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Xie, Y.K.; Zhang, Z.J.; Wang, Z.; Xu, Z.Z.; Ji, R.R. GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J Clin Invest 2018, 128, 3568–3582. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, L.; Zang, M.; Zhang, B.; Duan, Y.; Fan, Z.; Li, J.; Su, L.; Yan, M.; Zhu, Z.; et al. REG4 promotes peritoneal metastasis of gastric cancer through GPR37. Oncotarget 2016, 7, 27874–27888. [Google Scholar] [CrossRef]
- Leinartaite, L.; Svenningsson, P. Folding underlies bidirectional role of GPR37/Pael-R in parkinson disease. Trends Pharmacol. Sci. 2017, 38, 749–760. [Google Scholar] [CrossRef]
- Liu, B.; Mosienko, V.; Vaccari Cardoso, B.; Prokudina, D.; Huentelman, M.; Teschemacher, A.G.; Kasparov, S. Glio- and neuro-protection by prosaposin is mediated by orphan G-protein coupled receptors GPR37L1 and GPR37. Glia 2018, 66, 2414–2426. [Google Scholar] [CrossRef]
- Donohue, P.J.; Shapira, H.; Mantey, S.A.; Hampton, L.L.; Jensen, R.T.; Battey, J.F. A human gene encodes a putative G protein-coupled receptor highly expressed in the central nervous system. Brain Res. Mol. Brain Res. 1998, 54, 152–160. [Google Scholar] [CrossRef]
- Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol. 2018, 175, 3190–3199. [Google Scholar] [CrossRef]
- Tsuno, N.; Besset, A.; Ritchie, K. Sleep and depression. J. Clin. Psychiatry 2005, 66, 1254–1269. [Google Scholar] [CrossRef]
- Spadoni, G.; Bedini, A.; Rivara, S.; Mor, M. Melatonin receptor agonists: New options for insomnia and depression treatment. CNS Neurosci. Ther. 2011, 17, 733–741. [Google Scholar] [CrossRef]
- Kasper, S.; Hamon, M. Beyond the monoaminergic hypothesis: Agomelatine, a new antidepressant with an innovative mechanism of action. World J. Biol. Psychiatry 2009, 10, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Tardito, D.; Molteni, R.; Popoli, M.; Racagni, G. Synergistic mechanisms involved in the antidepressant effects of agomelatine. Eur. Neuropsychopharmacol. 2012, 22 (Suppl. 3), S482–S486. [Google Scholar] [CrossRef]
- Uz, T.; Arslan, A.D.; Kurtuncu, M.; Imbesi, M.; Akhisaroglu, M.; Dwivedi, Y.; Pandey, G.N.; Manev, H. The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res. Mol. Brain Res. 2005, 136, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Emet, M.; Ozcan, H.; Ozel, L.; Yayla, M.; Halici, Z.; Hacimuftuoglu, A. A Review of melatonin, its receptors and drugs. Eurasian J. Med. 2016, 48, 135–141. [Google Scholar] [CrossRef]
- Oishi, A.; Cecon, E.; Jockers, R. Melatonin receptor signaling: Impact of Receptor oligomerization on receptor function. Int. Rev. Cell Mol. Biol. 2018, 338, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Oishi, A.; Karamitri, A.; Gerbier, R.; Lahuna, O.; Ahmad, R.; Jockers, R. Orphan GPR61, GPR62 and GPR135 receptors and the melatonin MT2 receptor reciprocally modulate their signaling functions. Sci. Rep. 2017, 7, 8990. [Google Scholar] [CrossRef]
- Dufourny, L.; Levasseur, A.; Migaud, M.; Callebaut, I.; Pontarotti, P.; Malpaux, B.; Monget, P. GPR50 is the mammalian ortholog of Mel1c: Evidence of rapid evolution in mammals. BMC Evol. Biol. 2008, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Gubitz, A.K.; Reppert, S.M. Assignment of the melatonin-related receptor to human chromosome X (GPR50) and mouse chromosome X (Gpr50). Genomics 1999, 55, 248–251. [Google Scholar] [CrossRef]
- Batailler, M.; Mullier, A.; Sidibe, A.; Delagrange, P.; Prevot, V.; Jockers, R.; Migaud, M. Neuroanatomical distribution of the orphan GPR50 receptor in adult sheep and rodent brains. J. Neuroendocrinol. 2012, 24, 798–808. [Google Scholar] [CrossRef]
- Reppert, S.M.; Weaver, D.R.; Ebisawa, T.; Mahle, C.D.; Kolakowski, L.F., Jr. Cloning of a melatonin-related receptor from human pituitary. FEBS Lett. 1996, 386, 219–224. [Google Scholar] [CrossRef]
- Grunewald, E.; Tew, K.D.; Porteous, D.J.; Thomson, P.A. Developmental expression of orphan G protein-coupled receptor 50 in the mouse brain. ACS Chem. Neurosci. 2012, 3, 459–472. [Google Scholar] [CrossRef]
- Levoye, A.; Dam, J.; Ayoub, M.A.; Guillaume, J.L.; Couturier, C.; Delagrange, P.; Jockers, R. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J. 2006, 25, 3012–3023. [Google Scholar] [CrossRef]
- Lee, D.K.; George, S.R.; Cheng, R.; Nguyen, T.; Liu, Y.; Brown, M.; Lynch, K.R.; O’Dowd, B.F. Identification of four novel human G protein-coupled receptors expressed in the brain. Brain Res. Mol. Brain Res. 2001, 86, 13–22. [Google Scholar] [CrossRef]
- Vanti, W.B.; Nguyen, T.; Cheng, R.; Lynch, K.R.; George, S.R.; O’Dowd, B.F. Novel human G-protein-coupled receptors. Biochem. Biophys. Res. Commun. 2003, 305, 67–71. [Google Scholar] [CrossRef]
- Fredriksson, R.; Hoglund, P.J.; Gloriam, D.E.; Lagerstrom, M.C.; Schioth, H.B. Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett. 2003, 554, 381–388. [Google Scholar] [CrossRef]
- Muroi, T.; Matsushima, Y.; Kanamori, R.; Inoue, H.; Fujii, W.; Yogo, K. GPR62 constitutively activates cAMP signaling but is dispensable for male fertility in mice. Reproduction 2017, 154, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Thomson, P.A.; Wray, N.R.; Thomson, A.M.; Dunbar, D.R.; Grassie, M.A.; Condie, A.; Walker, M.T.; Smith, D.J.; Pulford, D.J.; Muir, W.; et al. Sex-specific association between bipolar affective disorder in women and GPR50, an X-linked orphan G protein-coupled receptor. Mol. Psychiatry 2005, 10, 470–478. [Google Scholar] [CrossRef] [PubMed]
- De Quervain, D.; Schwabe, L.; Roozendaal, B. Stress, glucocorticoids and memory: Implications for treating fear-related disorders. Nat. Rev. Neurosci. 2017, 18, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hand, L.E.; Meng, Q.J.; Loudon, A.S.; Bechtold, D.A. GPR50 interacts with TIP60 to modulate glucocorticoid receptor signalling. PLoS ONE 2011, 6, e23725. [Google Scholar] [CrossRef]
- Yamamoto, T.; Horikoshi, M. Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J. Biol. chem. 1997, 272, 30595–30598. [Google Scholar] [CrossRef]
- Gaughan, L.; Brady, M.E.; Cook, S.; Neal, D.E.; Robson, C.N. Tip60 is a co-activator specific for class I nuclear hormone receptors. J. Biolo. Chem. 2001, 276, 46841–46848. [Google Scholar] [CrossRef]
- Ghobashi, A.H.; Kamel, M.A. Tip60: Updates. J. Appl. Genet. 2018, 59, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Nambu, H.; Fukushima, M.; Hikichi, H.; Inoue, T.; Nagano, N.; Tahara, Y.; Nambu, T.; Ito, J.; Ogawa, Y.; Ozaki, S.; et al. Characterization of metabolic phenotypes of mice lacking GPR61, an orphan G-protein coupled receptor. Life Sci. 2011, 89, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.A.; Bechtold, D.A.; Dupre, S.M.; Brennand, J.; Barrett, P.; Luckman, S.M.; Loudon, A.S. Altered metabolism in the melatonin-related receptor (GPR50) knockout mouse. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E176–E182. [Google Scholar] [CrossRef]
- Castren, E.; Kojima, M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol. Dis. 2017, 97, 119–126. [Google Scholar] [CrossRef]
- Berque-Bestel, I.; Lezoualc’h, F.; Jockers, R. Bivalent ligands as specific pharmacological tools for G protein-coupled receptor dimers. Curr. Drug Discov. Technol. 2008, 5, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Sawzdargo, M.; Nguyen, T.; Lee, D.K.; Lynch, K.R.; Cheng, R.; Heng, H.H.; George, S.R.; O’Dowd, B.F. Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res. Mol. Brain Res. 1999, 64, 193–198. [Google Scholar] [CrossRef]
- Lin, X.; Li, M.; Wang, N.; Wu, Y.; Luo, Z.; Guo, S.; Han, G.W.; Li, S.; Yue, Y.; Wei, X.; et al. Structural basis of ligand recognition and self-activation of orphan GPR52. Nature 2020, 579, 152–157. [Google Scholar] [CrossRef]
- Fagan, K.A.; Schaack, J.; Zweifach, A.; Cooper, D.M. Adenovirus encoded cyclic nucleotide-gated channels: A new methodology for monitoring cAMP in living cells. FEBS Lett. 2001, 500, 85–90. [Google Scholar] [CrossRef]
- Nishiyama, K.; Suzuki, H.; Harasawa, T.; Suzuki, N.; Kurimoto, E.; Kawai, T.; Maruyama, M.; Komatsu, H.; Sakuma, K.; Shimizu, Y.; et al. FTBMT, a novel and selective GPR52 agonist, demonstrates antipsychotic-like and procognitive effects in rodents, revealing a potential therapeutic agent for schizophrenia. J. Pharmacol. Exp. Ther. 2017, 363, 253–264. [Google Scholar] [CrossRef]
- Setoh, M.; Ishii, N.; Kono, M.; Miyanohana, Y.; Shiraishi, E.; Harasawa, T.; Ota, H.; Odani, T.; Kanzaki, N.; Aoyama, K.; et al. Discovery of the first potent and orally available agonist of the orphan G-protein-coupled receptor 52. J. Med. Chem. 2014, 57, 5226–5237. [Google Scholar] [CrossRef] [PubMed]
- Nakahata, T.; Tokumaru, K.; Ito, Y.; Ishii, N.; Setoh, M.; Shimizu, Y.; Harasawa, T.; Aoyama, K.; Hamada, T.; Kori, M.; et al. Design and synthesis of 1-(1-benzothiophen-7-yl)-1H-pyrazole, a novel series of G protein-coupled receptor 52 (GPR52) agonists. Bioorganic Med. Chem. 2018, 26, 1598–1608. [Google Scholar] [CrossRef] [PubMed]
- Gorwood, P. Neurobiological mechanisms of anhedonia. Dialogues Clin. Neurosci. 2008, 10, 291–299. [Google Scholar] [PubMed]
- Diaz Heijtz, R.; Fuchs, E.; Feldon, J.; Pryce, C.R.; Forssberg, H. Effects of antenatal dexamethasone treatment on glucocorticoid receptor and calcyon gene expression in the prefrontal cortex of neonatal and adult common marmoset monkeys. Behav. Brain Funct. 2010, 6, 18. [Google Scholar] [CrossRef]
- Liggins, G.C.; Howie, R.N. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972, 50, 515–525. [Google Scholar]
- Gokce, O.; Stanley, G.M.; Treutlein, B.; Neff, N.F.; Camp, J.G.; Malenka, R.C.; Rothwell, P.E.; Fuccillo, M.V.; Sudhof, T.C.; Quake, S.R. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep. 2016, 16, 1126–1137. [Google Scholar] [CrossRef]
- Becker, J.A.; Befort, K.; Blad, C.; Filliol, D.; Ghate, A.; Dembele, D.; Thibault, C.; Koch, M.; Muller, J.; Lardenois, A.; et al. Transcriptome analysis identifies genes with enriched expression in the mouse central extended amygdala. Neuroscience 2008, 156, 950–965. [Google Scholar] [CrossRef]
- Ehrlich, A.T.; Semache, M.; Bailly, J.; Wojcik, S.; Arefin, T.M.; Colley, C.; Le Gouill, C.; Gross, F.; Lukasheva, V.; Hogue, M.; et al. Mapping GPR88-Venus illuminates a novel role for GPR88 in sensory processing. Brain Struct. Funct. 2018, 223, 1275–1296. [Google Scholar] [CrossRef]
- Mizushima, K.; Miyamoto, Y.; Tsukahara, F.; Hirai, M.; Sakaki, Y.; Ito, T. A novel G-protein-coupled receptor gene expressed in striatum. Genomics 2000, 69, 314–321. [Google Scholar] [CrossRef]
- Quintana, A.; Sanz, E.; Wang, W.; Storey, G.P.; Guler, A.D.; Wanat, M.J.; Roller, B.A.; la Torre, A.; Amieux, P.S.; McKnight, G.S.; et al. Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors. Nat. Neurosci. 2012, 15, 1547–1555. [Google Scholar] [CrossRef]
- van Waes, V.; Tseng, K.Y.; Steiner, H. GPR88—A putative signaling molecule predominantly expressed in the striatum: Cellular localization and developmental regulation. Basal Ganglia 2011, 1, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Dzierba, C.D.; Fink, C.; Garcia, Y.; Green, M.; Han, J.; Kwon, S.; Kumi, G.; Liang, Z.; Liu, Y.; et al. The discovery of potent agonists for GPR88, an orphan GPCR, for the potential treatment of CNS disorders. Bioorganic Med. Chem. Lett. 2015, 25, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Decker, A.M.; Gay, E.A.; Mathews, K.M.; Rosa, T.C.; Langston, T.L.; Maitra, R.; Jin, C. Development and validation of a high-throughput calcium mobilization assay for the orphan receptor GPR88. J. Biomed. Sci. 2017, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Decker, A.M.; Huang, X.P.; Gilmour, B.P.; Blough, B.E.; Roth, B.L.; Hu, Y.; Gill, J.B.; Zhang, X.P. Synthesis, pharmacological characterization, and structure-activity relationship studies of small molecular agonists for the orphan GPR88 receptor. ACS Chem. Neurosci. 2014, 5, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Dzierba, C.D.; Bi, Y.; Dasgupta, B.; Hartz, R.A.; Ahuja, V.; Cianchetta, G.; Kumi, G.; Dong, L.; Aleem, S.; Fink, C.; et al. Design, synthesis, and evaluation of phenylglycinols and phenyl amines as agonists of GPR88. Bioorganic Med. Chem. Lett. 2015, 25, 1448–1452. [Google Scholar] [CrossRef]
- Jin, C.; Decker, A.M.; Makhijani, V.H.; Besheer, J.; Darcq, E.; Kieffer, B.L.; Maitra, R. Discovery of a potent, selective, and brain-penetrant small molecule that activates the orphan receptor GPR88 and Reduces alcohol intake. J. Med. Chem. 2018, 61, 6748–6758. [Google Scholar] [CrossRef]
- Logue, S.F.; Grauer, S.M.; Paulsen, J.; Graf, R.; Taylor, N.; Sung, M.A.; Zhang, L.; Hughes, Z.; Pulito, V.L.; Liu, F.; et al. The orphan GPCR, GPR88, modulates function of the striatal dopamine system: A possible therapeutic target for psychiatric disorders? Mol. Cell. Neurosci. 2009, 42, 438–447. [Google Scholar] [CrossRef]
- Ben Hamida, S.; Mendonca-Netto, S.; Arefin, T.M.; Nasseef, M.T.; Boulos, L.J.; McNicholas, M.; Ehrlich, A.T.; Clarke, E.; Moquin, L.; Gratton, A.; et al. Increased alcohol seeking in mice lacking Gpr88 involves dysfunctional mesocorticolimbic networks. Biol. Psychiatry 2018, 84, 202–212. [Google Scholar] [CrossRef]
- Alkufri, F.; Shaag, A.; Abu-Libdeh, B.; Elpeleg, O. Deleterious mutation in GPR88 is associated with chorea, speech delay, and learning disabilities. Neurol. Genet. 2016, 2, e64. [Google Scholar] [CrossRef]
- del Zompo, M.; Severino, G.; Ardau, R.; Chillotti, C.; Piccardi, M.; Dib, C.; Muzard, G.; Soubigou, S.; Derock, M.; Fournel, R.; et al. Genome-scan for bipolar disorder with sib-pair families in the Sardinian population: A new susceptibility locus on chromosome 1p22-p21? Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153B, 1200–1208. [Google Scholar] [CrossRef]
- Meirsman, A.C.; de Kerchove d’Exaerde, A.; Kieffer, B.L.; Ouagazzal, A.M. GPR88 in A2A receptor-expressing neurons modulates locomotor response to dopamine agonists but not sensorimotor gating. Eur. J. Neurosci. 2017, 46, 2026–2034. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, C.; Posokhova, E.; Masuho, I.; Ray, T.A.; Hasan, N.; Gregg, R.G.; Martemyanov, K.A. GPR158/179 regulate G protein signaling by controlling localization and activity of the RGS7 complexes. J. Cell Biol. 2012, 197, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Condomitti, G.; Wierda, K.D.; Schroeder, A.; Rubio, S.E.; Vennekens, K.M.; Orlandi, C.; Martemyanov, K.A.; Gounko, N.V.; Savas, J.N.; de Wit, J. An Input-specific orphan receptor GPR158-HSPG interaction organizes hippocampal mossy Fiber-CA3 synapses. Neuron 2018, 100, 201–215.e209. [Google Scholar] [CrossRef]
- Song, C.; Orlandi, C.; Sutton, L.P.; Martemyanov, K.A. The signaling proteins GPR158 and RGS7 modulate excitability of L2/3 pyramidal neurons and control A-type potassium channel in the prelimbic cortex. J. Biol. Chem. 2019, 294, 13145–13157. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, C.; Omori, Y.; Wang, Y.; Cao, Y.; Ueno, A.; Roux, M.J.; Condomitti, G.; de Wit, J.; Kanagawa, M.; Furukawa, T.; et al. Transsynaptic binding of orphan receptor GPR179 to Dystroglycan-pikachurin complex is essential for the synaptic organization of photoreceptors. Cell Rep. 2018, 25, 130–145. [Google Scholar] [CrossRef]
- Orlandi, C.; Xie, K.; Masuho, I.; Fajardo-Serrano, A.; Lujan, R.; Martemyanov, K.A. Orphan receptor GPR158 is an allosteric modulator of rgs7 catalytic activity with an essential role in dictating its expression and localization in the brain. J. Biol. Chem. 2015, 290, 13622–13639. [Google Scholar] [CrossRef]
- Aguado, C.; Orlandi, C.; Fajardo-Serrano, A.; Gil-Minguez, M.; Martemyanov, K.A.; Lujan, R. Cellular and subcellular localization of the RGS7/Gbeta5/R7BP complex in the cerebellar cortex. Front. Neuroanat. 2016, 10, 114. [Google Scholar] [CrossRef]
- Patel, N.; Itakura, T.; Gonzalez, J.M., Jr.; Schwartz, S.G.; Fini, M.E. GPR158, an orphan member of G protein-coupled receptor family C: Glucocorticoid-stimulated expression and novel nuclear role. PLoS ONE 2013, 8, e57843. [Google Scholar] [CrossRef]
- Duman, R.S.; Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 2006, 59, 1116–1127. [Google Scholar] [CrossRef]
- Berton, O.; Nestler, E.J. New approaches to antidepressant drug discovery: Beyond monoamines. Nat. Rev. Neurosci. 2006, 7, 137–151. [Google Scholar] [CrossRef]
- Brauner-Osborne, H.; Jensen, A.A.; Sheppard, P.O.; Brodin, B.; Krogsgaard-Larsen, P.; O’Hara, P. Cloning and characterization of a human orphan family C G-protein coupled receptor GPRC5D. Biochim. Et Biophys. Acta 2001, 1518, 237–248. [Google Scholar] [CrossRef]
- Robbins, M.J.; Michalovich, D.; Hill, J.; Calver, A.R.; Medhurst, A.D.; Gloger, I.; Sims, M.; Middlemiss, D.N.; Pangalos, M.N. Molecular cloning and characterization of two novel retinoic acid-inducible orphan G-protein-coupled receptors (GPRC5B and GPRC5C). Genomics 2000, 67, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Lotan, R. Molecular cloning and characterization of a novel retinoic acid-inducible gene that encodes a putative G protein-coupled receptor. J. Biol. Chem. 1998, 273, 35008–35015. [Google Scholar] [CrossRef] [PubMed]
- Brauner-Osborne, H.; Krogsgaard-Larsen, P. Sequence and expression pattern of a novel human orphan G-protein-coupled receptor, GPRC5B, a family C receptor with a short amino-terminal domain. Genomics 2000, 65, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Amisten, S.; Mohammad Al-Amily, I.; Soni, A.; Hawkes, R.; Atanes, P.; Persaud, S.J.; Rorsman, P.; Salehi, A. Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic beta-cells. Endocr. J. 2017, 64, 325–338. [Google Scholar] [CrossRef]
- Carvalho, J.; Chennupati, R.; Li, R.; Gunther, S.; Kaur, H.; Zhao, W.; Tonack, S.; Kurz, M.; Mosslein, N.; Bunemann, M.; et al. Orphan G-Protein-Coupled Receptor GPRC5B Controls Smooth Muscle Contractility and Differentiation by Inhibiting Prostacyclin Receptor Signaling. Circulation 2020. [Google Scholar] [CrossRef]
- Sano, T.; Kim, Y.J.; Oshima, E.; Shimizu, C.; Kiyonari, H.; Abe, T.; Higashi, H.; Yamada, K.; Hirabayashi, Y. Comparative characterization of GPRC5B and GPRC5CLacZ knockin mice; behavioral abnormalities in GPRC5B-deficient mice. Biochem. Biophys. Res. Commun. 2011, 412, 460–465. [Google Scholar] [CrossRef]
- Sano, T.; Kohyama-Koganeya, A.; Kinoshita, M.O.; Tatsukawa, T.; Shimizu, C.; Oshima, E.; Yamada, K.; Le, T.D.; Akagi, T.; Tohyama, K.; et al. Loss of GPRC5B impairs synapse formation of Purkinje cells with cerebellar nuclear neurons and disrupts cerebellar synaptic plasticity and motor learning. Neurosci. Res. 2018, 136, 33–47. [Google Scholar] [CrossRef]
- Zhou, H.; Rigoutsos, I. The emerging roles of GPRC5A in diseases. Oncoscience 2014, 1, 765–776. [Google Scholar] [CrossRef]
- Robbins, M.J.; Charles, K.J.; Harrison, D.C.; Pangalos, M.N. Localisation of the GPRC5B receptor in the rat brain and spinal cord. Brain Res. Mol. Brain Res. 2002, 106, 136–144. [Google Scholar] [CrossRef]
- Kurabayashi, N.; Nguyen, M.D.; Sanada, K. The G protein-coupled receptor GPRC5B contributes to neurogenesis in the developing mouse neocortex. Development 2013, 140, 4335–4346. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bet, P.M.; Hugtenburg, J.G.; Penninx, B.W.; Hoogendijk, W.J. Side effects of antidepressants during long-term use in a naturalistic setting. Eur. Neuropsychopharmacol. 2013, 23, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Moncrieff, J. Persistent adverse effects of antidepressants. Epidemiol. Psychiatr. Sci. 2019, 29, e56. [Google Scholar] [CrossRef]
- Turner, E.H. Esketamine for treatment-resistant depression: Seven concerns about efficacy and FDA approval. Lancet Psychiatry 2019, 6, 977–979. [Google Scholar] [CrossRef]
- Naudet, F.; Cristea, I.A. Approval of esketamine for treatment-resistant depression—Authors’ reply. Lancet Psychiatry 2020, 7, 235–236. [Google Scholar] [CrossRef]
- Correll, C.U.; Detraux, J.; de Lepeleire, J.; de Hert, M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 2015, 14, 119–136. [Google Scholar] [CrossRef]
- McKnight, R.F.; Adida, M.; Budge, K.; Stockton, S.; Goodwin, G.M.; Geddes, J.R. Lithium toxicity profile: A systematic review and meta-analysis. Lancet 2012, 379, 721–728. [Google Scholar] [CrossRef]
- Yosten, G.L.; Harada, C.M.; Haddock, C.; Giancotti, L.A.; Kolar, G.R.; Patel, R.; Guo, C.; Chen, Z.; Zhang, J.; Doyle, T.M.; et al. GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. J. Clin. Investig. 2020, 130, 2587–2592. [Google Scholar] [CrossRef]
- Somalwar, A.R.; Choudhary, A.G.; Sharma, P.R.; B, N.; Sagarkar, S.; Sakharkar, A.J.; Subhedar, N.K.; Kokare, D.M. Cocaine- and amphetamine-regulated transcript peptide (CART) induced reward behavior is mediated via Gi/o dependent phosphorylation of PKA/ERK/CREB pathway. Behav. Brain Res. 2018, 348, 9–21. [Google Scholar] [CrossRef]
- Rogge, G.; Jones, D.; Hubert, G.W.; Lin, Y.; Kuhar, M.J. CART peptides: Regulators of body weight, reward and other functions. Nat. Rev. Neurosci. 2008, 9, 747–758. [Google Scholar] [CrossRef]
- Stanek, L.M. Cocaine- and amphetamine related transcript (CART) and anxiety. Peptides 2006, 27, 2005–2011. [Google Scholar] [CrossRef] [PubMed]
- Orsetti, M.; Di Brisco, F.; Canonico, P.L.; Genazzani, A.A.; Ghi, P. Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression. Eur. J. Neurosci. 2008, 27, 2156–2164. [Google Scholar] [CrossRef] [PubMed]
- del Giudice, E.M.; Santoro, N.; Fiumani, P.; Dominguez, G.; Kuhar, M.J.; Perrone, L. Adolescents carrying a missense mutation in the CART gene exhibit increased anxiety and depression. Depress Anxiety 2006, 23, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Treen, A.K.; Luo, V.; Belsham, D.D. Phoenixin Activates immortalized GnRH and kisspeptin neurons through the novel receptor GPR173. Mol. Endocrinol. 2016, 30, 872–888. [Google Scholar] [CrossRef] [PubMed]
- Stein, L.M.; Tullock, C.W.; Mathews, S.K.; Garcia-Galiano, D.; Elias, C.F.; Samson, W.K.; Yosten, G.L. Hypothalamic action of phoenixin to control reproductive hormone secretion in females: Importance of the orphan G protein-coupled receptor Gpr173. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R489–R496. [Google Scholar] [CrossRef] [PubMed]
- Stein, L.M.; Haddock, C.J.; Samson, W.K.; Kolar, G.R.; Yosten, G.L.C. The phoenixins: From discovery of the hormone to identification of the receptor and potential physiologic actions. Peptides 2018, 106, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.H.; He, Z.; Peng, Y.L.; Jin, W.D.; Mu, J.; Xue, H.X.; Wang, Z.; Chang, M.; Wang, R. Effects of Phoenixin-14 on anxiolytic-like behavior in mice. Behav. Brain Res. 2015, 286, 39–48. [Google Scholar] [CrossRef]
- Li, N.; Lee, B.; Liu, R.J.; Banasr, M.; Dwyer, J.M.; Iwata, M.; Li, X.Y.; Aghajanian, G.; Duman, R.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010, 329, 959–964. [Google Scholar] [CrossRef]
oGPCR | Alias | Human Studies | Animal Studies |
---|---|---|---|
ADGRB2 | BAI2 | OFT, male ADGRB2 KO vs. WT mice, 11–14 week-old, ↔ time in center [65] | |
TST, male ADGRB2 KO vs. WT mice, 11–14 week-old, ↓ immobility [65] | |||
SDT, male ADGRB2 KO vs. WT mice, 11–14 week-old, ↑ motor activity [65] | |||
ADGRG1 | GPR56 | MDD antidepressant responders vs. non-responders, blood, microarray, ↑ mRNA levels [66]. | Male mice, 3–6 month-old, blood, microarray, ↓ mRNA by UCMS rescued by treatments only in responders [66]. |
MDD vs. controls, dlPFC, microarray, ↓ mRNA levels [59].) | Male mice, 3–6 month-old, PFC, microarray, ↓ mRNA by UCMS rescued by treatments only in responders [66]. | ||
MDD vs. controls, PFC, RT-PCR, ↓ mRNA levels [66]. | TST, male ADGRG1 OE in mPFC vs. control mice, 3–6 month-old, ↓ immobility [66]. | ||
TST, male ADGRG1 KD in mPFC vs. control mice, 3–6 month-old, ↑ immobility [66]. | |||
FST, male ADGRG1 OE in mPFC vs. control mice, 3–6 month-old, ↓ immobility [66].) | |||
FST, male ADGRG1 KD in mPFC vs. control mice, 3–6 month-old, ↑ immobility [66].) | |||
SPT, male ADGRG1 OE in mPFC vs. control mice, 3–6 month-old, ↔ ratio [66]. | |||
SPT, male ADGRG1 KD in mPFC vs. control mice, 3–6 month-old, ↓ ratio [66]. | |||
EPM, male ADGRG1 OE in mPFC vs. control mice, 3–6 month-old, ↔ immobility [66]. | |||
EPM, male ADGRG1 KD in mPFC vs. control mice, 3–6 month-old, ↓ immobility [66].) | |||
TST, male ADGRG1 KD in mPFC vs. control mice, 3–6 month-old, ↔ immobility after fluoxetine [66].) | |||
TST, male, agonist infusion in mPFC, 3–6 month-old, ↓ immobility [66]. | |||
GPR3 | ACCA | OFT, male GPR3 KO vs. WT mice, 2–6 month-old, ↓ exploratory behavior and time in the center [67]. | |
EPM, male GPR3 KO vs. WT mice, 2–6 month-old, ↓ time in open arms [67]. | |||
FST, male GPR3 KO vs. WT mice, 2–6 month-old, ↑ immobility [67].) | |||
TST, male GPR3 KO vs. WT mice, 2–6 month-old, ↑ immobility [67]. | |||
GPR26 | OFT, male GPR26 KO vs. Het vs. WT mice, 10–12 week-old, ↓ time in center - Het and KO [68] | ||
EPM, male GPR26 KO vs. Het vs. WT mice, 10–12 week-old, ↓ time in open arms - KO [68] | |||
FST, male GPR26 KO vs. Het vs. WT mice, 10–12 week-old, ↔ immobility - KO (P = 0.051) [68] | |||
TST, male GPR26 KO vs. Het vs. WT mice, 10–12 week-old, ↑ immobility - KO [68] | |||
EPP, male GPR26 KO vs. WT mice, 10–12 week-old, ↑ preference - 7% solution [68] | |||
GPR37 | PAELR | MDD vs. controls, frontotemporal cortex, microarray, ↓ levels [69] | Male mice, 8 week-old, amygdala, microarray, ↓ mRNA by UCMS rescued by treatments [70]. |
MDD vs. controls, amygdala, microarray, ↓ levels [71]. | EPM, female GPR37 KO vs. WT mice mice, 4–6 month-old, ↔ time in open arms [72]. | ||
MDD vs. controls, dlPFC, microarray, ↓ levels [59]. | EPM, male GPR37 KO vs. WT mice, 16–18 month-old, ↔ time in open arms [72]. | ||
MDD vs. controls, ACC, microarray, ↓ levels [59]. | EPM, female GPR37 KO vs. WT mice, 16–18 month-old, ↓ time in open arms [72]. | ||
MDD vs. controls, ACC, RT-PCR, ↓ levels [59]. | FST, female GPR37 KO vs. WT mice, 4–6 month-old, ↔ immobility [72]. | ||
BPD vs. controls, dlPFC, microarray, ↑ levels [59]. | FST, male GPR37 KO vs. WT mice, 16–18 month-old, ↔ immobility [72]. | ||
BPD vs. controls, ACC, microarray, ↑ levels [59]. | FST, female GPR37 KO vs. WT mice, 16–18 month-old, ↑ immobility [72]. | ||
OFT, female GPR37 KO vs. WT mice, 16–18 month-old, ↔ time in center [72]. | |||
LDT, female GPR37 KO vs. WT mice, 16–18 month-old, ↔ transitions [72]. | |||
EPM, male GPR37 KO vs. WT mice, 8 week-old, ↑ time in open arms [73]. | |||
MBT, male GPR37 KO vs. WT mice, 8 week-old, ↓ marble buried [73]. | |||
OFT, male, 3 month-old mice, ChR2-GPR37 activation in dorsomedial striatum, ↑ time in center [74]. | |||
GPR50 | H9, ML1X | Genetic linkage analysis, association between GPR50 and BPD & MDD [75]. | |
Genetic linkage analysis, no association between GPR50 and BPD [76]. | |||
Genetic linkage analysis, no association between GPR50 and BPD & MDD [77]. | |||
Genetic linkage analysis, association between GPR50 and BPD & MDD [78]. | |||
Genetic linkage analysis, association between GPR50 and SAD [79]. | |||
Genetic linkage analysis, weak association between GPR50 and late-life depression [80]. | |||
GPR52 | OFT, GPR52 KO vs. WT mice, ↑ time in center [81]. | ||
Transcriptomic analysis, guinea pigs, association between sGC administration and GPR52 expression [82]. | |||
GPR88 | GWAS, genetic link between GPR88 and BPD [64]. | Male mice, 2 month-old, hippocampus, microarray and RT-PCR, ↑ mRNA by chronic PRS [83]. | |
Mouse model of endometriosis-induced anxiety and depression, female, 9 week-old, amygdala, microarray and RT-PCR, ↑ mRNA [84]. | |||
Male rats, 7–8 week-old, cortex, microarray, ↑ mRNA by lithium [85]. | |||
Male mice, 8–12 week-old, PFC, microarray, ↑ mRNA by valproate [86]. | |||
Male rats, adult, hypothalamus, microarray, ↑ mRNA by sleep deprivation [87]. | |||
Male rats, adult, hypothalamus, microarray, ↑ mRNA by electro convulsive therapy [87]. | |||
Male rats, adult, hypothalamus, microarray, ↓ mRNA by fluoxetine [87]. | |||
EPM, male GPR88 KO vs. WT mice, 8–15 week-old, ↑ time in open arms [88],[89], [90] | |||
MBT, male GPR88 KO vs. WT mice, 8–15 week-old, ↓ marble buried [88], [89], [90] | |||
NSFT, male GPR88 KO vs. WT mice, 8–10 week-old, ↓ latency to feed [88] | |||
LDT, male GPR88 KO vs. WT mice, 9–15 week-old, ↑ time in lit box [89] | |||
LDT, male A2AR-GPR88 KO vs. GPR88flx/flx mice, 9–15 week-old, ↑ time in lit box [89] | |||
EPM, male A2AR-GPR88 KO vs. GPR88flx/flx mice, 9–15 week-old, ↑ time in open arms [89] | |||
MBT, male A2AR-GPR88 KO vs. GPR88flx/flx mice, 9–15 week-old, ↓ marble buried [89], [90] | |||
NFST, male A2AR-GPR88 KO vs. GPR88flx/flx mice, 9–15 week-old, ↔ latency to feed [89] | |||
MBT, male D1R-GPR88 KO vs. GPR88flx/flx mice, 9–15 week-old, ↔ marble buried [90] | |||
FST, male GPR88 KD in DMS vs. CNT rats, 7 week-old, ↓ immobility [91] | |||
SPT, male GPR88 KD in DMS vs. CNT rats, 7 week-old, ↔ ratio [91] | |||
GPR158 | MDD vs. controls, dlPFC, WB, ↑ levels [92] | Male mice, 2–4 month-old, mPFC, WB, ↑ levels by chronic PRS, blocked by RU-486 [92] | |
Male mice, 2–4 month-old, mPFC, WB, ↑ levels by UCMS [92] | |||
Male mice, 2–4 month-old, mPFC, WB, ↑ levels by chronic corticosterone [92] | |||
Primary cortical neurons, WB, ↑ levels by chronic corticosterone [92] | |||
TST, male GPR158 KO vs. WT mice, 2–4 month-old, ↓ immobility, rescued by viral GPR158 OE in mPFC [92] | |||
TST, female GPR158 KO vs. WT mice, 2–4 month-old, ↓ immobility [92] | |||
TST, male GPR158 OE in mPFC vs. control mice, 2–4 month-old, ↑ immobility [92] | |||
FST, male GPR158 KO vs. WT mice, 2–4 month-old, ↓ immobility, rescued by viral GPR158 OE in mPFC [92] | |||
FST, female GPR158 KO vs. WT mice, 2–4 month-old, ↓ immobility [92] | |||
FST, male GPR158 OE in mPFC vs. control mice, 2–4 month-old, ↑ immobility [92] | |||
EPM, male GPR158 KO vs. WT mice, 2–4 month-old, ↑ time in open arms [92] | |||
EPM, female GPR158 KO vs. WT mice, 2–4 month-old, ↑ time in open arms [92] | |||
EPM, female GPR158 KO vs. WT mice, 3 month-old, ↓ time in open arms [92] | |||
MBT, male GPR158 KO vs. WT mice, 2–4 month-old, ↓ marble buried [92] | |||
MBT, female GPR158 KO vs. WT mice, 2–4 month-old, ↓ marble buried [92] | |||
LDT, female GPR158 KO vs. WT mice, 3 month-old, ↓ time in lit box [93] | |||
OFT, female GPR158 KO vs. WT mice, 3 month-old, ↓ time in center [93] | |||
OFT, male GPR158 KO vs. WT mice, 8–12 week-old, ↔ time in center [94] | |||
TST after UCMS, GPR158 KO vs. WT mice, 2–4 month-old, ↔ immobility time [92] | |||
FST after UCMS, GPR158 KO vs. WT mice, 2–4 month-old, ↔ immobility time [92] | |||
EPM after UCMS, GPR158 KO vs. WT mice, 2–4 month-old, ↔ time in open arms [92] | |||
MBT after UCMS, GPR158 KO vs. WT mice, 2–4 month-old, ↔ marble buried [92] | |||
SPT after UCMS, GPR158 KO vs. WT mice, 2–4 month-old, ↔ sucrose preference [92] | |||
TST, male GPR158 KO vs. WT mice, 2–4 month-old, ↓ immobility after vehicle injection [95] | |||
TST, male GPR158 KO vs. WT mice, 2–4 month-old, ↔ immobility time after yohimbine injection [95] | |||
TST, male GPR158 KO vs. WT mice, 2–4 month-old, ↔ immobility time after CGP35348 injection [95] | |||
FST, male GPR158 KO vs. WT mice, 2–4 month-old, ↓ immobility after vehicle injection [95] | |||
FST, male GPR158 KO vs. WT mice, 2–4 month-old, ↔ immobility time after yohimbine injection [95]) | |||
FST, male GPR158 KO vs. WT mice, 2–4 month-old, ↔ immobility time after CGP35348 injection [95] | |||
GPRC5B | RAIG-2 | MDD vs. controls, frontotemporal cortex, microarray, ↓ levels [69]. | |
MDD vs. controls, dlPFC, microarray, ↓ levels [59]. | |||
MDD vs. controls, ACC, microarray, ↓ levels [59]. | |||
MDD vs. controls, ACC, RT-PCR, ↓ levels [59]. | |||
BPD vs. controls, dlPFC, microarray, ↑ levels [59]. | |||
BPD vs. controls, ACC, microarray, ↑ levels [59]. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watkins, L.R.; Orlandi, C. Orphan G Protein Coupled Receptors in Affective Disorders. Genes 2020, 11, 694. https://doi.org/10.3390/genes11060694
Watkins LR, Orlandi C. Orphan G Protein Coupled Receptors in Affective Disorders. Genes. 2020; 11(6):694. https://doi.org/10.3390/genes11060694
Chicago/Turabian StyleWatkins, Lyndsay R., and Cesare Orlandi. 2020. "Orphan G Protein Coupled Receptors in Affective Disorders" Genes 11, no. 6: 694. https://doi.org/10.3390/genes11060694
APA StyleWatkins, L. R., & Orlandi, C. (2020). Orphan G Protein Coupled Receptors in Affective Disorders. Genes, 11(6), 694. https://doi.org/10.3390/genes11060694