A High-Throughput ImmunoHistoFluorescence (IHF) Method for Sub-Nuclear Protein Analysis in Tissue
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Ribonucleoprotein (RNP) Complex Transfection
2.3. Preparation of FFPE Cell Blocks
2.4. Preparation of TMA
2.5. ImmunoHistoFluorescence Staining
2.6. Microscopy and Image Analysis
2.6.1. Confocal Microscopy
2.6.2. High-Throughput Fluorescence Microscopy
2.6.3. Manual Analysis
2.6.4. Automated Analysis
2.6.5. High-Throughput Data Filtering
2.7. Experimental Repetitions and Statistics
3. Results
3.1. Generation of FFPE Cell Blocks from Cancer Cells with Targeted Damage to the Nucleolus
3.2. High-Throughput Detection of the Sub-Nuclear Distribution of the Nucleolar Protein Treacle in FFPE Cell Blocks
3.3. Epithelial-Specific Detection of Nucleolar Protein Distribution in Tissue
3.4. High-Throughput Analysis Across Multiple Tissue Types
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AU | Airy unit |
BSA | Bovine albumin serum |
CODEX | Co-detection by indexing |
DMEM | Dulbecco’s modified Eagle’s medium |
DSB | Double-stranded breaks |
FBS | Foetal bovine serum |
FFPE | Formalin-fixed paraffin-embedded |
HRD | Homologous recombination deficiency |
IF | Immunofluorescence |
IHC | Immunohistochemistry |
IHF | ImmunoHistoFluorescence |
ISH | In situ hybridization |
MIBI | Multiplexed ion beam imaging |
ms | Milliseconds |
O/N | Overnight |
PARPi | Poly(ADP)-ribose polymerase inhibitors |
PBS | Phosphate-buffered saline |
Pen-strep | Penicillin-streptomycin |
rDNA | Ribosomal DNA |
RNA Pol II | RNA Polymerase II |
RT | Room temperature |
SD | Standard deviation |
SOP | Standard operating procedure |
TMA | Tissue microarray |
WT | Wild-type |
Appendix A
SOURCE DATA | ||
REAGENT or RESOURCE | SOURCE | IDENTIFIER |
Antibodies | ||
Treacle | Santa Cruz | Cat# sc-374536; RRID: AB_10987865 |
RNA polymerase II subunit B1 (phospho-CTD Ser-5) Antibody, clone 3E8 | Sigma-Aldrich | Cat# 04-1572-1; RRID: AB_10615822 |
Pan-cytokeratin | Abcam | Cat# ab234297; RRID: AB_2895302 |
Goat anti-Mouse IgG (H + L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 568 | InvitrogenTM | Cat# A-11031; RRID: AB_144696 |
Goat anti-Rat IgG (H + L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 647 | InvitrogenTM | Cat# A-21247; RRID: AB_141778 |
Goat anti-Rabbit IgG (H + L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 750 | InvitrogenTM | Cat# A-21039; RRID: AB_2535710 |
Chemicals, peptides, and recombinant proteins | ||
Dulbecco’s modified Eagle’s medium (DMEM), GlutaMAXTM supplement | Gibco, Life Technologies | Cat# 31966-021 |
Foetal Bovine Serum (FBS) | Gibco, Life Technologies | Cat# A5256701 |
Penicillin-Streptomycin (pen-strep) | Gibco, Life Technologies | Cat# 15140-122 |
TrypLETM Express | Gibco, Life Technologies | Cat# 12604-013 |
Opti-MEMTM reduced serum medium, GlutaMAXTM supplement | Gibco, Life Technologies | Cat# 51985-026 |
Lipofectamine™ CRISPRMAX™ Cas9 Transfection Reagent | InvitrogenTM | Cat# CMAX00015 |
TrueCutTM Cas9 Protein v2 | InvitrogenTM | Cat# A36499 |
TrueGuideTM synthetic gRNA negative control, non-targeting 1 | Thermo Fisher | Cat# A35526 |
TrueGuideTM synthetic gRNA | Thermo Fisher | Cat# A35514 |
Formaldehyde 4% stabilised, buffered | VWR Chemicals | Cat# 9713.1000 |
Ethanol 96% vol | VWR Chemicals | Cat# 83804.360 |
Ethanol absolute | VWR Chemicals | Cat# 83813-360 |
Xylene | VWR Chemicals | Cat# 28973.294 |
Cellsafe plus, biopsy cassettes | Hounisen | Cat# 2270.5060 |
Paraffin | Hounisen | Cat# 2270-6060 |
VWR® SuperFrost® Plus, Adhesion Slides | VWR Chemicals | Cat# 631-0108 |
VECTABOND® reagent, tissue section adhesion | Vector Laboratories | Cat# SP-1800-7 |
Tris ultrapure | VWR Chemicals | Cat# 0497 |
Ethylenediaminetetraacetic acid (EDTA, pH = 8.0) | Sigma-Aldrich | Cat# E9884 |
Tween® 20 | PanReac Applichem | Cat# A1389 |
TritonTM X-100 | Sigma-Aldrich | Cat# T8787 |
Bovine serum albumin (BSA) | Sigma-Aldrich | Cat# A7030 |
Vector® TrueVIEW® Autofluorescence Quenching Kit | Vector Laboratories | Cat# SP-8400-15 |
DAPI (4’,6-diamidino-2-phenylindole, dihydrochloride) | InvitrogenTM | Cat# D1306 |
Fluoromount-GTM mounting medium | InvitrogenTM | Cat# 00-4958-02 |
Precision cover glass thickness No. 1.5H (tol. ± 5 µm) | Marienfeld | Cat# 0107222 |
Sequences | ||
gRNA sequences | Supplementary Information | N/A |
Experimental models: Cell lines | ||
U2OS cell line | ATCC | Cat# HTB-96 |
Experimental models: Tissue microarrays | ||
Universal IHC/ISH control tissues, 12 cases (1.5 mm) | Pantomics Inc. | Cat# UNC241 |
Software and algorithms | ||
ZEISS Zen 3.8 | ZEISS | N/A |
ZEISS arivis Pro 4.3.0 | ZEISS | N/A |
GraphPad Prism 10.4.2 for Windows | GraphPad | N/A |
References
- Fedchenko, N.; Reifenrath, J. Different Approaches for Interpretation and Reporting of Immunohistochemistry Analysis Results in the Bone Tissue—A Review. Diagn. Pathol. 2014, 9, 221. [Google Scholar] [CrossRef]
- Coons, A.H.; Creech, H.J.; Jones, R.N. Immunological Properties of an Antibody Containing a Fluorescent Group. Proc. Soc. Exp. Biol. Med. 1941, 47, 200–202. [Google Scholar] [CrossRef]
- Oumarou Hama, H.; Aboudharam, G.; Barbieri, R.; Lepidi, H.; Drancourt, M. Immunohistochemical Diagnosis of Human Infectious Diseases: A Review. Diagn. Pathol. 2022, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Irshad, H.; Oh, E.-Y.; Schmolze, D.; Quintana, L.M.; Collins, L.; Tamimi, R.M.; Beck, A.H. Crowdsourcing Scoring of Immunohistochemistry Images: Evaluating Performance of the Crowd and an Automated Computational Method. Sci. Rep. 2017, 7, 43286. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Roh, J.; Park, C.-S. Immunohistochemistry for Pathologists: Protocols, Pitfalls, and Tips. J. Pathol. Transl. Med. 2016, 50, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, F.R.; McElhinny, A.; Stanforth, D.; Ranger-Moore, J.; Jansson, M.; Kulangara, K.; Richardson, W.; Towne, P.; Hanks, D.; Vennapusa, B.; et al. PD-L1 Immunohistochemistry Assays for Lung Cancer: Results from Phase 1 of the Blueprint PD-L1 IHC Assay Comparison Project. J. Thorac. Oncol. 2017, 12, 208–222. [Google Scholar] [CrossRef]
- Rimm, D.L.; Han, G.; Taube, J.M.; Yi, E.S.; Bridge, J.A.; Flieder, D.B.; Homer, R.; West, W.W.; Wu, H.; Roden, A.C.; et al. A Prospective, Multi-Institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer. JAMA Oncol. 2017, 3, 1051–1058. [Google Scholar] [CrossRef]
- Harms, P.W.; Frankel, T.L.; Moutafi, M.; Rao, A.; Rimm, D.L.; Taube, J.M.; Thomas, D.; Chan, M.P.; Pantanowitz, L. Multiplex Immunohistochemistry and Immunofluorescence: A Practical Update for Pathologists. Mod. Pathol. 2023, 36, 100197. [Google Scholar] [CrossRef]
- Tan, W.C.C.; Nerurkar, S.N.; Cai, H.Y.; Ng, H.H.M.; Wu, D.; Wee, Y.T.F.; Lim, J.C.T.; Yeong, J.; Lim, T.K.H. Overview of Multiplex Immunohistochemistry/Immunofluorescence Techniques in the Era of Cancer Immunotherapy. Cancer Commun. 2020, 40, 135–153. [Google Scholar] [CrossRef]
- Scheffold, A.; Assenmacher, M.; Reiners-Schramm, L.; Lauster, R.; Radbruch, A. High-Sensitivity Immunofluorescence for Detection of the pro- and Anti-Inflammatory Cytokines Gamma Interferon and Interleukin-10 on the Surface of Cytokine-Secreting Cells. Nat. Med. 2000, 6, 107–110. [Google Scholar] [CrossRef]
- Zola, H. High-Sensitivity Immunofluorescence/Flow Cytometry: Detection of Cytokine Receptors and Other Low-Abundance Membrane Molecules. Curr. Protoc. Cytom. 2004, 30, 1–13. [Google Scholar] [CrossRef]
- Slaughterbeck, C.R.; Datta, S.; Smith, S.; Ritchie, D.; Wohnoutka, P. High-Throughput Automated Microscopy Platform for the Allen Brain Atlas. SLAS Technol. 2007, 12, 377–383. [Google Scholar] [CrossRef]
- Khalifa, M.; Albadawy, M. AI in Diagnostic Imaging: Revolutionising Accuracy and Efficiency. Comput. Methods Programs Biomed. Update 2024, 5, 100146. [Google Scholar] [CrossRef]
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef] [PubMed]
- Piña, R.; Santos-Díaz, A.I.; Orta-Salazar, E.; Aguilar-Vazquez, A.R.; Mantellero, C.A.; Acosta-Galeana, I.; Estrada-Mondragon, A.; Prior-Gonzalez, M.; Martinez-Cruz, J.I.; Rosas-Arellano, A. Ten Approaches That Improve Immunostaining: A Review of the Latest Advances for the Optimization of Immunofluorescence. Int. J. Mol. Sci. 2022, 23, 1426. [Google Scholar] [CrossRef]
- Rong, R.; Wei, Y.; Li, L.; Wang, T.; Zhu, H.; Xiao, G.; Wang, Y. Image-Based Quantification of Histological Features as a Function of Spatial Location Using the Tissue Positioning System. eBioMedicine 2023, 94, 104698. [Google Scholar] [CrossRef]
- Li, M.; Jiang, Y.; Zhang, Y.; Zhu, H. Medical Image Analysis Using Deep Learning Algorithms. Front. Public. Health 2023, 11, 1273253. [Google Scholar] [CrossRef]
- Altaf, F.; Islam, S.; Akhtar, N.; Janjua, N. Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions. IEEE Access 2019, 7, 99540–99572. [Google Scholar] [CrossRef]
- Gál, Z.; Boukoura, S.; Oxe, K.C.; Badawi, S.; Nieto, B.; Korsholm, L.M.; Geisler, S.B.; Dulina, E.; Rasmussen, A.V.; Dahl, C.; et al. Hyper-Recombination in Ribosomal DNA Is Driven by Long-Range Resection-Independent RAD51 Accumulation. Nat. Commun. 2024, 15, 7797. [Google Scholar] [CrossRef]
- Van Sluis, M.; McStay, B. A Localized Nucleolar DNA Damage Response Facilitates Recruitment of the Homology-Directed Repair Machinery Independent of Cell Cycle Stage. Genes. Dev. 2015, 29, 1151–1163. [Google Scholar] [CrossRef]
- Floutsakou, I.; Agrawal, S.; Nguyen, T.T.; Seoighe, C.; Ganley, A.R.D.; McStay, B. The Shared Genomic Architecture of Human Nucleolar Organizer Regions. Genome Res. 2013, 23, 2003–2012. [Google Scholar] [CrossRef]
- Van Sluis, M.; McStay, B. Nucleolar Reorganization in Response to rDNA Damage. Curr. Opin. Cell Biol. 2017, 46, 81–86. [Google Scholar] [CrossRef]
- Shav-Tal, Y.; Blechman, J.; Darzacq, X.; Montagna, C.; Dye, B.T.; Patton, J.G.; Singer, R.H.; Zipori, D. Dynamic Sorting of Nuclear Components into Distinct Nucleolar Caps during Transcriptional Inhibition. Mol. Biol. Cell 2005, 16, 2395–2413. [Google Scholar] [CrossRef] [PubMed]
- Mangan, H.; Gailín, M.Ó.; McStay, B. Integrating the Genomic Architecture of Human Nucleolar Organizer Regions with the Biophysical Properties of Nucleoli. FEBS J. 2017, 284, 3977–3985. [Google Scholar] [CrossRef] [PubMed]
- Stringer, C.; Wang, T.; Michaelos, M.; Pachitariu, M. Cellpose: A Generalist Algorithm for Cellular Segmentation. Nat. Methods 2021, 18, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Barak, V.; Goike, H.; Panaretakis, K.W.; Einarsson, R. Clinical Utility of Cytokeratins as Tumor Markers. Clin. Biochem. 2004, 37, 529–540. [Google Scholar] [CrossRef]
- Menz, A.; Gorbokon, N.; Viehweger, F.; Lennartz, M.; Hube-Magg, C.; Hornsteiner, L.; Kluth, M.; Völkel, C.; Luebke, A.M.; Fraune, C.; et al. Pan-Keratin Immunostaining in Human Tumors: A Tissue Microarray Study of 15,940 Tumors. Int. J. Surg. Pathol. 2023, 31, 927–938. [Google Scholar] [CrossRef]
- Korsholm, L.M.; Gál, Z.; Lin, L.; Quevedo, O.; Ahmad, D.A.; Dulina, E.; Luo, Y.; Bartek, J.; Larsen, D.H. Double-Strand Breaks in Ribosomal RNA Genes Activate a Distinct Signaling and Chromatin Response to Facilitate Nucleolar Restructuring and Repair. Nucleic Acids Res. 2019, 47, 8019–8035. [Google Scholar] [CrossRef]
- Larsen, D.H.; Hari, F.; Clapperton, J.A.; Gwerder, M.; Gutsche, K.; Altmeyer, M.; Jungmichel, S.; Toledo, L.I.; Fink, D.; Rask, M.-B.; et al. The NBS1-Treacle Complex Controls Ribosomal RNA Transcription in Response to DNA Damage. Nat. Cell Biol. 2014, 16, 792–803. [Google Scholar] [CrossRef]
- Korsholm, L.M.; Gál, Z.; Nieto, B.; Quevedo, O.; Boukoura, S.; Lund, C.C.; Larsen, D.H. Recent Advances in the Nucleolar Responses to DNA Double-Strand Breaks. Nucleic Acids Res. 2020, 48, 9449–9461. [Google Scholar] [CrossRef]
- Boukoura, S.; Larsen, D.H. Nucleolar Organization and Ribosomal DNA Stability in Response to DNA Damage. Curr. Opin. Cell Biol. 2024, 89, 102380. [Google Scholar] [CrossRef]
- Oxe, K.C.; Larsen, D.H. Treacle Is Upregulated in Cancer and Correlates With Poor Prognosis. Front. Cell Dev. Biol. 2022, 10, 918544. [Google Scholar] [CrossRef] [PubMed]
- Canene-Adams, K. Chapter Fifteen—Preparation of Formalin-Fixed Paraffin-Embedded Tissue for Immunohistochemistry. In Methods in Enzymology; Lorsch, J., Ed.; Laboratory Methods in Enzymology: Cell, Lipid and Carbohydrate; Academic Press: Cambridge, MA, USA, 2013; Volume 533, pp. 225–233. [Google Scholar]
- Viegas, M.S.; Martins, T.C.; Seco, F.; do Carmo, A. An Improved and Cost-Effective Methodology for the Reduction of Autofluorescence in Direct Immunofluorescence Studies on Formalin-Fixed Paraffin-Embedded Tissues. Eur. J. Histochem. 2007, 51, 59–66. [Google Scholar] [PubMed]
- Schnell, S.A.; Staines, W.A.; Wessendorf, M.W. Reduction of Lipofuscin-like Autofluorescence in Fluorescently Labeled Tissue. J. Histochem. Cytochem. 1999, 47, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, B.; Miedema, B.E.; Chandrasekhar, H.R. Role of Basement Membrane Collagen and Elastin in the Autofluorescence Spectra of the Colon. J. Investig. Med. 1999, 47, 326–332. [Google Scholar]
- Gál, Z.; Nieto, B.; Boukoura, S.; Rasmussen, A.V.; Larsen, D.H. Treacle Sticks the Nucleolar Responses to DNA Damage Together. Front. Cell Dev. Biol. 2022, 10, 892006. [Google Scholar] [CrossRef]
- Hinck, L.; Näthke, I. Changes in Cell and Tissue Organization in Cancer of the Breast and Colon. Curr. Opin. Cell Biol. 2014, 26, 87–95. [Google Scholar] [CrossRef]
- Abd El-Rehim, D.M.; Ball, G.; Pinder, S.E.; Rakha, E.; Paish, C.; Robertson, J.F.R.; Macmillan, D.; Blamey, R.W.; Ellis, I.O. High-Throughput Protein Expression Analysis Using Tissue Microarray Technology of a Large Well-Characterised Series Identifies Biologically Distinct Classes of Breast Cancer Confirming Recent cDNA Expression Analyses. Int. J. Cancer 2005, 116, 340–350. [Google Scholar] [CrossRef]
- Derenzini, M.; Montanaro, L.; Treré, D. What the Nucleolus Says to a Tumour Pathologist. Histopathology 2009, 54, 753–762. [Google Scholar] [CrossRef]
- Zhang, W.; Li, I.; Reticker-Flynn, N.E.; Good, Z.; Chang, S.; Samusik, N.; Saumyaa, S.; Li, Y.; Zhou, X.; Liang, R.; et al. Identification of Cell Types in Multiplexed in Situ Images by Combining Protein Expression and Spatial Information Using CELESTA. Nat. Methods 2022, 19, 759–769. [Google Scholar] [CrossRef]
- Amitay, Y.; Bussi, Y.; Feinstein, B.; Bagon, S.; Milo, I.; Keren, L. CellSighter: A Neural Network to Classify Cells in Highly Multiplexed Images. Nat. Commun. 2023, 14, 4302. [Google Scholar] [CrossRef] [PubMed]
- Eldering, E.; Spek, C.A.; Aberson, H.L.; Grummels, A.; Derks, I.A.; de Vos, A.F.; McElgunn, C.J.; Schouten, J.P. Expression Profiling via Novel Multiplex Assay Allows Rapid Assessment of Gene Regulation in Defined Signalling Pathways. Nucleic Acids Res. 2003, 31, e153. [Google Scholar] [CrossRef] [PubMed]
- Wirth, J.; Huber, N.; Yin, K.; Brood, S.; Chang, S.; Martinez-Jimenez, C.P.; Meier, M. Spatial Transcriptomics Using Multiplexed Deterministic Barcoding in Tissue. Nat. Commun. 2023, 14, 1523. [Google Scholar] [CrossRef] [PubMed]
- Kennedy-Darling, J.; Bhate, S.S.; Hickey, J.W.; Black, S.; Barlow, G.L.; Vazquez, G.; Venkataraaman, V.G.; Samusik, N.; Goltsev, Y.; Schürch, C.M.; et al. Highly Multiplexed Tissue Imaging Using Repeated Oligonucleotide Exchange Reaction. Eur. J. Immunol. 2021, 51, 1262–1277. [Google Scholar] [CrossRef]
- Black, S.; Phillips, D.; Hickey, J.W.; Kennedy-Darling, J.; Venkataraaman, V.G.; Samusik, N.; Goltsev, Y.; Schürch, C.M.; Nolan, G.P. CODEX Multiplexed Tissue Imaging with DNA-Conjugated Antibodies. Nat. Protoc. 2021, 16, 3802–3835. [Google Scholar] [CrossRef]
- Goltsev, Y.; Nolan, G. CODEX Multiplexed Tissue Imaging. Nat. Rev. Immunol. 2023, 23, 613. [Google Scholar] [CrossRef]
- Keren, L.; Bosse, M.; Thompson, S.; Risom, T.; Vijayaragavan, K.; McCaffrey, E.; Marquez, D.; Angoshtari, R.; Greenwald, N.F.; Fienberg, H.; et al. MIBI-TOF: A Multiplexed Imaging Platform Relates Cellular Phenotypes and Tissue Structure. Sci. Adv. 2019, 5, eaax5851. [Google Scholar] [CrossRef]
- Angelo, M.; Bendall, S.C.; Finck, R.; Hale, M.B.; Hitzman, C.; Borowsky, A.D.; Levenson, R.M.; Lowe, J.B.; Liu, S.D.; Zhao, S.; et al. Multiplexed Ion Beam Imaging of Human Breast Tumors. Nat. Med. 2014, 20, 436–442. [Google Scholar] [CrossRef]
- Ptacek, J.; Locke, D.; Finck, R.; Cvijic, M.-E.; Li, Z.; Tarolli, J.G.; Aksoy, M.; Sigal, Y.; Zhang, Y.; Newgren, M.; et al. Multiplexed Ion Beam Imaging (MIBI) for Characterization of the Tumor Microenvironment across Tumor Types. Lab. Invest. 2020, 100, 1111–1123. [Google Scholar] [CrossRef]
- Kuett, L.; Catena, R.; Özcan, A.; Plüss, A.; Schraml, P.; Moch, H.; de Souza, N.; Bodenmiller, B. Three-Dimensional Imaging Mass Cytometry for Highly Multiplexed Molecular and Cellular Mapping of Tissues and the Tumor Microenvironment. Nat. Cancer 2022, 3, 122–133. [Google Scholar] [CrossRef]
- Chang, Q.; Ornatsky, O.I.; Siddiqui, I.; Loboda, A.; Baranov, V.I.; Hedley, D.W. Imaging Mass Cytometry. Cytom. A 2017, 91, 160–169. [Google Scholar] [CrossRef]
- Van Dam, S.; Baars, M.J.D.; Vercoulen, Y. Multiplex Tissue Imaging: Spatial Revelations in the Tumor Microenvironment. Cancers 2022, 14, 3170. [Google Scholar] [CrossRef]
- Ballantyne, L. Comparing 2D and 3D Imaging. J. Vis. Commun. Med. 2011, 34, 138–141. [Google Scholar] [CrossRef]
- Patil, P.U.; D’Ambrosio, J.; Inge, L.J.; Mason, R.W.; Rajasekaran, A.K. Carcinoma Cells Induce Lumen Filling and EMT in Epithelial Cells through Soluble E-Cadherin-Mediated Activation of EGFR. J. Cell Sci. 2015, 128, 4366–4379. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Hynes, S.O.; Kerin, M.J.; Miller, N.; Lowery, A.J. Ki-67 as a Prognostic Biomarker in Invasive Breast Cancer. Cancers 2021, 13, 4455. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Cardona, D.M.; Huang, J. Revisiting the Use of CK7 and CK20 Immunohistochemical Stains in Pathological Diagnoses. Diagn. Pathol. 2025, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Völkel, C.; De Wispelaere, N.; Weidemann, S.; Gorbokon, N.; Lennartz, M.; Luebke, A.M.; Hube-Magg, C.; Kluth, M.; Fraune, C.; Möller, K.; et al. Cytokeratin 5 and Cytokeratin 6 Expressions Are Unconnected in Normal and Cancerous Tissues and Have Separate Diagnostic Implications. Virchows Arch. 2022, 480, 433–447. [Google Scholar] [CrossRef]
- Hill, S.M.; Hanzén, S.; Nyström, T. Restricted Access: Spatial Sequestration of Damaged Proteins during Stress and Aging. EMBO Rep. 2017, 18, 377–391. [Google Scholar] [CrossRef]
- Peng, C.; Trojanowski, J.Q.; Lee, V.M.-Y. Protein Transmission in Neurodegenerative Disease. Nat. Rev. Neurol. 2020, 16, 199–212. [Google Scholar] [CrossRef]
- Silva, J.L.; Foguel, D.; Ferreira, V.F.; Vieira, T.C.R.G.; Marques, M.A.; Ferretti, G.D.S.; Outeiro, T.F.; Cordeiro, Y.; de Oliveira, G.A.P. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem. Rev. 2023, 123, 9094–9138. [Google Scholar] [CrossRef]
- Kim, Y.-N.; Kim, K.; Joung, J.-G.; Kim, S.W.; Kim, S.; Lee, J.-Y.; Park, E. RAD51 as an Immunohistochemistry-Based Marker of Poly(ADP-Ribose) Polymerase Inhibitor Resistance in Ovarian Cancer. Front. Oncol. 2024, 14, 1351778. [Google Scholar] [CrossRef]
- Korsholm, L.M.; Kjeldsen, M.; Perino, L.; Mariani, L.; Nyvang, G.-B.; Kristensen, E.; Bagger, F.O.; Mirza, M.R.; Rossing, M. Combining Homologous Recombination-Deficient Testing and Functional RAD51 Analysis Enhances the Prediction of Poly(ADP-Ribose) Polymerase Inhibitor Sensitivity. JCO Precis. Oncol. 2024, 8, e2300483. [Google Scholar] [CrossRef]
- Cruz, C.; Castroviejo-Bermejo, M.; Gutiérrez-Enríquez, S.; Llop-Guevara, A.; Ibrahim, Y.H.; Gris-Oliver, A.; Bonache, S.; Morancho, B.; Bruna, A.; Rueda, O.M.; et al. RAD51 Foci as a Functional Biomarker of Homologous Recombination Repair and PARP Inhibitor Resistance in Germline BRCA-Mutated Breast Cancer. Ann. Oncol. 2018, 29, 1203–1210. [Google Scholar] [CrossRef]
- Chia, N.; Gudi, M.A.; Rakha, E.; Tan, P.H. HER2-Low Breast Cancers: Challenges in the Interpretation of Immunohistochemistry. Singap. Med. J. 2024, Epub. [Google Scholar] [CrossRef]
- Grassini, D.; Cascardi, E.; Sarotto, I.; Annaratone, L.; Sapino, A.; Berrino, E.; Marchiò, C. Unusual Patterns of HER2 Expression in Breast Cancer: Insights and Perspectives. Pathobiology 2022, 89, 278–296. [Google Scholar] [CrossRef]
- Zhang, H.; Finkelman, B.S.; Ettel, M.G.; Velez, M.J.; Turner, B.M.; Hicks, D.G. HER2 Evaluation for Clinical Decision Making in Human Solid Tumours: Pearls and Pitfalls. Histopathology 2024, 85, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Safaei, A.; Monabati, A.; Mokhtari, M.; Montazer, M. Cytoplasmic Her2/Neu Immunohistochemical Staining in Breast Cancer; From a Molecular Point of View. Iran. J. Pathol. 2019, 14, 270–271. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, P.; Hamilton, E.; Tolaney, S.M.; Cortes, J.; Morganti, S.; Ferraro, E.; Marra, A.; Viale, G.; Trapani, D.; Cardoso, F.; et al. HER2-Low Breast Cancer: Pathological and Clinical Landscape. J. Clin. Oncol. 2020, 38, 1951–1962. [Google Scholar] [CrossRef] [PubMed]
- Guardia, G.D.A.; dos Anjos, C.H.; Rangel-Pozzo, A.; dos Santos, F.F.; Birbrair, A.; Asprino, P.F.; Camargo, A.A.; Galante, P.A.F. Beyond HER2 Expression in Breast Cancer: Investigating Alternative Splicing Profiles as a Mechanism of Resistance to Anti-HER2 Therapies. medRxiv 2024. [Google Scholar] [CrossRef]
- Akhtar, M.; Rashid, S.; Al-Bozom, I.A. PD−L1 Immunostaining: What Pathologists Need to Know. Diagn. Pathol. 2021, 16, 94. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, H.; Cai, Q.; Tai, H.-C. The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges. Int. J. Mol. Sci. 2024, 25, 4969. [Google Scholar] [CrossRef]
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-Synuclein in Parkinson’s Disease and Other Synucleinopathies: From Overt Neurodegeneration Back to Early Synaptic Dysfunction. Cell Death Dis. 2023, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Benito, M.; Granado, N.; García-Sanz, P.; Michel, A.; Dumoulin, M.; Moratalla, R. Modeling Parkinson’s Disease With the Alpha-Synuclein Protein. Front. Pharmacol. 2020, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Brosch, J.R.; Farlow, M.R.; Risacher, S.L.; Apostolova, L.G. Tau Imaging in Alzheimer’s Disease Diagnosis and Clinical Trials. Neurotherapeutics 2017, 14, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Khalafi, M.; Dartora, W.J.; McIntire, L.B.J.; Butler, T.A.; Wartchow, K.M.; Hojjati, S.H.; Razlighi, Q.R.; Shirbandi, K.; Zhou, L.; Chen, K.; et al. Diagnostic Accuracy of Phosphorylated Tau217 in Detecting Alzheimer’s Disease Pathology among Cognitively Impaired and Unimpaired: A Systematic Review and Meta-Analysis. Alzheimer’s Dement. 2025, 21, e14458. [Google Scholar] [CrossRef]
- Gao, L.; Tang, H.; Nie, K.; Wang, L.; Zhao, J.; Gan, R.; Huang, J.; Zhu, R.; Feng, S.; Duan, Z.; et al. Cerebrospinal Fluid Alpha-Synuclein as a Biomarker for Parkinson’s Disease Diagnosis: A Systematic Review and Meta-Analysis. Int. J. Neurosci. 2015, 125, 645–654. [Google Scholar] [CrossRef]
- Ganguly, U.; Singh, S.; Pal, S.; Prasad, S.; Agrawal, B.K.; Saini, R.V.; Chakrabarti, S. Alpha-Synuclein as a Biomarker of Parkinson’s Disease: Good, but Not Good Enough. Front. Aging Neurosci. 2021, 13, 702639. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oxe, K.C.; Rohrberg, K.S.; Lassen, U.; Larsen, D.H. A High-Throughput ImmunoHistoFluorescence (IHF) Method for Sub-Nuclear Protein Analysis in Tissue. Cells 2025, 14, 1109. https://doi.org/10.3390/cells14141109
Oxe KC, Rohrberg KS, Lassen U, Larsen DH. A High-Throughput ImmunoHistoFluorescence (IHF) Method for Sub-Nuclear Protein Analysis in Tissue. Cells. 2025; 14(14):1109. https://doi.org/10.3390/cells14141109
Chicago/Turabian StyleOxe, Kezia Catharina, Kristoffer Staal Rohrberg, Ulrik Lassen, and Dorthe Helena Larsen. 2025. "A High-Throughput ImmunoHistoFluorescence (IHF) Method for Sub-Nuclear Protein Analysis in Tissue" Cells 14, no. 14: 1109. https://doi.org/10.3390/cells14141109
APA StyleOxe, K. C., Rohrberg, K. S., Lassen, U., & Larsen, D. H. (2025). A High-Throughput ImmunoHistoFluorescence (IHF) Method for Sub-Nuclear Protein Analysis in Tissue. Cells, 14(14), 1109. https://doi.org/10.3390/cells14141109