Microscopic Description of Platelet Aggregates Induced by Escherichia coli Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Washed Platelets
2.2. Preparation of Bacteria
2.3. Scanning Electron Microscopy (SEM) of Whole Platelet-Bacteria Aggregates
2.4. SEM of Ultra-Thin Sections of Platelet-Bacteria Aggregates
2.5. Transmission Electron Microscopy (TEM) of Negatively Stained Bacteria
2.6. SEM of Whole Bacteria
2.7. Statistical Analysis
3. Results
3.1. SEM of Whole Platelet-Bacteria Mixtures
3.2. SEM of Ultra-Thin Sections of Platelet-Bacteria Mixtures
3.3. Electron Microscopy of Bacteria
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coller, B.S. Historical Perspective and Future Directions in Platelet Research. J. Thromb. Haemost. 2011, 9 (Suppl. S1), 374–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, D.; Kunicki, T.; Nugent, D. Platelet Function Defects. Haemophilia 2008, 14, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Yeaman, M.R. Bacterial-Platelet Interactions: Virulence Meets Host Defense. Future Microbiol. 2010, 5, 471–506. [Google Scholar] [CrossRef]
- Cox, D.; Kerrigan, S.W.; Watson, S.P. Platelets and the Innate Immune System: Mechanisms of Bacterial-Induced Platelet Activation. J. Thromb. Haemost. 2011, 9, 1097–1107. [Google Scholar] [CrossRef]
- Hannachi, N.; Fournier, P.-E.; Martel, H.; Habib, G.; Camoin-Jau, L. Statins Potentiate the Antibacterial Effect of Platelets on Staphylococcus aureus. Platelets 2021, 32, 671–676. [Google Scholar] [CrossRef]
- Hannachi, N.; Baudoin, J.-P.; Prasanth, A.; Habib, G.; Camoin-Jau, L. The Distinct Effects of Aspirin on Platelet Aggregation Induced by Infectious Bacteria. Platelets 2020, 31, 1028–1038. [Google Scholar] [CrossRef]
- Hamzeh-Cognasse, H.; Damien, P.; Chabert, A.; Pozzetto, B.; Cognasse, F.; Garraud, O. Platelets and Infections—Complex Interactions with Bacteria. Front. Immunol. 2015, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Ezzeroug Ezzraimi, A.; Hannachi, N.; Mariotti, A.; Rolain, J.-M.; Camoin-Jau, L. Platelets and Escherichia coli: A Complex Interaction. Biomedicines 2022, 10, 1636. [Google Scholar] [CrossRef]
- Ezzeroug Ezzraimi, A.; Hannachi, N.; Mariotti, A.; Rolland, C.; Levasseur, A.; Baron, S.A.; Rolain, J.-M.; Camoin-Jau, L. The Antibacterial Effect of Platelets on Escherichia coli Strains. Biomedicines 2022, 10, 1533. [Google Scholar] [CrossRef]
- Bessis, M. Studies in Electron Microscopy of Blood Cells. Blood 1950, 5, 1083–1098. [Google Scholar] [CrossRef]
- Sullam, P.M.; Valone, F.H.; Mills, J. Mechanisms of Platelet Aggregation by Viridans Group Streptococci. Infect. Immun. 1987, 55, 1743–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.G. Use of the Electron Microscope for Diagnosis of Platelet Disorders. Semin. Thromb. Hemost. 1998, 24, 163–168. [Google Scholar] [CrossRef] [PubMed]
- White, J.G.; Krumwiede, M. Some Contributions of Electron Microscopy to Knowledge of Human Platelets. Thromb. Haemost. 2007, 98, 69–72. [Google Scholar] [PubMed]
- Cattaneo, M.; Cerletti, C.; Harrison, P.; Hayward, C.P.M.; Kenny, D.; Nugent, D.; Nurden, P.; Rao, A.K.; Schmaier, A.H.; Watson, S.P.; et al. Recommendations for the Standardization of Light Transmission Aggregometry: A Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J. Thromb. Haemost. 2013, 11, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Dukes, M.J.; Ramachandra, R.; Baudoin, J.-P.; Gray Jerome, W.; de Jonge, N. Three-Dimensional Locations of Gold-Labeled Proteins in a Whole Mount Eukaryotic Cell Obtained with 3 nm Precision Using Aberration-Corrected Scanning Transmission Electron Microscopy. J. Struct. Biol. 2011, 174, 552–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, E.S. The Use of Lead Citrate at High Ph as an Electron-Opaque Stain in Electron Microscopy. J. Cell Biol. 1963, 17, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.N.; Kerrigan, S.W.; Cox, D.; Henderson, I.R.; Watson, S.P.; Arman, M. Human Platelet Activation by Escherichia coli: Roles for FcγRIIA and Integrin AIIbβ3. Platelets 2016, 27, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Fejes, A.V.; Best, M.G.; van der Heijden, W.A.; Vancura, A.; Verschueren, H.; de Mast, Q.; Wurdinger, T.; Mannhalter, C. Impact of Escherichia coli K12 and O18:K1 on Human Platelets: Differential Effects on Platelet Activation, RNAs and Proteins. Sci. Rep. 2018, 8, 16145. [Google Scholar] [CrossRef] [Green Version]
- Jorgenson, M.A.; Young, K.D. Interrupting Biosynthesis of O Antigen or the Lipopolysaccharide Core Produces Morphological Defects in Escherichia coli by Sequestering Undecaprenyl Phosphate. J. Bacteriol. 2016, 198, 3070–3079. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Kim, H.J.; Lee, S.J. Complete Genome Sequence of Escherichia coli Strain BL21. Genome Announc. 2015, 3, e00134-15. [Google Scholar] [CrossRef]
- Akashi, S.; Saitoh, S.; Wakabayashi, Y.; Kikuchi, T.; Takamura, N.; Nagai, Y.; Kusumoto, Y.; Fukase, K.; Kusumoto, S.; Adachi, Y.; et al. Lipopolysaccharide Interaction with Cell Surface Toll-like Receptor 4-MD-2: Higher Affinity than That with MD-2 or CD14. J. Exp. Med. 2003, 198, 1035–1042. [Google Scholar] [CrossRef] [Green Version]
- Park, B.S.; Lee, J.-O. Recognition of Lipopolysaccharide Pattern by TLR4 Complexes. Exp. Mol. Med. 2013, 45, e66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Han, J.; Welch, E.J.; Ye, R.D.; Voyno-Yasenetskaya, T.A.; Malik, A.B.; Du, X.; Li, Z. Lipopolysaccharide Stimulates Platelet Secretion and Potentiates Platelet Aggregation via TLR4/MyD88 and the CGMP-Dependent Protein Kinase Pathway. J. Immunol. 2009, 182, 7997–8004. [Google Scholar] [CrossRef] [Green Version]
- Matus, V.; Valenzuela, J.G.; Hidalgo, P.; Pozo, L.M.; Panes, O.; Wozniak, A.; Mezzano, D.; Pereira, J.; Sáez, C.G. Human Platelet Interaction with E. coli O111 Promotes Tissue-Factor-Dependent Procoagulant Activity, Involving Toll like Receptor 4. PLoS ONE 2017, 12, e0185431. [Google Scholar] [CrossRef]
Strain | Origin | Platelet Activation | Platelet Bactericidal Effect | O-Antigen Serotyping | Reference |
---|---|---|---|---|---|
K12 | Laboratory strain | + | - | - | [9] |
LH30 | Clinical isolate | - | - | O8 | [9] |
J53 | Laboratory strain | + | + | O16 | [9] |
BSE-SEM of Whole Platelets-Bacteria Aggregates (Figure 1) | BSE-SEM of Ultrathin Sections of Platelets-Bacteria Aggregates (Figure 2) | ||||||
---|---|---|---|---|---|---|---|
Criteria | Visible Platelets | Visible Bacteria | Platelet Activation | Platelet Integrity | Platelet Activation | Platelet Granules | Bacteria’s Location Regarding Platelets |
K12 strain | Yes | Yes | Moderate | Yes | Moderate | Inside platelets | Mixed |
LH30 strain | Yes | Yes | No | Yes | No | Inside platelets | Side by side |
J53 strain | Moderate | No | NC | Amorphous matrix | High | Among the amorphous matrix | Inside the amorphous matrix |
E. coli Strain | BSE-SEM Ultrathin Sections (Figure 3) | TEM Negative Staining (Figure 4) | SE-SEM (Figure 4) | |
---|---|---|---|---|
Technique | ||||
K12 | Regular cell wall, attached to periplasm, electron-dense bodies | Elongated shape | Thin surface reliefs | |
LH30 | Irregular shaped cell wall, detached from periplasm, electron-dense periplasm | Elongated shape | Thick surface reliefs | |
J53 | Sinuous cell wall, detached from periplasm, electron-dense periplasm | Elongated shape ± flagella | Thin surface reliefs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezzeroug Ezzraimi, A.; Baudoin, J.-P.; Mariotti, A.; Camoin-Jau, L. Microscopic Description of Platelet Aggregates Induced by Escherichia coli Strains. Cells 2022, 11, 3495. https://doi.org/10.3390/cells11213495
Ezzeroug Ezzraimi A, Baudoin J-P, Mariotti A, Camoin-Jau L. Microscopic Description of Platelet Aggregates Induced by Escherichia coli Strains. Cells. 2022; 11(21):3495. https://doi.org/10.3390/cells11213495
Chicago/Turabian StyleEzzeroug Ezzraimi, Amina, Jean-Pierre Baudoin, Antoine Mariotti, and Laurence Camoin-Jau. 2022. "Microscopic Description of Platelet Aggregates Induced by Escherichia coli Strains" Cells 11, no. 21: 3495. https://doi.org/10.3390/cells11213495
APA StyleEzzeroug Ezzraimi, A., Baudoin, J.-P., Mariotti, A., & Camoin-Jau, L. (2022). Microscopic Description of Platelet Aggregates Induced by Escherichia coli Strains. Cells, 11(21), 3495. https://doi.org/10.3390/cells11213495