Abstract
Biochar is known to enhance soil potassium (K) availability and promote plant K uptake; however, its influence on the transformation pathways of fertilizer potassium and the mechanisms regulating crop potassium accumulation remains insufficiently understood. This study conducted a pot experiment using three soil types—Albic, Brown, and Sandy soils—with different biochar application rates (0, 10, and 20 g·kg−1) in combination with potassium fertilizer, to systematically evaluate the regulation of soil K forms, K fertilizer transformation rates, K use efficiency, and K uptake and accumulation in soybeans. The results demonstrated that the combined application of biochar and K fertilizer significantly increased the contents of available, water-soluble, exchangeable, and non-exchangeable K across all three soils. At the highest biochar application rate (20 g·kg−1), available K increased by 15.37%, 16.78%, and 11.77% in the Albic, Sandy, and Brown soils, respectively, compared to the control. Furthermore, biochar altered the transformation pathways of fertilizer K; it consistently reduced the conversion rate of fertilizer K into exchangeable K across all soils, redirecting it toward the water-soluble and non-exchangeable K pools, thus functioning as a potassium “scheduling center”. Adsorption–desorption experiments revealed that biochar exhibits a strong multilayer adsorption capacity for K ions, with most of the adsorbed K not easily desorbed, providing mechanistic support for the observed shift in transformation pathways. In terms of K use efficiency, biochar reduced the K of agronomic efficiency (KAE) due to a “dilution effect” from its inherent K content. Under the high application rate (20 g·kg−1), the KAE decreased by 11.79% in Albic soil, 88.48% in Sandy soil, and 71.73% in Brown soil, while significantly increasing the partial factor productivity of K (PFPK) and apparent recovery efficiency of K (AREK). Ultimately, the co-application of biochar and K fertilizer significantly enhanced total K accumulation and seed yield in soybeans by increasing K concentrations in various plant parts and promoting dry matter accumulation. At the biochar application rate of 20 g·kg−1, the potassium accumulation and soybean yield under biochar treatment reached maximum increases of 70.77% (in Brown soil) and 42.63% (in Albic soil), respectively. This study demonstrates that biochar can synergistically reduce potassium (K) leaching and improve fertilizer use efficiency by regulating K transformation pathways. This provides a practical guideline for utilizing biochar as a dual-function amendment, which acts as both a supplemental K source and a soil conditioner, thereby supporting the development of more sustainable potassium management practices in diverse cropping systems.