Characteristics of Soil Nutrients and Microorganisms at the Grassland–Farmland Interface in the Songnen Agro-Pastoral Ecotone of Northeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Description
2.2. Experimental Design
2.3. Soil Sampling and Analysis
2.3.1. Soil Physicochemical Properties
2.3.2. Soil DNA Extraction
2.3.3. Amplification, Sequencing, and Sequence Processing of 16S rRNA and ITS Data
2.4. Statistical Analysis
3. Results
3.1. Soil Physicochemical Analysis
3.2. Soil Bacterial Diversity and Correlation Analysis
3.3. Soil Fungal Diversity and Correlation Analysis
4. Discussion
4.1. Changes in Soil Physicochemical Properties at the Grassland–Farmland Interface
4.2. Shift in Bacterial Community Composition
4.3. Shift in Fungal Community Composition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gosz, J.R. Fundamental Ecological Characteristics of Landscape Boundaries. In Ecotones; Holland, M.M., Risser, P.G., Naiman, R.J., Eds.; Springer: Boston, MA, USA, 1991; pp. 8–30. ISBN 978-1-4615-9688-2. [Google Scholar]
- Zhai, X.; Huang, D.; Tang, S.; Li, S.; Guo, J.; Yang, Y.; Liu, H.; Li, J.; Wang, K. The Emergy of Metabolism in Different Ecosystems under the Same Environmental Conditions in the Agro-Pastoral Ecotone of Northern China. Ecol. Indic. 2017, 74, 198–204. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, B.; He, C.; Shao, R. Detecting Vegetation Variations and Main Drivers over the Agropastoral Ecotone of Northern China through the Ensemble Empirical Mode Decomposition Method. Remote Sens. 2019, 11, 1860. [Google Scholar] [CrossRef]
- Kerns, B.K.; Powell, D.C.; Mellmann-Brown, S.; Carnwath, G.; Kim, J.B. Effects of Projected Climate Change on Vegetation in the Blue Mountains Ecoregion, USA. Clim. Serv. 2018, 10, 33–43. [Google Scholar] [CrossRef]
- You, G.; Liu, B.; Zou, C.; Li, H.; McKenzie, S.; He, Y.; Gao, J.; Jia, X.; Arain, M.A.; Wang, S.; et al. Sensitivity of Vegetation Dynamics to Climate Variability in a Forest-Steppe Transition Ecozone, North-Eastern Inner Mongolia, China. Ecol. Indic. 2021, 120, 106833. [Google Scholar] [CrossRef]
- Song, Y.; Xu, M.; Li, X.; Bian, Y.; Wang, F.; Yang, X.; Gu, C.; Jiang, X. Long-Term Plastic Greenhouse Cultivation Changes Soil Microbial Community Structures: A Case Study. J. Agric. Food Chem. 2018, 66, 8941–8948. [Google Scholar] [CrossRef]
- Cui, H.; Wang, Y.; Jiang, Q.; Chen, S.; Ma, J.-Y.; Sun, W. Carbon Isotope Composition of Nighttime Leaf-Respired CO2 in the Agricultural-Pastoral Zone of the Songnen Plain, Northeast China. PLoS ONE 2015, 10, e0137575. [Google Scholar] [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.; Leite, M.F.; Merloti, L.F.; Moretti, L.G.; Pascoaloto, I.M.; Kuramae, E.E. Modulation of the Soil Microbiome by Long-Term ca-Based Soil Amendments Boosts Soil Organic Carbon and Physicochemical Quality in a Tropical No-till Crop Rotation System. Soil Biol. Biochem. 2021, 156, 108188. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, S.; Qin, Y.; Sun, Y.; Shangguan, D.; Meng, B.; Li, M.; Zhang, J. Effects of Patchiness on Surface Soil Moisture of Alpine Meadow on the Northeastern Qinghai-Tibetan Plateau: Implications for Grassland Restoration. Remote Sens. 2020, 12, 4121. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, L.; Zhang, H.; Jiang, L.; Zhang, A.; Pan, T. Effect of Farmland Expansion on Drought over the Past Century in Songnen Plain, Northeast China. J. Geogr. Sci. 2020, 30, 439–454. [Google Scholar] [CrossRef]
- Chang, C.; Tian, L.; Tian, Z.; McLaughlin, N.; Tian, C. Change of Soil Microorganism Communities under Saline-sodic Land Degradation on the Songnen Plain in Northeast China#. J. Plant Nutr. Soil Sci. 2022, 185, 297–307. [Google Scholar] [CrossRef]
- Shi, C.Q.; Li, Y.; Yu, S.P.; Hu, B.Z.; Guo, H.; Jin, L.; Cong, D.L.; Meng, B.; Ding, J.N.; Liang, X.W. Saline-Alkaline Soil Bacterial Community Structure and Diversity Analysis under Different Patterns of Land-Use in a Lake Wetland in Songnen Plain, China. Appl. Ecol. Environ. Res. 2021, 19, 1337–1352. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Han, L.; Yang, J.; Zhao, X.; Qu, J.; Li, L.; Bai, Y.; Yan, D.; Hou, G. Spatial Distribution Characteristics of Soil C:N:P:K Eco-Stoichiometry of Farmland and Grassland in the Agro-Pastoral Ecotone in Inner Mongolia, China. Agronomy 2024, 14, 346. [Google Scholar] [CrossRef]
- Song, J.; Guan, X.; Cui, H.; Liu, L.; Li, Y.; Li, Y.; Ma, S. The Impact of Salt-Tolerant Plants on Soil Nutrients and Microbial Communities in Soda Saline-Alkali Lands of the Songnen Plain. Front. Microbiol. 2025, 16, 1592834. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Wu, X.; Duan, C.; Smith, A.R.; Jones, D.L. Traits of Dominant Species and Soil Properties Co-Regulate Soil Microbial Communities across Land Restoration Types in a Subtropical Plateau Region of Southwest China. Ecol. Eng. 2020, 153, 105897. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Zheng, W.; Hou, F.; Hu, Y.; Guo, S. Converting Croplands to Orchards Changes Soil Microbial Community Composition and Co-occurrence Patterns. Land Degrad. Dev. 2021, 32, 2509–2519. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Wichern, F. Alive and Kicking: Why Dormant Soil Microorganisms Matter. Soil Biol. Biochem. 2018, 116, 419–430. [Google Scholar] [CrossRef]
- Lu, Z.; Lei, G.; Guo, Y.; Ma, Q. Changes of Land Use Intensity in the Songnen Plain of Different Spatial Scales and Their Effects on Climatic Factors. Acta Ecol. Sin. 2021, 41, 1894–1906. [Google Scholar] [CrossRef]
- Wu, P.; Xie, Y.; Chi, Y.; Kang, C.; Sun, L.; Wei, Z.; Zhang, M.; Zhang, Y. Loess Accumulation in Harbin with Implications for Late Quaternary Aridification in the Songnen Plain, Northeast China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 570, 110365. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Jiang, M.; Lu, X. Vegetation Change and Its Response to Climate Change between 2000 and 2016 in Marshes of the Songnen Plain, Northeast China. Sustainability 2020, 12, 3569. [Google Scholar] [CrossRef]
- Brunel, C.; Da Silva, A.-M.F.; Gros, R. Environmental Drivers of Microbial Functioning in Mediterranean Forest Soils. Microb. Ecol. 2020, 80, 669–681. [Google Scholar] [CrossRef]
- Shao, J.-L.; Lai, B.; Jiang, W.; Wang, J.-T.; Hong, Y.-H.; Chen, F.-B.; Tan, S.-Q.; Guo, L.-X. Diversity and Co-Occurrence Patterns of Soil Bacterial and Fungal Communities of Chinese Cordyceps Habitats at Shergyla Mountain, Tibet: Implications for the Occurrence. Microorganisms 2019, 7, 284. [Google Scholar] [CrossRef]
- Canini, F.; Geml, J.; D’Acqui, L.P.; Buzzini, P.; Turchetti, B.; Onofri, S.; Ventura, S.; Zucconi, L. Fungal Diversity and Functionality Are Driven by Soil Texture in Taylor Valley, Antarctica. Fungal Ecol. 2021, 50, 101041. [Google Scholar] [CrossRef]
- Díaz, M.; Quiroz-Moreno, C.; Jarrín-V, P.; Piquer-Esteban, S.; Monfort-Lanzas, P.; Rivadeneira, E.; Castillejo, P.; Arnau, V.; Díaz, W.; Sangari, F.J.; et al. Soil Bacterial Community along an Altitudinal Gradient in the Sumaco, a Stratovolcano in the Amazon Region. Front. For. Glob. Change 2022, 5, 738568. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Lu, J.; Chen, W.; Wei, G.; Lin, Y. Topography Affects the Soil Conditions and Bacterial Communities along a Restoration Gradient on Loess-Plateau. Appl. Soil Ecol. 2020, 150, 103471. [Google Scholar] [CrossRef]
- Ma, J.; Nergui, S.; Han, Z.; Huang, G.; Li, H.; Zhang, R.; Zhu, L.; Liao, J. The Variation of the Soil Bacterial and Fungal Community Is Linked to Land Use Types in Northeast China. Sustainability 2019, 11, 3286. [Google Scholar] [CrossRef]
- Plassart, P.; Prévost-Bouré, N.C.; Uroz, S.; Dequiedt, S.; Stone, D.; Creamer, R.; Griffiths, R.I.; Bailey, M.J.; Ranjard, L.; Lemanceau, P. Soil Parameters, Land Use, and Geographical Distance Drive Soil Bacterial Communities along a European Transect. Sci. Rep. 2019, 9, 605. [Google Scholar] [CrossRef]
- Sui, X.; Zeng, X.; Li, M.; Weng, X.; Frey, B.; Yang, L.; Li, M. Influence of Different Vegetation Types on Soil Physicochemical Parameters and Fungal Communities. Microorganisms 2022, 10, 829. [Google Scholar] [CrossRef]
- Tang, S.; Li, S.; Wang, Z.; Zhang, Y.; Wang, K. Effects of Grassland Converted to Cropland on Soil Microbial Biomass and Community from Agro-pastoral Ecotone in Northern China. Grassl. Sci. 2022, 68, 36–43. [Google Scholar] [CrossRef]
- Aredehey, G.; Berhe Zenebe, G.; Gebremedhn, A. Land Use Impacts on Physicochemical and Microbial Soil Properties across the Agricultural Landscapes of Debrekidan, EasternTigray, Ethiopia. Cogent Food Agric. 2019, 5, 1708683. [Google Scholar] [CrossRef]
- Hota, S.; Mishra, V.; Mourya, K.K.; Giri, K.; Kumar, D.; Jha, P.K.; Saikia, U.S.; Prasad, P.V.; Ray, S.K. Land Use, Landform, and Soil Management as Determinants of Soil Physicochemical Properties and Microbial Abundance of Lower Brahmaputra Valley, India. Sustainability 2022, 14, 2241. [Google Scholar] [CrossRef]
- Shuo, L.; Yunping, C.; Dongmei, H.; Yuanyun, X.; Chunguo, K.; Peng, W. Evolution of Summer Monsoon in Songnen Plain since Middle Pleistocene: Magnetic Susceptibility, Geochemistry and Total Organic Carbon Records from Harbin Loess. Chin. J. Geol. 2021, 56, 1279–1298. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. (Eds.) Methods of Soil Analysis: Part 3 Chemical Methods; SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; ISBN 978-0-89118-866-7. [Google Scholar]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS Primers with Enhanced Specificity for Basidiomycetes—Application to the Identification of Mycorrhizae and Rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package, R Package Version 2.9. 2013. Available online: https://CRAN.R-project.org/package=vegan (accessed on 21 August 2025).
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package ‘Corrplot’. Statistician 2017, 56, e24. [Google Scholar]
- Akhtaruzzaman, M.D.; Roy, S.; Mahmud, M.S.; Shormin, T. Soil Properties under Different Vegetation Types in Chittagong University Campus, Bangladesh. J. For. Environ. Sci. 2020, 36, 133–142. [Google Scholar]
- Zhang, Z.; Wang, J.; Feng, Y. Linking the Reclaimed Soils and Rehabilitated Vegetation in an Opencast Coal Mining Area: A Complex Network Approach. Environ. Sci. Pollut. Res. 2019, 26, 19365–19378. [Google Scholar] [CrossRef]
- Dong, L.; Li, J.; Zhang, Y.; Bing, M.; Liu, Y.; Wu, J.; Hai, X.; Li, A.; Wang, K.; Wu, P.; et al. Effects of Vegetation Restoration Types on Soil Nutrients and Soil Erodibility Regulated by Slope Positions on the Loess Plateau. J. Environ. Manag. 2022, 302, 113985. [Google Scholar] [CrossRef]
- Ferrari, F.R.; Schaefer, C.E.; Pereira, A.B.; Thomazini, A.; Schmitz, D.; Francelino, M.R. Coupled Soil-Vegetation Changes along a Topographic Gradient on King George Island, Maritime Antarctica. Catena 2021, 198, 105038. [Google Scholar] [CrossRef]
- Szymański, W.; Maciejowski, W.; Ostafin, K.; Ziaja, W.; Sobucki, M. Impact of Parent Material, Vegetation Cover, and Site Wetness on Variability of Soil Properties in Proglacial Areas of Small Glaciers along the Northeastern Coast of Sørkappland (SE Spitsbergen). Catena 2019, 183, 104209. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Fu, Z.; Wang, K. Effects of Vegetation Restoration on Soil Properties along an Elevation Gradient in the Karst Region of Southwest China. Agric. Ecosyst. Environ. 2021, 320, 107572. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Gao, H.; Nie, N. Climate Change and Anthropogenic Impacts on Wetland and Agriculture in the Songnen and Sanjiang Plain, Northeast China. Remote Sens. 2018, 10, 356. [Google Scholar] [CrossRef]
- hua An, F.; tao Yang, H.; Yang, F.; chun Wang, Z. Soil Degradation and Its Relation to Soil Properties in Songnen Plain, Northeast China. Feb Fresenius Environ. Bull. 2021, 30, 1304–1311. [Google Scholar]
- Liu, R.; Pan, Y.; Bao, H.; Liang, S.; Jiang, Y.; Tu, H.; Nong, J.; Huang, W. Variations in Soil Physico-Chemical Properties along Slope Position Gradient in Secondary Vegetation of the Hilly Region, Guilin, Southwest China. Sustainability 2020, 12, 1303. [Google Scholar] [CrossRef]
- Li, Y.-B.; Li, P.; Wang, S.-H.; Xu, L.-Y.; Deng, J.-J.; Jiao, J.-G. Effects of Organic Fertilizer Application on Crop Yield and Soil Properties in Rice-Wheat Rotation System: A Meta-Analysis. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2021, 32, 3231–3239. [Google Scholar]
- Tan, G.; Wang, H.; Xu, N.; Junaid, M.; Liu, H.; Zhai, L. Effects of Biochar Application with Fertilizer on Soil Microbial Biomass and Greenhouse Gas Emissions in a Peanut Cropping System. Environ. Technol. 2021, 42, 9–19. [Google Scholar] [CrossRef]
- Parker, S.S.; Seabloom, E.W.; Schimel, J.P. Grassland Community Composition Drives Small-Scale Spatial Patterns in Soil Properties and Processes. Geoderma 2012, 170, 269–279. [Google Scholar] [CrossRef]
- Csontos, P.; Mucsi, M.; Ragályi, P.; Tamás, J.; Kalapos, T.; Pápay, G.; Mjazovszky, Á.; Penksza, K.; Szili-Kovács, T. Standing Vegetation Exceeds Soil Microbial Communities in Soil Type Indication: A Procrustes Test of Four Salt-Affected Pastures. Agronomy 2021, 11, 1652. [Google Scholar] [CrossRef]
- Hou, X.; Han, H.; Tigabu, M.; Cai, L.; Meng, F.; Liu, A.; Ma, X. Changes in Soil Physico-Chemical Properties Following Vegetation Restoration Mediate Bacterial Community Composition and Diversity in Changting, China. Ecol. Eng. 2019, 138, 171–179. [Google Scholar] [CrossRef]
- Weng, X.; Li, J.; Sui, X.; Li, M.; Yin, W.; Ma, W.; Yang, L.; Mu, L. Soil Microbial Functional Diversity Responses to Different Vegetation Types in the Heilongjiang Zhongyangzhan Black-Billed Capercaillie Nature Reserve. Ann. Microbiol. 2021, 71, 26. [Google Scholar] [CrossRef]
- Bottos, E.M.; Laughlin, D.C.; Herbold, C.W.; Lee, C.K.; McDonald, I.R.; Cary, S.C. Abiotic Factors Influence Patterns of Bacterial Diversity and Community Composition in the Dry Valleys of Antarctica. FEMS Microbiol. Ecol. 2020, 96, fiaa042. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Sun, X.; Tong, J.; Fu, Z.; Li, J. Sustainability of Urban Soil Management: Analysis of Soil Physicochemical Properties and Bacterial Community Structure under Different Green Space Types. Sustainability 2019, 11, 1395. [Google Scholar] [CrossRef]
- Cai, L.; Guo, Z.; Zhang, J.; Gai, Z.; Liu, J.; Meng, Q.; Liu, X. No Tillage and Residue Mulching Method on Bacterial Community Diversity Regulation in a Black Soil Region of Northeastern China. PLoS ONE 2021, 16, e0256970. [Google Scholar] [CrossRef]
- Li, S.; Chen, W.; Li, Z.; Bu, L.; Jin, Z.; Wei, G.; Li, Z. Fertile Islands Lead to More Conspicuous Spatial Heterogeneity of Bacteria than Soil Physicochemical Properties in a Desert Ecosystem. Catena 2021, 206, 105526. [Google Scholar] [CrossRef]
- Zhang, N.; Zhong, B.; Zhao, C.; Wang, E.; Wang, Y.; Chen, D.; Shi, F. Change of Soil Physicochemical Properties, Bacterial Community and Aggregation during Desertification of Grasslands in the Tibetan Plateau. Eur. J. Soil Sci. 2021, 72, 274–288. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, Y.; Chen, W.; Guo, Y.; Wu, M.; Wang, Y.; Li, H. Soil Type and pH Mediated Arable Soil Bacterial Compositional Variation across Geographic Distance in North China Plain. Appl. Soil Ecol. 2022, 169, 104220. [Google Scholar] [CrossRef]
- Du, H.-D.; Wang, S.; Nie, W.-J.; Song, S.-J. Soil Properties and Bacterial Community Dynamics in a Coal Mining Subsidence Area: Active versus Passive Revegetation. J. Soil Sci. Plant Nutr. 2021, 21, 2573–2585. [Google Scholar] [CrossRef]
- Hutengs, C.; Eisenhauer, N.; Schädler, M.; Lochner, A.; Seidel, M.; Vohland, M. VNIR and MIR Spectroscopy of PLFA-Derived Soil Microbial Properties and Associated Soil Physicochemical Characteristics in an Experimental Plant Diversity Gradient. Soil Biol. Biochem. 2021, 160, 108319. [Google Scholar] [CrossRef]
- Waymouth, V.; Miller, R.E.; Kasel, S.; Ede, F.; Bissett, A.; Aponte, C. Soil Bacterial Community Responds to Land-Use Change in Riparian Ecosystems. Forests 2021, 12, 157. [Google Scholar] [CrossRef]
- Delelegn, Y.T.; Purahong, W.; Sandén, H.; Yitaferu, B.; Godbold, D.L.; Wubet, T. Transition of Ethiopian Highland Forests to Agriculture-Dominated Landscapes Shifts the Soil Microbial Community Composition. BMC Ecol. 2018, 18, 58. [Google Scholar] [CrossRef]
- Li, X.; Pang, H.; Zhao, Y.; Sun, M.; Zhang, X.; Xu, N.; He, G.; Zhang, H.; Sun, G. Shifts in the Bacterial Community Structure and Function along a Vegetation Gradient in the Great Xing’an Mountains. Scand. J. For. Res. 2018, 33, 103–113. [Google Scholar] [CrossRef]
- Xiang, X.; Gibbons, S.M.; Li, H.; Shen, H.; Chu, H. Proximate Grassland and Shrub-Encroached Sites Show Dramatic Restructuring of Soil Bacterial Communities. PeerJ 2019, 7, e7304. [Google Scholar] [CrossRef]
- Xiao, R.; Man, X.; Duan, B.; Cai, T.; Ge, Z.; Li, X.; Vesala, T. Changes in Soil Bacterial Communities and Nitrogen Mineralization with Understory Vegetation in Boreal Larch Forests. Soil Biol. Biochem. 2022, 166, 108572. [Google Scholar] [CrossRef]
- Li, P.; Kong, D.; Zhang, H.; Xu, L.; Li, C.; Wu, M.; Jiao, J.; Li, D.; Xu, L.; Li, H.; et al. Different Regulation of Soil Structure and Resource Chemistry under Animal- and Plant-Derived Organic Fertilizers Changed Soil Bacterial Communities. Appl. Soil Ecol. 2021, 165, 104020. [Google Scholar] [CrossRef]
- van der Bom, F.; Nunes, I.; Raymond, N.S.; Hansen, V.; Bonnichsen, L.; Magid, J.; Nybroe, O.; Jensen, L.S. Long-Term Fertilisation Form, Level and Duration Affect the Diversity, Structure and Functioning of Soil Microbial Communities in the Field. Soil Biol. Biochem. 2018, 122, 91–103. [Google Scholar] [CrossRef]
- Liu, H.; Xu, W.; Li, J.; Yu, Z.; Zeng, Q.; Tan, W.; Mi, W. Short-Term Effect of Manure and Straw Application on Bacterial and Fungal Community Compositions and Abundances in an Acidic Paddy Soil. J. Soils Sediments 2021, 21, 3057–3071. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Y.; Shi, J.; Wang, S.; White, P.J.; Shi, L.; Xu, F. Effect of Balanced Application of Boron and Phosphorus Fertilizers on Soil Bacterial Community, Seed Yield and Phosphorus Use Efficiency of Brassica napus. Sci. Total Environ. 2021, 751, 141644. [Google Scholar] [CrossRef]
- Bai, N.; Zhang, H.; Li, S.; Zheng, X.; Zhang, J.; Sun, L.; Lv, W. Effects of Application Rates of Poly-γ-Glutamic Acid on Vegetable Growth and Soil Bacterial Community Structure. Appl. Soil Ecol. 2020, 147, 103405. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, Y.; Gao, J.; Peng, F.; Gao, P. Long-Term Combined Application of Manure and Chemical Fertilizer Sustained Higher Nutrient Status and Rhizospheric Bacterial Diversity in Reddish Paddy Soil of Central South China. Sci. Rep. 2018, 8, 16554. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, P.; Zeng, Z. Dynamics of Bacterial Communities in a 30-Year Fertilized Paddy Field under Different Organic–Inorganic Fertilization Strategies. Agronomy 2019, 9, 14. [Google Scholar] [CrossRef]
- Canini, F.; Zucconi, L.; Pacelli, C.; Selbmann, L.; Onofri, S.; Geml, J. Vegetation, pH and Water Content as Main Factors for Shaping Fungal Richness, Community Composition and Functional Guilds Distribution in Soils of Western Greenland. Front. Microbiol. 2019, 10, 2348. [Google Scholar] [CrossRef]
- Ding, T.; Yan, Z.; Zhang, W.; Duan, T. Green Manure Crops Affected Soil Chemical Properties and Fungal Diversity and Community of Apple Orchard in the Loess Plateau of China. J. Soil Sci. Plant Nutr. 2021, 21, 1089–1102. [Google Scholar] [CrossRef]
- Kang, E.; Li, Y.; Zhang, X.; Yan, Z.; Wu, H.; Li, M.; Yan, L.; Zhang, K.; Wang, J.; Kang, X. Soil pH and Nutrients Shape the Vertical Distribution of Microbial Communities in an Alpine Wetland. Sci. Total Environ. 2021, 774, 145780. [Google Scholar] [CrossRef]
- Xu, M.-P.; Wang, J.-Y.; Zhu, Y.-F.; Han, X.-H.; Ren, C.-J.; Yang, G.-H. Plant Biomass and Soil Nutrients Mainly Explain the Variation of Soil Microbial Communities during Secondary Succession on the Loess Plateau. Microb. Ecol. 2022, 83, 114–126. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.; Dumack, K.; Liu, W.; Zhang, Q.; He, Y.; Di, H.; Bonkowski, M.; Xu, J.; Li, Y. Protists Modulate Fungal Community Assembly in Paddy Soils across Climatic Zones at the Continental Scale. Soil Biol. Biochem. 2021, 160, 108358. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Ye, Z.; Li, J.; Feng, Y.; Lu, Q. Relationships between Fungal and Plant Communities Differ between Desert and Grassland in a Typical Dryland Region of Northwest China. Front. Microbiol. 2018, 9, 2327. [Google Scholar] [CrossRef]
- Li, S.; Shakoor, A.; Wubet, T.; Zhang, N.; Liang, Y.; Ma, K. Fine-Scale Variations of Fungal Community in a Heterogeneous Grassland in Inner Mongolia: Effects of the Plant Community and Edaphic Parameters. Soil Biol. Biochem. 2018, 122, 104–110. [Google Scholar] [CrossRef]
- Ji, L.; Ni, K.; Wu, Z.; Zhang, J.; Yi, X.; Yang, X.; Ling, N.; You, Z.; Guo, S.; Ruan, J. Effect of Organic Substitution Rates on Soil Quality and Fungal Community Composition in a Tea Plantation with Long-Term Fertilization. Biol. Fertil. Soils 2020, 56, 633–646. [Google Scholar] [CrossRef]
- Adamczyk, B.; Sietiö, O.; Biasi, C.; Heinonsalo, J. Interaction between Tannins and Fungal Necromass Stabilizes Fungal Residues in Boreal Forest Soils. New Phytol. 2019, 223, 16–21. [Google Scholar] [CrossRef]
- Das, S.; Lee, J.G.; Cho, S.R.; Song, H.J.; Kim, P.J. Silicate Fertilizer Amendment Alters Fungal Communities and Accelerates Soil Organic Matter Decomposition. Front. Microbiol. 2019, 10, 2950. [Google Scholar] [CrossRef]
- Kohout, P.; Sudová, R.; Brabcová, V.; Vosolsobě, S.; Baldrian, P.; Albrechtová, J. Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots. Front. Microbiol. 2021, 12, 541583. [Google Scholar] [CrossRef]
Type of Land | Sites | pH | OM (g/kg) | TP (g/kg) | TN (g/kg) | TK (g/kg) | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) | Water Content (%) |
---|---|---|---|---|---|---|---|---|---|---|
Grassland | G50 | 7.02 i | 79.60 ± 3.62 a | 0.88 ± 0.04 i | 1.48 ± 0.05 e | 17.62 ± 0.43 f | 86.58 ± 5.64 a | 27.32 ± 2.35 e | 174.64 ± 35.16 e | 20.86 b |
G30 | 7.08 h | 77.17 ± 3.25 b | 0.89 ± 0.05 h | 1.52 ± 0.03 d | 17.13 ± 0.73 g | 84.27 ± 10.34 b | 30.34 ± 4.05 d | 179.75 ± 20.68 d | 19.73 c | |
G15 | 7.12 g | 73.11 ± 3.49 c | 0.95 ± 0.03 g | 1.45 ± 0.02 f | 18.27 ± 0.46 e | 81.01 ± 11.08 d | 32.03 ± 3.18 c | 187.68 ± 29.67 cd | 18.45 d | |
G5 | 7.45 f | 73.45 ± 3.57 d | 1.03 ± 0.04 d | 1.58 ± 0.04 a | 19.73 ± 0.47 c | 80.18 ± 8.58 e | 33.04 ± 2.24 b | 198.06 ± 31.01 b | 16.33 e | |
Interface | G0 | 7.65 e | 64.05 ± 3.94 e | 1.14 ± 0.02 a | 1.52 ± 0.02 d | 22.97 ± 0.63 a | 84.25 ± 7.85 c | 36.83 ± 1.98 a | 199.26 ± 34.25 a | 22.72 a |
Farmland | F5 | 7.95 d | 42.70 ± 3.79 i | 1.12 ± 0.04 b | 1.48 ± 0.01 e | 18.92 ± 0.61 d | 71.08 ± 11.36 ef | 9.16 ± 1.68 h | 140.39 ± 23.71 f | 10.45 f |
F15 | 8.00 c | 55.99 ± 4.00 f | 1.04 ± 0.04 c | 1.53 ± 0.04 c | 19.90 ± 0.73 b | 69.45 ± 9.88 efg | 10.15 ± 3.67 f | 109.58 ± 24.53 h | 9.23 g | |
F30 | 8.02 b | 52.57 ± 4.0 g | 1.02 ± 0.03 e | 1.53 ± 0.03 c | 18.92 ± 0.36 d | 66.57 ± 11.62 i | 9.17 ± 1.61 g | 110.64 ± 22.51 g | 8.74 h | |
F50 | 8.21 a | 50.41 ± 4.32 h | 1.01 ± 0.05 f | 1.56 ± 0.03 b | 16.97 ± 0.71 h | 69.57 ± 10.29 h | 8.00 ± 2.34 i | 108.22 ± 31.73 i | 8.46 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, J.; Han, Z.; Zhu, W.; Liu, Z.; Sun, X.; Fu, C.; Xiao, H.; Qin, L.; Mei, L. Characteristics of Soil Nutrients and Microorganisms at the Grassland–Farmland Interface in the Songnen Agro-Pastoral Ecotone of Northeast China. Agronomy 2025, 15, 2032. https://doi.org/10.3390/agronomy15092032
Li H, Li J, Han Z, Zhu W, Liu Z, Sun X, Fu C, Xiao H, Qin L, Mei L. Characteristics of Soil Nutrients and Microorganisms at the Grassland–Farmland Interface in the Songnen Agro-Pastoral Ecotone of Northeast China. Agronomy. 2025; 15(9):2032. https://doi.org/10.3390/agronomy15092032
Chicago/Turabian StyleLi, Haotian, Jiahong Li, Zhihao Han, Wenbo Zhu, Zhaoming Liu, Xuetong Sun, Chuhan Fu, Huichuan Xiao, Ligang Qin, and Linlin Mei. 2025. "Characteristics of Soil Nutrients and Microorganisms at the Grassland–Farmland Interface in the Songnen Agro-Pastoral Ecotone of Northeast China" Agronomy 15, no. 9: 2032. https://doi.org/10.3390/agronomy15092032
APA StyleLi, H., Li, J., Han, Z., Zhu, W., Liu, Z., Sun, X., Fu, C., Xiao, H., Qin, L., & Mei, L. (2025). Characteristics of Soil Nutrients and Microorganisms at the Grassland–Farmland Interface in the Songnen Agro-Pastoral Ecotone of Northeast China. Agronomy, 15(9), 2032. https://doi.org/10.3390/agronomy15092032