Genome-Wide Association Study of Agricultural and Biochemical Traits in Radiation-Induced Colored Wheat
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Seed Color Determination
2.3. Quantification of Total Anthocyanin Content
2.4. Preparation of Seed Extracts
2.4.1. Determination of Antioxidant Capacity
2.4.2. Quantification of Total Phenolic Content
2.4.3. Determination of Flavonoid Content
2.5. Genotyping and SNP Calling
2.6. Population Structure and Linkage Disequilibrium (LD)
2.7. Correlations of Agronomic and Biochemical Traits with GWAS Data
2.8. Gene Expression Analysis
3. Results
3.1. Phenotypic Evaluations and Trait Correlation Analysis
3.2. Marker Distribution, Population Structure, and LD Decay
3.3. GWAS
3.4. Genotypic Effects of Significant SNPs on Trait Variation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BLINK | Bayesian-information and Linkage-Disequilibrium Iteratively Nested Keyway |
BLUP | Best linear unbiased predictions |
CC | Creative Commons |
FarmCPU | Fixed and Random Model Circulating Probability Unification |
FRAP | Ferric reducing antioxidant power |
GWAS | Genome-wide association study |
IWGSC | International Wheat Genome Sequencing Consortium |
LD | Linkage disequilibrium |
MAF | Minor allele frequency |
PCA | Principal component analysis |
PH | Plant height |
QTL | Quantitative trait loci |
SL | Spike length |
SNP | Single-nucleotide polymorphism |
TGW | Thousand-grain weight |
References
- Loskutov, I.G.; Khlestkina, E.K. Wheat, barley, and oat breeding for health benefit components in grain. Plants 2021, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Padhy, A.K.; Kaur, P.; Singh, S.; Kashyap, L.; Sharma, A. Colored wheat and derived products: Key to global nutritional security. Crit. Rev. Food Sci. Nutr. 2024, 64, 1894–1910. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.J.; Kim, D.Y.; Nam, B.M.; Ahn, J.W.; Kwon, S.J.; Seo, Y.W.; Kim, J.B. Characterization of novel mutants of hexaploid wheat (Triticum aestivum L.) with various depths of purple grain color and antioxidant capacity. J. Sci. Food Agric. 2019, 99, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Qiu, Y.; Beta, T. Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds. J. Agric. Food Chem. 2010, 58, 9235–9241. [Google Scholar] [CrossRef]
- Sharma, A.; Yadav, M.; Tiwari, A.; Ali, U.; Krishania, M.; Bala, M.; Mridula, D.; Sharma, P.; Goudar, G.; Roy, J.K.; et al. A comparative study of colored wheat lines across laboratories for validation of their phytochemicals and antioxidant activity. J. Cereal Sci. 2023, 112, 103719. [Google Scholar] [CrossRef]
- Naik, G.H.; Kalpande, H.V.; Sargar, P.R.; Deshmukh, S.S.; Patil, S.A. Mutation breeding in crop improvement. In Elements of Plant Breeding; Iterative International Publishers: Chikmagalur, India, 2024; pp. 74–87. [Google Scholar]
- Ma, L.; Kong, F.; Sun, K.; Wang, T.; Guo, T. From classical radiation to modern radiation: Past, present, and future of radiation mutation breeding. Front. Public Health 2021, 9, 768071. [Google Scholar] [CrossRef]
- Singh, B.; Datta, P.S. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat. Radiat. Phys. Chem. 2010, 79, 139–143. [Google Scholar] [CrossRef]
- Prasad, S.; Kumar, S.S. Mutation Breeding: A Tool for Crop Improvement and Agricultural Sustainability. RCA Issue Brief 2025, 2, 1–22. [Google Scholar]
- Sao, R.; Sahu, P.K.; Patel, R.S.; Das, B.K.; Jankuloski, L.; Sharma, D. Genetic improvement in plant architecture, maturity duration and agronomic traits of three traditional rice landraces through gamma ray-based induced mutagenesis. Plants 2022, 11, 3448. [Google Scholar] [CrossRef]
- Cheng, X.; Chai, L.; Chen, Z.; Xu, L.; Zhai, H.; Zhao, A.; Peng, H.; Yao, Y.; You, M.; Sun, Q.; et al. Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.). BMC Genet. 2015, 16, 127. [Google Scholar] [CrossRef][Green Version]
- Hussein, H.A. Influence of radio-grain priming on growth, antioxidant capacity, and yield of barley plants. Biotechnol. Rep. 2022, 34, e00724. [Google Scholar] [CrossRef]
- Choulet, F.; Alberti, A.; Theil, S.; Glover, N.; Barbe, V.; Daron, J.; Pingault, L.; Sourdille, P.; Couloux, A.; Paux, E.; et al. Structural and functional partitioning of bread wheat chromosome 3b. Science 2014, 345, 1249721. [Google Scholar] [CrossRef] [PubMed]
- International Wheat Genome Sequencing Consortium (IWGSC); Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, S.; Gao, L.; Monat, C.; Haberer, G.; Kassa, M.T.; Brinton, J.; Ramirez-Gonzalez, R.H.; Kolodziej, M.C.; Delorean, E.; Thambugala, D.; et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 2020, 588, 277–283. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, Y.; Kang, L.; Yin, C.; Bi, A.; Xu, D.; Zhang, Z.; Zhang, J.; Yang, X.; Xu, J.; et al. Population genomics unravels the Holocene history of bread wheat and its relatives. Nat. Plants 2023, 9, 403–419. [Google Scholar] [CrossRef]
- Mita, S.; Murano, N.; Akaike, M.; Nakamura, K. Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J. 1997, 11, 841–851. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Peterson, B.G.; Carl, P.; Boudt, K.; Bennett, R.; Ulrich, J.; Zivot, E.; Cornilly, D.; Hung, E.; Lestel, M.; Balkissoon, K. Package ‘PerformanceAnalytics’. R Team Coop. 2018, pp. 13–14. Available online: https://github.com/braverock/PerformanceAnalytics (accessed on 15 May 2025).
- Bharat, R.A.; Prathmesh, S.P.; Sarsu, F.; Suprasanna, P. Induced mutagenesis using gamma rays: Biological features and applications in crop improvement. OBM Genet. 2024, 8, 1–27. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Zhan, X.; Liu, L.; Feng, F.; Guo, Z.; Wang, D.; Chen, H. Biological effects of gamma-ray radiation on tulip (Tulipa gesneriana L.). PeerJ 2022, 10, e12792. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Zhang, Z.; Xu, Y.; Xu, Z.; Li, B.; Fan, Q.; Zhang, G.; Ye, L. Comparative metabolic analysis and antioxidant properties of purple and white wheat grains: Implications for developing functional wheat varieties. Food Qual. Saf. 2024, 8, fyad060. [Google Scholar] [CrossRef]
- Sharma, S.; Chunduri, V.; Kumar, A.; Kumar, R.; Khare, P.; Kondepudi, K.K.; Bishnoi, M.; Garg, M. Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization. PLoS ONE 2018, 13, e0194367. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Abbas, H.M.K.; Zhan, C.; Huang, Y.; Huang, S.; Yang, H.; Wang, Y.; Yuan, H.; Luo, J.; Zeng, X. Integrative metabolomic and transcriptomic analyses reveal the mechanisms of Tibetan hulless barley grain coloration. Front. Plant Sci. 2022, 13, 1038625. [Google Scholar] [CrossRef]
- Wang, F.; Ji, G.; Xu, Z.; Feng, B.; Zhou, Q.; Fan, X.; Wang, T. Metabolomics and transcriptomics provide insights into anthocyanin biosynthesis in the developing grains of purple wheat (Triticum aestivum L.). J. Agric. Food Chem. 2021, 69, 11171–11184. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Hou, H.; Ma, X.; Sun, S.; Wang, H.; Kong, L. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Res. Int. 2020, 138, 109711. [Google Scholar] [CrossRef]
- Ham, T.H.; Kwon, S.W.; Ryu, S.N.; Koh, H.J. Correlation analysis between grain color and cyanidin-3-glucoside content of rice grain in segregate population. Plant Breed. Biotechol. 2015, 3, 160–166. [Google Scholar] [CrossRef]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Hussain, S.; Habib, M.; Ahmed, Z.; Sadia, B.; Bernardo, A.; Amand, P.S.; Bai, G.; Ghori, N.; Khan, A.I.; Awan, F.S.; et al. Genotyping-by-sequencing based molecular genetic diversity of Pakistani bread wheat (Triticum aestivum L.) accessions. Front. Genet. 2022, 13, 772517. [Google Scholar] [CrossRef]
- Aleksandrov, V.; Kartseva, T.; Alqudah, A.M.; Kocheva, K.; Tasheva, K.; Börner, A.; Misheva, S. Genetic diversity, linkage disequilibrium and population structure of Bulgarian bread wheat assessed by genome-wide distributed SNP markers: From old germplasm to semi-dwarf cultivars. Plants 2021, 10, 1116. [Google Scholar] [CrossRef] [PubMed]
- Vikram, P.; Sehgal, D.; Sharma, A.; Bhavani, S.; Gupta, P.; Randhawa, M.; Pardo, N.; Basandra, D.; Srivastava, P.; Singh, S.; et al. Genome-wide association analysis of Mexican bread wheat landraces for resistance to yellow and stem rust. PLoS ONE 2021, 16, e0246015. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dong, Y.X.; Tang, X.Z.; Tu, T.L.; Zhao, B.; Sui, N.; Fu, D.L.; Zhang, X.S. Comparative transcriptome analysis revealing the effect of light on anthocyanin biosynthesis in purple grains of wheat. J. Agric. Food Chem. 2018, 66, 3465–3476. [Google Scholar] [CrossRef]
- Wang, J.; Sun, L.; Jiao, B.; Zhao, P.; Xu, T.; Gu, S.; Huo, C.; Pang, J.; Zhou, S. Integrated metabolomic and transcriptomic analysis of anthocyanin metabolism in wheat pericarp. BMC Genom. Data 2025, 26, 3. [Google Scholar] [CrossRef]
- Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci. 2015, 20, 176–185. [Google Scholar] [CrossRef]
- Bowles, D.; Lim, E.K.; Poppenberger, B.; Vaistij, F.E. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 2006, 57, 567–597. [Google Scholar] [CrossRef]
- Stacey, M.G.; Cahoon, R.E.; Nguyen, H.T.; Cui, Y.; Sato, S.; Nguyen, C.T.; Phoka, N.; Clark, K.M.; Liang, Y.; Forrester, J.; et al. Identification of homogentisate dioxygenase as a target for vitamin E biofortification in oilseeds. Plant Physiol. 2016, 172, 1506–1518. [Google Scholar] [CrossRef]
- Fidler, J.; Graska, J.; Gietler, M.; Nykiel, M.; Prabucka, B.; Rybarczyk-Płońska, A.; Muszyńska, E.; Morkunas, I.; Labudda, M. PYR/PYL/RCAR receptors play a vital role in the abscisic-acid-dependent responses of plants to external or internal stimuli. Cells 2022, 11, 1352. [Google Scholar] [CrossRef]
- Furukawa, T.; Ishibashi, T.; Kimura, S.; Tanaka, H.; Hashimoto, J.; Sakaguchi, K. Characterization of all the subunits of replication factor C from a higher plant, rice (Oryza sativa L.), and their relation to development. Plant Mol. Biol. 2003, 53, 15–25. [Google Scholar] [CrossRef]
- Saffari, A.; Silver, M.J.; Zavattari, P.; Moi, L.; Columbano, A.; Meaburn, E.L.; Dudbridge, F. Estimation of a significance threshold for epigenome-wide association studies. Genet. Epidemiol. 2018, 42, 20–33. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, T.; He, F.; Zhang, F.; Jiang, X.; Wang, C.; Kang, J. A genome-wide association study reveals novel loci and candidate genes associated with plant height variation in Medicago sativa. BMC Plant Biol. 2024, 24, 544. [Google Scholar] [CrossRef]
- Alemu, A.; Feyissa, T.; Maccaferri, M.; Sciara, G.; Tuberosa, R.; Ammar, K.; Abeyo, B. Genome-wide association analysis unveils novel QTLs for seminal root system architecture traits in Ethiopian durum wheat. BMC Genomics 2021, 22, 20. [Google Scholar] [CrossRef]
Algorithm | Trait | SNP | Chr | Position | p | MAF | H.B.P.Value | Effect | logP |
---|---|---|---|---|---|---|---|---|---|
BLINK | TGW | Ra_c73114_428 | 7A | 710201468 | 8.17 × 10−5 | 0.375 | 0.379678 | −4.53144 | 4.087547 |
BLINK/FarmCPU | Anthocyanin | BS00026777_51 | 1A | 312037970 | 3.87 × 10−8 | 0.09375 | 0.000598 | −0.10961 | 7.411967 |
BLINK/FarmCPU | L* | BS00109911_51 | 7A | 647779 | 3.34 × 10−5 | 0.364583 | 0.162575 | 5.019529 | 4.476653 |
BLINK/FarmCPU | L* | RAC875_c8714_653 | 7A | 5011401 | 4.38 × 10−5 | 0.458333 | 0.162575 | −3.64113 | 4.359 |
BLINK/FarmCPU | L* | Excalibur_c22830_1989 | 4A | 747966230 | 4.92 × 10−5 | 0.458333 | 0.21837 | −3.62725 | 4.307616 |
BLINK/FarmCPU | L* | Kukri_c9746_107 | 4A | 751841528 | 4.92 × 10−5 | 0.458333 | 0.21837 | −3.62725 | 4.307616 |
BLINK/FarmCPU | L* | Tdurum_contig46583_1275 | 4A | 747713027 | 4.92 × 10−5 | 0.458333 | 0.21837 | 3.627255 | 4.307616 |
BLINK/FarmCPU | L* | wsnp_Ex_c1334_2553027 | 4D | 514924842 | 5.66 × 10−5 | 0.354167 | 0.21837 | 6.417364 | 4.247084 |
BLINK/FarmCPU | SL | Ex_c5759_663 | 1A | 346656424 | 4.19 × 10−11 | 0.125 | 6.46E−07 | −0.87244 | 10.37799 |
BLINK/FarmCPU | SL | Kukri_c9507_142 | 2B | 244225202 | 1.84 × 10−6 | 0.46875 | 0.014222 | −1.58538 | 5.73436 |
BLINK/FarmCPU | TGW | RFL_Contig5898_807 | 7B | 716560601 | 5.17 × 10−5 | 0.21875 | 0.369422 | 2.722886 | 4.286537 |
BLINK/FarmCPU | TGW | wsnp_Ex_c10109_16614013 | 2A | 252753716 | 2.44 × 10−5 | 0.416667 | 0.376198 | 5.466131 | 4.612921 |
BLINK/FarmCPU | TGW | wsnp_Ex_c323_629581 | 7B | 713431941 | 5.97 × 10−5 | 0.125 | 0.369422 | 4.205813 | 4.224378 |
FarmCPU | Anthocyanin | BobWhite_c1105_745 | 2A | 784021756 | 2.06 × 10−5 | 0.4375 | 0.018701 | 0.176424 | 4.686013 |
FarmCPU | Anthocyanin | BobWhite_c5633_59 | 4A | 38335314 | 4.99 × 10−6 | 0.135417 | 0.018701 | 0.090235 | 5.301981 |
FarmCPU | Anthocyanin | BobWhite_rep_c66057_98 | 4A | 38335577 | 4.99 × 10−6 | 0.135417 | 0.018701 | 0.090235 | 5.301981 |
FarmCPU | Anthocyanin | D_contig63990_376 | 2D | 647831208 | 4.09 × 10−5 | 0.447917 | 0.030026 | 0.183635 | 4.388626 |
FarmCPU | Anthocyanin | Excalibur_c2311_1563 | 2B | 806010136 | 2.06 × 10−5 | 0.125 | 0.018701 | −0.08821 | 4.686013 |
FarmCPU | Anthocyanin | Excalibur_c6937_1065 | 2B | 809609996 | 7.53 × 10−5 | 0.197917 | 0.050541 | −0.08095 | 4.122962 |
FarmCPU | Anthocyanin | Excalibur_c7366_1926 | 2A | 781360372 | 1.27 × 10−5 | 0.135417 | 0.018701 | 0.08905 | 4.896965 |
FarmCPU | Anthocyanin | Excalibur_c88238_109 | 2A | 787696572 | 4.61 × 10−5 | 0.052083 | 0.032361 | −0.15115 | 4.335895 |
FarmCPU | Anthocyanin | Excalibur_rep_c106698_235 | 2A | 781357606 | 2.06 × 10−5 | 0.125 | 0.018701 | 0.088212 | 4.686013 |
FarmCPU | Anthocyanin | IAAV3697 | 4A | 38335264 | 4.99 × 10−5 | 0.135417 | 0.018701 | 0.090235 | 5.301981 |
FarmCPU | Anthocyanin | Kukri_c16621_417 | 2B | 807551091 | 1.27 × 10−5 | 0.135417 | 0.018701 | 0.08905 | 4.896965 |
FarmCPU | Anthocyanin | Kukri_c19290_596 | 2A | 781356910 | 2.06 × 10−5 | 0.4375 | 0.018701 | 0.176424 | 4.686013 |
FarmCPU | Anthocyanin | Kukri_c20793_249 | 2B | 807453576 | 1.27 × 10−5 | 0.135417 | 0.018701 | −0.08905 | 4.896965 |
FarmCPU | Anthocyanin | Kukri_c49784_86 | 2A | 780371383 | 1.27 × 10−5 | 0.135417 | 0.018701 | 0.08905 | 4.896965 |
FarmCPU | Anthocyanin | Kukri_c8494_77 | 2A | 784747208 | 2.06 × 10−5 | 0.125 | 0.018701 | 0.088212 | 4.686013 |
FarmCPU | Anthocyanin | Kukri_c9898_1766 | 2A | 779297798 | 1.27 × 10−5 | 0.135417 | 0.018701 | −0.08905 | 4.896965 |
FarmCPU | Anthocyanin | Kukri_rep_c68139_172 | 2A | 787562596 | 3.59 × 10−5 | 0.0625 | 0.02915 | 0.127598 | 4.444941 |
FarmCPU | Anthocyanin | Kukri_rep_c78353_161 | 2A | 781359482 | 1.27 × 10−5 | 0.135417 | 0.018701 | 0.08905 | 4.896965 |
FarmCPU | Anthocyanin | RAC875_c19042_2102 | 2A | 784747588 | 2.06 × 10−5 | 0.125 | 0.018701 | 0.088212 | 4.686013 |
FarmCPU | Anthocyanin | RAC875_c19042_443 | 2A | 784742885 | 2.06 × 10−5 | 0.4375 | 0.018701 | 0.176424 | 4.686013 |
FarmCPU | Anthocyanin | RAC875_c38916_66 | 1A | 489136845 | 4.09 × 10−5 | 0.104167 | 0.030026 | 0.091818 | 4.388626 |
FarmCPU | Anthocyanin | wsnp_Ra_c16080_24638622 | 1A | 489304404 | 2.59 × 10−5 | 0.114583 | 0.022179 | −0.09252 | 4.587115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, M.J.; Ko, C.S.; Kim, D.Y. Genome-Wide Association Study of Agricultural and Biochemical Traits in Radiation-Induced Colored Wheat. Agronomy 2025, 15, 1933. https://doi.org/10.3390/agronomy15081933
Hong MJ, Ko CS, Kim DY. Genome-Wide Association Study of Agricultural and Biochemical Traits in Radiation-Induced Colored Wheat. Agronomy. 2025; 15(8):1933. https://doi.org/10.3390/agronomy15081933
Chicago/Turabian StyleHong, Min Jeong, Chan Seop Ko, and Dae Yeon Kim. 2025. "Genome-Wide Association Study of Agricultural and Biochemical Traits in Radiation-Induced Colored Wheat" Agronomy 15, no. 8: 1933. https://doi.org/10.3390/agronomy15081933
APA StyleHong, M. J., Ko, C. S., & Kim, D. Y. (2025). Genome-Wide Association Study of Agricultural and Biochemical Traits in Radiation-Induced Colored Wheat. Agronomy, 15(8), 1933. https://doi.org/10.3390/agronomy15081933