Modelling Flight Activity of Aphids in Seed Potatoes Using Suction Trap and Yellow Water Trap for Risk Assessment of Virus Diseases
Abstract
1. Introduction
2. Materials and Methods
2.1. Suction Trap
2.2. Yellow Water Trap
2.3. Data Analyses
3. Results
3.1. Flight Activity of M. persicae, P. humuli, and A. nasturtii from the Suction Trap
3.2. Flight Activity of Myzus persicae, Phorodon humuli, and Aphis nasturtii During the Spring, Summer, and Autumn Periods from the Suction Trap
3.3. Species Composition and Flight Activity of Seven Aphid Species from the Yellow Water Trap
3.4. Life Cycles of Aphids as Vectors of Potato Viruses
3.5. Use of Aphid Flight Monitoring in the Pest Management of Seed Potatoes
4. Discussion
4.1. Flight Patterns of Aphid Species and Species Composition
4.2. Life Cycles of Aphids as Vectors of Potato Viruses
4.3. Use of Aphid Flight Monitoring in the Pest Management of Other Crops
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CISTA | Central Institute for Supervising and Testing in Agriculture |
PVY | Potato virus Y |
PLRV | Potato leaf roll virus |
PVA | Potato virus A |
PVM | Potato virus M |
PVS | Potato virus S |
References
- Ministry of Agriculture of the Czech Republic. Situation and Outlook Report Potatoes; mze.gov.cz; Ministry of Agriculture of the Czech Republic: Prague, Czech Republic, 2024; 47p, ISBN 978-80-7434-781-8. (In Czech). Available online: https://mze.gov.cz/public/portal/mze/publikace/situacni-vyhledove-zpravy/rostlinne-komodity/brambory/situacni-a-vyhledova-zprava-brambory-2023 (accessed on 25 February 2025).
- Kreuze, J.F.; Souza-Dias, J.A.C.; Jeevalatha, A.; Figueira, A.R.; Valkonen, J.P.T.; Jones, R.A.C. Viral Diseases in Potato. The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Campos, H., Ortiz, O., Eds.; Springer: Cham, Switzerland, 2020; pp. 389–430. [Google Scholar] [CrossRef]
- MacGillivray, M.E.; Aphids. Compendium of Potato Diseases; Hooker, W.J., Ed.; American Phytopathological Society: St. Paul, MN, USA, 1981; pp. 101–103. [Google Scholar]
- Bradley, R.H.E.; Rideout, D.W. Comparative Transmission of Potato Virus Y by Four Aphid Species that Infest Potato. Can. J. Zool. 1953, 31, 333–341. [Google Scholar] [CrossRef]
- Alyokhin, A.; Drummond, F.A.; Sewell, G.; Storch, R.H. Differential Effects of Weather and Natural Enemies on Coexisting Aphid Populations. Environ. Entomol. 2011, 40, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Central Institute for Supervising and Testing in Agriculture. Overview of Registered Propagation Areas; Central Institute for Supervising and Testing in Agriculture: Prague, Czech Republic, 2024; (In Czech). Available online: https://ukzuz.gov.cz/public/portal/ukzuz/osivo-a-sadba/publikace/prehled-prihlasenych-mnozitelskych-ploch/prehled-prihlasenych-ploch-v-roce-2024-1-a-2-cast (accessed on 11 April 2025).
- Holman, J. Host Plant Catalog of Aphids: Palaearctic Region; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Field, L.M.; Bass, C.; Davies, T.G.E.; Williamson, M.S.; Zhou, J.J. Aphid Genomics and Its Contribution to Understanding Aphids as Crop Pests. Aphids as Crop Pests, 2nd ed.; van Emden, H.F., Harrington, R., Eds.; CAB International: Wallingford, UK, 2017; pp. 37–49. [Google Scholar] [CrossRef]
- Kanavaki, O.M.; Margaritopoulos, J.T.; Katis, N.I.; Skouras, P.; Tsitsipis, J.A. Transmission of Potato Virus Y in Tobacco Plants by Myzus persicae nicotianae and M. persicae S. Str. Plant Dis. 2006, 90, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Khan, H.A.A.; Hafeez, F.; Sherazi, R.; Iqbal, N. Predatory Potential of Coccinella septempunctata L. against Four Aphid Species. Pak. J. Zool. 2017, 49, 623–627. [Google Scholar] [CrossRef]
- Foster, S. Insecticide Resistance and Its Implication for Potato Production in the UK; British Potatoe Council: Oxford, UK, 2006. [Google Scholar]
- Sigvald, R. The Relative Efficiency of Some Aphid Species as Vectors of Potato Virus Yo (PVYo). Potato Res. 1984, 27, 285–290. [Google Scholar] [CrossRef]
- Kostiw, M. Investigation on the retention of potato viruses M and Y in two species of aphids (Myzus persicae Sulz. and Aphis nasturtii Kalt.). Potato Res. 1975, 18, 637–640. [Google Scholar] [CrossRef]
- Kennedy, J.S.; Day, M.F.; Eastop, V.F. A Conspectus of Aphids as Vectors of Plant Viruses; Commonwealth Institute of Entomology: London, UK, 1962. [Google Scholar]
- PP1/230(1) Standard; Aphids on Potato. European and Mediterranean Plant Protection Organization (EPPO): Paris, France, 2004. Available online: https://pp1.eppo.int/standards/PP1-230-1 (accessed on 11 April 2025).
- Johnson, C.G. Migration and Dispersal of Insects by Flight; Methuen: London, UK, 1969; p. 592. [Google Scholar]
- Taylor, L.R. Insect Migration, Flight Periodicity and the Boundary Layer. J. Anim. Ecol. 1974, 43, 225–238. [Google Scholar] [CrossRef]
- Taylor, L.R. The Distribution of Insects at Low Levels in the Air. J. Anim. Ecol. 1960, 29, 45–63. [Google Scholar] [CrossRef]
- Carter, W. Ecological Aspects of Plant Virus Transmissions. Annu. Rev. Entomol. 1961, 6, 347–370. [Google Scholar] [CrossRef]
- Davis, T.S.; Abatzoglou, J.T.; Bosque-Perez, N.A.; Halbert, S.E.; Pike, K.; Eigenbrode, S.D. Differing Contributions of Density Dependence and Climate to the Population Dynamics of Three Eruptive Herbivores. Ecol. Entomol. 2014, 39, 566–577. [Google Scholar] [CrossRef]
- Taylor, L.R. Aphid Forecasting and the Rothamsted Insect Survey. J. R. Agric. Soc. Engl. 1977, 138, 75–97. [Google Scholar]
- McVean, R.I.K.; Dixon, A.F.G.; Harrington, R. Causes of Regional and Yearly Variation in Pea Aphid Numbers in Eastern England. J. Appl. Entomol. 1999, 123, 495–502. [Google Scholar] [CrossRef]
- Kasprowicz, L.; Malloch, G.; Pickup, J.; Fenton, B. Spatial and Temporal Dynamics of Myzus persicae Clones in Fields and Suction Traps. Agric. Forest Entomol. 2008, 10, 91–100. [Google Scholar] [CrossRef]
- Fabre, F.; Dedryver, C.-A.; Plantegenest, M.; Hulle, M.; Rivot, E. Hierarchical Bayesian Modelling of Plant Colonisation by Winged Aphids: Inferring Dispersal Processes by Linking Aerial and Field Count Data. Ecol. Model. 2010, 221, 1770–1778. [Google Scholar] [CrossRef]
- Shortall, C.R.; Cook, S.M.; Mauchline, A.L.; Bell, J.R. Long-Term Trends in Migrating Brassicogethes aeneus in the UK. Pest Manag. Sci. 2024, 80, 2294–2305. [Google Scholar] [CrossRef] [PubMed]
- Roik, K.; Tratwal, A.; Malas, S.; Bocianowski, J. Monitoring and Signaling of the Most Important Aphid Species in the Territory of Greater Poland and Silesia Provinces. Agriculture 2024, 14, 2260. [Google Scholar] [CrossRef]
- Honek, A.; Martinkova, Z.; Brabec, M.; Saska, P. Predicting Aphid Abundance on Winter Wheat Using Suction Trap Catches. Plant Protect. Sci. 2020, 56, 35–45. [Google Scholar] [CrossRef]
- Jarosova, J.; Zelazny, W.R.; Kundu, J.K. Patterns and Predictions of Barley Yellow Dwarf Virus Vector Migrations in Central Europe. Plant Dis. 2019, 103, 2057–2064. [Google Scholar] [CrossRef]
- Slavikova, L.; Fryc, D.; Kundu, J.K. Analysis of Twenty Years of Suction Trap Data on the Flight Activity of Myzus persicae and Brevicoryne brassicae, Two Main Vectors of Oilseed Rape Infection Viruses. Agronomy 2024, 14, 1931. [Google Scholar] [CrossRef]
- Fryc, D.; Zahradnikova, M. Spectrum of captured aphidomorphic insects of fir stands. Rep. For. Res. 2024, 69, 1–12, (In Czech with English). [Google Scholar]
- Altermatt, F. Climatic Warming Increases Voltinism in European Butterflies and Moths. Proc. Biol. Sci. 2010, 277, 1281–1287. [Google Scholar] [CrossRef]
- Wu, Y.x.; Li, J.j.; Liu, H.h.; Qiao, G.x.; Huang, X.l. Investigating the Impact of Climate Warming on Phenology of Aphid Pests in China Using Long-Term Historical Data. Insects 2020, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhang, W.; Hoffmann, A.A.; Ma, C.-S. Night Warming on Hot Days Produces Novel Impacts on Development, Survival and Reproduction in a Small Arthropod. J. Anim. Ecol. 2014, 83, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Radcliffe, E.B.; Ragsdale, D.W. Aphid-Transmitted Potato Viruses: The Importance of Understanding Vector Biology. Am. J. Pot. Res. 2002, 79, 353–386. [Google Scholar] [CrossRef]
- Hausvater, E.; Dolezal, P.; Bastova, P. Aphids—Transmission and Protection Against Potato Virus Diseases. Practical Information. Vyzkumny Ustav Bramborarsky Havlickuv Brod. 2014. (In Czech). Available online: https://www.vubhb.cz/cs/knihovna/prakticke-informace/msice-prenaseci-virovych-chorob-brambor-a-ochrana-proti-nim (accessed on 11 April 2025).
- Central Institute for Supervising and Testing in Agriculture. Aphid Bulletin, mze.gov.cz. 2018; (In Czech). Available online: https://mze.gov.cz/public/app/srs_pub/fytoportal/public/#rlp|so|aphb|uvod (accessed on 23 April 2025).
- EC (European Commission). Commission implementing regulation (EU) No 485/2013 of 24 May 2013 amending Imple-menting Regulation (EU) No 540/2011, as regards the conditions of approval of the active substances clothianidin, thia-methoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances. O. J. Eur Union 2013, 139, 12–26. Available online: https://eur-lex.europa.eu/eli/reg_impl/2013/485/oj/eng (accessed on 20 June 2025).
- Dewar, A.M.; Qi, A. The virus yellow epidemic in sugar beet in the UK in 2020 and the adverse effect of the EU ban on neonicotinoids on sugar beet production. Outlooks Pest Manag. 2021, 32, 53–59. [Google Scholar] [CrossRef]
- Luquet, M.; Poggi, S.; Buchard, C.; Plantegenest, M.; Tricault, Y. Predicting the Seasonal Flight Activity of Myzus persicae, the Main Aphid Vector of Virus Yellows in Sugar Beet. Pest Manag. Sci. 2023, 79, 4508–4520. [Google Scholar] [CrossRef]
- Simon, J.C.; Leterme, N.; Latorre, A. Molecular markers linked to breeding system differences in segregating and natural populations of the cereal aphid Rhopalosiphum padi L. Mol. Ecol. 1999, 8, 965–973. [Google Scholar] [CrossRef]
- Heathcote, G.D. The Comparison of Yellow Cylindrical, Flat and Water Traps, and of Johnson Suction Traps, for Sampling Aphids. Ann. Appl. Biol. 1957, 45, 133–139. [Google Scholar] [CrossRef]
- Allison, D.; Pike, K.S. An Inexpensive Suction Trap and Its Use in an Aphid Monitoring Network. J. Agric. Entomol. 1988, 5, 103–107. [Google Scholar]
- Steinger, T.; Goy, G.; Gilliand, H.; Hebeisen, T.; Derron, J. Forecasting Virus Disease in Seed Potatoes Using Flight Activity Data of Aphid Vectors. Ann. Appl. Biol. 2015, 166, 410–419. [Google Scholar] [CrossRef]
- Werker, A.R.; Dewar, A.M.; Harrington, R. Modelling the Incidence of Virus Yellows in Sugar Beet in the UK in Relation to Numbers of Migrating Myzus persicae. J. Appl. Ecol. 1998, 35, 811–818. [Google Scholar] [CrossRef]
Myzus persicae | Phorodon humuli | Aphis nasturtii | ||||
---|---|---|---|---|---|---|
Period | Mean Catch/Period | Mann–Whitney Test | Mean Catch/Period | Mann–Whitney Test | Mean Catch/Period | Mann–Whitney Test |
Spring1 | 19.0 ± 25.92 a | U = 34, p = 0.050 | 35.17 ± 37.18 a | U = 23, p = 0.007 | 4.75 ± 8.30 a | U = 19, p = 0.002 |
Spring2 | 39.0 ± 32.81 a | 111.27 ± 75.83 b | 12.73 ± 7.76 b | |||
Summer1 | 36.33 ± 41.52 a | U = 50.50, p = 0.355 | 17.83 ± 30.83 a | U = 74.5, p = 0.615 | 7.17 ± 4.04 a | U = 62, p = 0.82 |
Summer2 | 59.73 ± 77.52 a | 6.09 ± 8.75 a | 9.00 ± 7.62 a | |||
Autumn1 | 81.17 ± 122.02 a | U = 18, p = 0.002 | 4.00 ± 4.67 a | U = 69, p = 0.866 | 2.08 ± 2.43 a | U = 45.5, p = 0.209 |
Autumn2 | 473.09 ± 449.13 b | 2.55 ± 2.34 a | 5.18 ± 6.71 a | |||
2002–2013 | 136.50 ± 117.83 a | U = 13, p = 0.001 | 57.00 ± 56.31 a | U = 32, p = 0.037 | 14.00 ± 10.34 a | U = 26.5, p = 0.013 |
2014–2024 | 571.82 ± 479.04 b | 119.91 ± 77.72 b | 26.91 ± 11.98 b | |||
2002–2024 mean | 344.7 | 87.09 | 20.17 | |||
2002–2024 total | 7928 | 2003 | 464 |
Number of Aphids/%/Year | Total Number | % | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | 2019 | D | 2020 | D | 2021 | D | 2022 | D | 2023 | D | 2024 | D | 2019–2024 | D | |||||||
M. persicae | 45 | 13.24 | 4 | 91 | 61.07 | 5 | 6 | 4.38 | 2 | 242 | 40.20 | 4 | 55 | 20.07 | 4 | 214 | 49.20 | 4 | 653 | 33.71 | 4 |
A. nasturtii | 0 | 0.00 | 1 | 1 | 0.67 | 1 | 15 | 10.95 | 4 | 5 | 0.83 | 1 | 1 | 0.36 | 1 | 15 | 3.45 | 2 | 37 | 1.91 | 2 |
P. humuli | 4 | 1.18 | 2 | 7 | 4.70 | 2 | 10 | 7.30 | 3 | 13 | 2.16 | 2 | 5 | 1.82 | 2 | 18 | 4.14 | 2 | 57 | 2.94 | 2 |
A. fabae | 21 | 6.18 | 3 | 42 | 28.19 | 4 | 58 | 42.34 | 4 | 26 | 4.32 | 2 | 199 | 72.63 | 5 | 48 | 11.03 | 4 | 394 | 20.34 | 4 |
A. solani | 0 | 0.00 | 1 | 2 | 1.34 | 2 | 1 | 0.73 | 1 | 9 | 1.50 | 2 | 1 | 0.36 | 1 | 2 | 0.46 | 1 | 15 | 0.77 | 1 |
M. euphorbiae | 19 | 5.59 | 3 | 2 | 1.34 | 2 | 13 | 9.49 | 3 | 0 | 0.00 | 1 | 3 | 1.09 | 2 | 17 | 3.91 | 2 | 54 | 2.79 | 2 |
B. brassicae | 251 | 73.82 | 5 | 4 | 2.68 | 2 | 34 | 24.82 | 4 | 307 | 51.00 | 5 | 10 | 3.65 | 2 | 121 * | 27.82 | 4 | 727 | 37.53 | 4 |
Total number | 340 | 149 | 137 | 602 | 274 | 435 | 1937 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocourek, F.; Douda, O.; Stara, J.; Rychly, S.; Fryc, D.; Dolezal, P.; Hausvater, E.; Sedova, A. Modelling Flight Activity of Aphids in Seed Potatoes Using Suction Trap and Yellow Water Trap for Risk Assessment of Virus Diseases. Agronomy 2025, 15, 1656. https://doi.org/10.3390/agronomy15071656
Kocourek F, Douda O, Stara J, Rychly S, Fryc D, Dolezal P, Hausvater E, Sedova A. Modelling Flight Activity of Aphids in Seed Potatoes Using Suction Trap and Yellow Water Trap for Risk Assessment of Virus Diseases. Agronomy. 2025; 15(7):1656. https://doi.org/10.3390/agronomy15071656
Chicago/Turabian StyleKocourek, Frantisek, Ondrej Douda, Jitka Stara, Svatopluk Rychly, David Fryc, Petr Dolezal, Ervin Hausvater, and Anna Sedova. 2025. "Modelling Flight Activity of Aphids in Seed Potatoes Using Suction Trap and Yellow Water Trap for Risk Assessment of Virus Diseases" Agronomy 15, no. 7: 1656. https://doi.org/10.3390/agronomy15071656
APA StyleKocourek, F., Douda, O., Stara, J., Rychly, S., Fryc, D., Dolezal, P., Hausvater, E., & Sedova, A. (2025). Modelling Flight Activity of Aphids in Seed Potatoes Using Suction Trap and Yellow Water Trap for Risk Assessment of Virus Diseases. Agronomy, 15(7), 1656. https://doi.org/10.3390/agronomy15071656