Zinc Application Enhances Biomass Production, Grain Yield, and Zinc Uptake in Hybrid Maize Cultivated in Paddy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites Description
2.2. Experimental Design
2.3. Sampling and Measurements
2.3.1. Plant Sampling, Dry Matter, and Grain Yield
2.3.2. Zn Concentration Determination
2.3.3. Soil Sampling and Analysis
2.4. Data Analysis
3. Results
3.1. Biomass, Crop Growth Rate, and Grain Yield
3.2. Zn Uptake in Shoots and Grain by Maize
3.3. Zn Availability in Soil
3.4. Response of Maize Variety on Relative Grain Yield and Grain Zn Uptake to Zn Concentration in Soil
4. Discussion
4.1. Zn Application Effects on Biomass, Crop Growth Rate, and Yield
4.2. Zn Uptake Dynamics
4.3. Soil Zn Availability and Plant Response
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organization Report on Global Crop Outlook 2024/25; Food and Agriculture Organization of the United Nations: Rome, Italy, 2025. [Google Scholar]
- CropGPT. Thailand Maize Production Forecast 2024/25. Available online: https://cropgpt.ai/thailand-reports-increase-in-maize-production-and-demand-due-to-favourable-weather-and-recovering-animal-industries (accessed on 1 May 2025).
- Office of Agricultural Economics. Agricultural Statistics of Thailand 2024; Office of Agricultural Economics, Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2025; pp. 29–33. [Google Scholar]
- Alloway, B.J. Soil Factors Associated with Zinc Deficiency in Crops and Humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Zinc in Soils and Crop Nutrition, 2nd ed.; International Zinc Association and International Fertilizer Industry Association: Paris, France, 2008. [Google Scholar]
- Caldelas, C.; Weiss, D.J. Zinc Homeostasis and isotopic fractionation in plants: A Review. Plant Soil. 2017, 411, 17–46. [Google Scholar] [CrossRef]
- Moreira, A.; Moraes, L.A.C.; dos Reis, A.R. The Molecular Genetics of Zinc Uptake and Utilization Efficiency in Crop Plants. In Plant Micronutrient Use Efficiency; Hossain, M.A., Kamiya, T., Burritt, D.J., Tran, L.-S.P., Fujiwara, T., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 87–108. [Google Scholar] [CrossRef]
- Li, S.; Zhou, X.; Huang, Y.; Zhu, L.; Zhang, S.; Zhao, Y.; Guo, J.; Chen, J.; Chen, R. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol. 2013, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Stanton, C.; Sanders, D.; Krämer, U.; Podar, D. Zinc in plants: Integrating homeostasis and biofortification. Mol. Plant 2022, 15, 65–85. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A Review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Bender, R.R.; Haegele, J.W.; Ruffo, M.L.; Below, F.E. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. Agron. J. 2013, 105, 161–170. [Google Scholar] [CrossRef]
- Mutambu, D.; Kihara, J.; Mucheru-Muna, M.; Bolo, P.; Kinyua, M. Maize grain yield and grain zinc concentration response to zinc fertilization: A meta-analysis. Heliyon 2023, 9, e16040. [Google Scholar] [CrossRef]
- Liu, H.; Gan, W.; Rengel, Z.; Zhao, P. Effects of zinc fertilizer rate and application method on photosynthetic characteristics and grain yield of summer maize. J. Soil Sci. Plant Nutr. 2016, 16, 550–562. [Google Scholar] [CrossRef]
- Liu, D.-Y.; Zhang, W.; Liu, Y.-M.; Chen, X.-P.; Zou, C.-Q. Soil application of zinc fertilizer increases maize yield by enhancing the kernel number and kernel weight of inferior grains. Front. Plant Sci. 2020, 11, 188. [Google Scholar] [CrossRef]
- Potarzycki, J.; Przygocka-Cyna, K.; Grzebisz, W.; Szczepaniak, W. Effect of zinc application timing on yield formation by two types of maize cultivars. Plant Soil. Environ. 2016, 61, 468–474. [Google Scholar] [CrossRef]
- Xue, Y.-F.; Yue, S.-C.; Liu, D.-Y.; Zhang, W.; Chen, X.-P.; Zou, C.-Q. Dynamic zinc accumulation and contributions of pre- and/or post-silking zinc uptake to grain zinc of maize as affected by nitrogen supply. Front. Plant Sci. 2019, 10, 1203. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Pang, L.-L.; Yan, P.; Liu, D.-Y.; Zhang, W.; Yost, R.; Zhang, F.-S.; Zou, C.-Q. Zinc fertilizer placement affects zinc content in maize plant. Plant Soil 2013, 372, 81–92. [Google Scholar] [CrossRef]
- Ruffo, M.L.; Olson, R.J.; Daverede, I. Maize yield response to zinc sources and effectiveness of diagnostic indicators. Commun. Soil Sci. Plant Anal. 2016, 47, 137–141. [Google Scholar] [CrossRef]
- Liu, D.-Y.; Zhang, W.; Yan, P.; Chen, X.-P.; Zhang, F.-S.; Zou, C.-Q. Soil application of zinc fertilizer could achieve high yield and high grain zinc concentration in maize. Plant Soil 2017, 411, 47–55. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, M.; Li, H.; Ren, Y.; Siddique, K.H.; Chen, Y.; Zhang, S. Effects of zinc fertilizer on maize yield and water-use efficiency under different soil water conditions. Field Crops Res. 2020, 248, 107718. [Google Scholar] [CrossRef]
- Botoman, L.; Chimungu, J.G.; Bailey, E.H.; Munthali, M.W.; Ander, E.L.; Mossa, A.; Young, S.D.; Broadley, M.R.; Lark, R.M.; Nalivata, P.C. Agronomic biofortification increases grain zinc concentration of maize grown under contrasting soil types in Malawi. Plant Direct 2022, 6, e458. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Patel, K.C.; Ramani, V.P.; Shukla, A.K.; Behera, S.K.; Patel, R.A. Influence of different rates and frequencies of Zn application to maize–wheat cropping on crop productivity and Zn use sfficiency. Sustainability 2022, 14, 15091. [Google Scholar] [CrossRef]
- Orabi, A.A.; Mashadi, H.; Abdallah, A.; Morsy, M. Effect of Zinc and phosphorus on the grain yield of corn (Zea mays L.) Grown on a calcareous soil. Plant Soil 1981, 63, 291–294. [Google Scholar] [CrossRef]
- Hossain, M.A.; Jahiruddin, M.; Islam, M.R.; Mian, M.H. The requirement of zinc for improvement of crop yield and mineral nutrition in the maize–mungbean–rice system. Plant Soil 2008, 306, 13–22. [Google Scholar] [CrossRef]
- Brennan, R. Effectiveness of zinc sulfate and zinc chelate as foliar sprays in alleviating zinc deficiency of wheat grown on zinc-deficient soils in western Australia. Aust. J. Exp. Agric. 1991, 31, 831. [Google Scholar] [CrossRef]
- Degryse, F.; Baird, R.; McLaughlin, M.J. Diffusion and solubility control of fertilizer-applied zinc: Chemical assessment and visualization. Plant Soil 2014, 386, 195–204. [Google Scholar] [CrossRef]
- Takrattanasaran, N.; Chanchareonsook, J.; Johnson, P.G.; Thongpae, S.; Sarobol, E. Amelioration of zinc deficiency of corn in calcareous soils of Thailand: Zinc sources and application methods. J. Plant Nutr. 2013, 36, 1275–1286. [Google Scholar] [CrossRef]
- Waters, B.M.; Uauy, C.; Dubcovsky, J.; Grusak, M.A. Wheat (Triticum Aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J. Exp. Bot. 2009, 60, 4263–4274. [Google Scholar] [CrossRef]
- Impa, S.M.; Morete, M.J.; Ismail, A.M.; Schulin, R.; Johnson-Beebout, S.E. Zn uptake, translocation and grain Zn loading in rice (Oryza Sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn. J. Exp. Bot. 2013, 64, 2739–2751. [Google Scholar] [CrossRef]
- Takkar, P.N.; Chibba, I.M.; Mehta, S.K. Twenty Years of Coordinated Research on Micronutrients in Soil and Plants; Indian Institute of Soil Science: Bhopal, India, 1989; pp. 1967–1987. [Google Scholar]
- Zare, M.; Khoshgoftarmanesh, A.H.; Norouzi, M.; Schulin, R. Critical soil zinc deficiency concentration and tissue iron: Zinc ratio as a diagnostic tool for prediction of zinc deficiency in corn. J. Plant Nutr. 2009, 32, 1983–1993. [Google Scholar] [CrossRef]
- Barbieri, P.A.; Sainz, R.; Wyngaard, N.; Eyherabide, M.; Calvo, R.; Salvagiotti, F.; Correndo, A.A.; Barbagelata, P.A.; Espósito, G.P.; Colazo, J.C.; et al. Can edaphic variables improve DTPA-based zinc diagnosis in corn? Soil Sci. Soc. Am. J. 2017, 81, 556–563. [Google Scholar] [CrossRef]
- Cuesta, N.M.; Wyngaard, N.; Rozas, H.S.; Calvo, N.R.; Carciochi, W.; Eyherabide, M.; Colazo, J.C.; Barraco, M.; Guertal, E.A.; Barbieri, P. Determining mehlich-3 and DTPA extractable soil zinc optimum economic threshold for maize. Soil Use Manag. 2020, 37, 736–748. [Google Scholar] [CrossRef]
- Watson, D.J. The physiological basis of variation in yield. Adv. Agron. 1952, 4, 101–145. [Google Scholar] [CrossRef]
- Benton, J.J., Jr. Plant Tissue Analysis in Micronutrients; Soil Science Society of America book series; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2013; pp. 477–521. [Google Scholar] [CrossRef]
- Liu, D.-Y.; Liu, Y.-M.; Zhang, W.; Chen, X.-P.; Zou, C.-Q. Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of Zn fertilizer. Front. Plant Sci. 2019, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- IRRI. Statistical Tool for Agricultural Research (STAR); Biometrics and Breeding Informatics, PBGB Division, International Rice Research Institute: Los Baños, Philippines; Available online: https://www.irri.org/resources-and-tools/digital-tools (accessed on 18 June 2025).
- Wang, Q.; Wang, L.S.; Zhu, Z. The using conditions and developing directions of fertilizer-zinc for irrigated rice in China. In Proceedings of the Conference: Zinc Crops 2007: Improving Crop Production and Human Health, Istanbul, Turkey, 24–26 May 2007. [Google Scholar]
- Sadeghzadeh, B.; Rengel, Z. Zinc in Soils and Crop Nutrition. In The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; Hawkesford, M.J., Barraclough, P., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 335–375. [Google Scholar] [CrossRef]
- Sofo, A.; Moreira, I.; Gattullo, C.E.; Martins, L.L.; Mourato, M. Antioxidant responses of edible and model plant species subjected to subtoxic zinc concentrations. J. Trace Elem. Med. Biol. 2018, 49, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Gupta, R.; Verma, N.; Tewari, R.K. Zinc-efficient and inefficient rice cultivars show differential physiological responses under zinc deficiency. Theor. Exp. Plant Phys. 2025, 37, 20. [Google Scholar] [CrossRef]
- Srivastav, A.; Ganjewala, D.; Singhal, R.K.; Rajput, V.D.; Minkina, T.; Voloshina, M.; Srivastava, S.; Shrivastava, M. Effect of ZnO Nanoparticles on growth and biochemical responses of wheat and maize. Plants 2021, 10, 2556. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Sofy, M.R.; Elhindi, K.M.; Farouk, S.; Alotaibi, M.A. Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of Pea Plants under Salinity. Plants 2020, 9, 1197. [Google Scholar] [CrossRef]
- Rout, G.R.; Das, P. Effect of Metal Toxicity on Plant Growth and Metabolism: I. Zinc. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 873–884. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Zhu, H.; Yu, F. Maize Genotypes with different zinc efficiency in response to low zinc stress and heterogeneous zinc supply. Front. Plant Sci. 2021, 12, 736658. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, N.S.; Obaid, H.; Shi, D.; Lei, P.; Xie, D.; Ni, J.; Shalaby, O.K.; Ni, C. Effect of zinc application on maize productivity and eukaryotic microorganism’s diversity in a newly cultivated field. J. Soil Sci. Plant Nutr. 2022, 22, 3697–3707. [Google Scholar] [CrossRef]
- Blum, A. Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 1998, 100, 77–83. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, Zinc, Copper, Calcium, Magnesium, Selenium and Iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Praharaj, S.; Skalicky, M.; Maitra, S.; Bhadra, P.; Shankar, T.; Brestic, M.; Hejnak, V.; Vachova, P.; Hossain, A. Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules 2021, 26, 3509. [Google Scholar] [CrossRef]
- Engels, C.; Kirkby, E.; White, P. Mineral Nutrition, Yield and Source–Sink Relationships. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: Brookline, MA, USA, 2012; pp. 85–133. [Google Scholar] [CrossRef]
- Grotz, N.; Guerinot, M.L. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2006, 1763, 595–608. [Google Scholar] [CrossRef]
- Mao, R.; Wongkaew, A.; Khongchiu, P.; Nakasathien, S. Agronomic Characteristics of maize grown in paddy Soil, along with root zone soil chemical properties and soil bacterial numbers. Trends Sci. 2023, 20, 6972. [Google Scholar] [CrossRef]
- Leite, C.M.D.C.; Muraoka, T.; Colzato, M.; Alleoni, L.R.F. Soil-applied Zn effect on soil fractions. Sci. Agric. 2019, 77, e20180124. [Google Scholar] [CrossRef]
- Jalal, A.; Júnior, E.F.; Teixeira Filho, M.C.M. Interaction of zinc mineral nutrition and plant growth-promoting bacteria in tropical agricultural systems: A Review. Plants 2024, 13, 571. [Google Scholar] [CrossRef] [PubMed]
- Suganya, A.; Saravanan, A.; Manivannan, N. Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An Overview. Commun. Soil Sci. Plant Anal. 2020, 51, 2001–2021. [Google Scholar] [CrossRef]
- Knijnenburg, J.T.N.; Laohhasurayotin, K.; Khemthong, P.; Kangwansupamonkon, W. Structure, Dissolution, and plant uptake of ferrous/zinc phosphates. Chemosphere 2019, 223, 310–318. [Google Scholar] [CrossRef]
- Naeem, A.; Deppermann, P.; Mühling, K.H. Ammonium fertilization enhances nutrient uptake, specifically manganese and zinc, and growth of maize in unlimed and limed acidic sandy soil. Nitrogen 2023, 4, 239–252. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Kumar, D.; Prasad, R. Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice–wheat cropping system. Nutr. Cycl. Agroecosyst. 2008, 81, 229–243. [Google Scholar] [CrossRef]
- Mabesa, R.L.; Impa, S.M.; Grewal, D.; Johnson-Beebout, S.E. Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crops Res. 2013, 149, 223–233. [Google Scholar] [CrossRef]
- Recena, R.; García-López, A.M.; Delgado, A. Zinc uptake by plants as affected by fertilization with Zn sulfate, phosphorus availability, and soil properties. Agronomy 2021, 11, 390. [Google Scholar] [CrossRef]
- Zhao, A.; Lu, X.; Chen, Z.; Tian, X.; Yang, X. Zinc fertilization methods on zinc absorption and translocation in wheat. J. Agric. Sci. 2011, 3, 28–35. [Google Scholar] [CrossRef]
Year | Variety | Zn Application Rate | Biomass (t/ha) | Crop Growth Rate (g/m2/day) | Grain Yield (t/ha) | HI | |
---|---|---|---|---|---|---|---|
VT | PM | ||||||
2019 | SW5731 | 0 | 8.7 ± 0.34 | 25.5 ± 1.82 b | 20.4 ± 1.92 cde | 12.6 ± 0.51 b | 0.48 ± 0.02 |
5 | 9.0 ± 0.70 | 26.0 ± 1.34 ab | 21.5 ± 2.76 bcd | 12.6 ± 0.43 b | 0.50 ± 0.04 | ||
10 | 8.5 ± 0.77 | 27.8 ± 1.31 a | 23.8 ± 1.07 abc | 12.9 ± 0.36 ab | 0.48 ± 0.05 | ||
20.6 | 8.3 ± 0.70 | 26.1 ± 1.91 ab | 21.9 ± 2.64 abcd | 13.3 ± 0.22 ab | 0.50 ± 0.04 | ||
SW5819 | 0 | 10.6 ± 0.74 | 27.4 ± 1.63 b | 18.4 ± 2.42 de | 13.8 ± 0.49 ab | 0.53 ± 0.05 | |
5 | 10.7 ± 0.74 | 29.0 ± 1.72 b | 24.9 ± 1.26 ab | 14.7 ± 0.18 a | 0.53 ± 0.05 | ||
10 | 10.8 ± 0.49 | 31.6 ± 1.83 a | 25.6 ± 2.12 a | 14.7 ± 0.67 a | 0.45 ± 0.03 | ||
20.6 | 9.6 ± 0.44 | 23.8 ± 2.92 c | 17.6 ± 3.69 e | 14.3 ± 0.25 ab | 0.60 ± 0.08 | ||
Mean | 9.5 ± 0.30 | 27.1 ± 0.97 | 21.7 ± 1.82 | 13.6 ± 0.21 | 0.51 ± 0.03 | ||
Source of variation | |||||||
Zn application rate (Zn) | ns | ** | ** | ns | * | ||
Variety (Var) | ** | ns | ns | ** | ns | ||
Zn x Var | ns | ** | ** | ** | ns | ||
2020 | SW5731 | 0 | 8.9 ± 0.87 | 25.8 ± 1.44 | 20.8 ± 0.98 | 10.5 ± 0.47 | 0.41 ± 0.02 |
5 | 9.0 ± 0.27 | 25.6 ± 1.42 | 20.4 ± 1.70 | 11.3 ± 0.48 | 0.45 ± 0.02 | ||
10 | 8.9 ± 0.20 | 26.6 ± 1.49 | 21.8 ± 1.59 | 11.0 ± 1.02 | 0.42 ± 0.03 | ||
20.6 | 8.4 ± 0.15 | 26.1 ± 1.77 | 21.9 ± 2.27 | 10.9 ± 1.04 | 0.42 ± 0.02 | ||
SW5819 | 0 | 9.2 ± 0.39 | 26.4 ± 1.33 | 21.2 ± 1.43 | 10.7 ± 1.09 | 0.40 ± 0.03 | |
5 | 9.2 ± 0.25 | 28.6 ± 1.25 | 24.1 ± 1.58 | 11.1 ± 0.32 | 0.39 ± 0.03 | ||
10 | 9.9 ± 0.58 | 28.1 ± 2.06 | 22.5 ± 2.62 | 10.5 ± 0.33 | 0.38 ± 0.03 | ||
20.6 | 9.3 ± 0.89 | 26.1 ± 1.40 | 20.7 ± 2.09 | 10.2 ± 1.42 | 0.38 ± 0.04 | ||
Mean | 9.1 ± 0.25 | 26.7 ± 0.72 | 21.7 ± 2.73 | 10.8 ± 0.42 | 0.41 ± 0.01 | ||
Source of variation | |||||||
Zn application rate (Zn) | ns | ns | ns | ns | ns | ||
Variety (Var) | ns | ns | ns | ns | ns | ||
Zn x Var | ns | ns | ns | ns | ns |
Year | Variety | Zn Application Rate | Shoot Zn Uptake at VT (g/ha) | Shoot Zn Uptake at PM (g/ha) | Grain Zn Uptake (g/ha) | Post-Anthesis Shoot Zn Uptake (g/ha) | ZnHI |
---|---|---|---|---|---|---|---|
2019 | SW 5731 | 0 | 62.8 ± 8.0 c | 327.5 ± 18.7 d | 213.7 ± 32.4 cd | 264.8 ± 21.2 abc | 0.65 ± 0.04 |
5 | 72.6 ± 14.3 c | 368.4 ± 38.3 cd | 223.4 ± 45.6 cd | 295.7 ± 52.6 abc | 0.61 ± 0.06 | ||
10 | 76.2 ± 9.2 c | 405.9 ± 44.8 bc | 234.8 ± 10.2 bc | 329.7 ± 53.5 a | 0.58 ± 0.03 | ||
20.6 | 131.2 ± 27.4 b | 353.8 ± 55.9 cd | 224.9 ± 35.3 cd | 222.6 ± 36.8 bc | 0.63 ± 0.00 | ||
SW 5819 | 0 | 118.9 ± 30.0 b | 342.4 ± 37.7 d | 215.9 ± 42.0 cd | 210.1 ± 67.6 c | 0.63 ± 0.03 | |
5 | 135.9 ± 40.4 ab | 456.7 ± 49.0 ab | 287.9 ± 62.7 a | 307.4 ± 84.0 ab | 0.63 ± 0.05 | ||
10 | 154.9 ± 33.9 a | 468.5 ± 79.4 a | 261.9 ± 53.5 ab | 340.2 ± 69.9 a | 0.56 ± 0.03 | ||
20.6 | 123.0 ± 79.4 b | 264.1 ± 43.9 e | 188.7 ± 45.6 d | 107.8 ± 43.2 d | 0.71 ± 0.04 | ||
Mean | 107.8 ± 10.9 | 373.4 ± 21.1 | 231.4 ± 12.9 | 259.8 ± 24.0 | 0.63 ± 0.02 | ||
Source of variation | |||||||
Zn application rate (Zn) | ns | ** | * | ** | * | ||
Variety (Var) | ** | ns | ns | ns | ns | ||
Zn x Var | ** | ** | ** | ** | ns | ||
2020 | SW 5731 | 0 | 99.7 ± 12.6 b | 375.6 ± 78.3 | 268.5 ± 43.5 c | 275.9 ± 72.0 | 0.72 ± 0.02 |
5 | 108.9 ± 17.7 b | 382.7 ± 86.2 | 268.3 ± 41.9 c | 273.7 ± 70.6 | 0.71 ± 0.05 | ||
10 | 93.0 ± 13.7 b | 343.6 ± 23.2 | 263.8 ± 15.5 c | 250.6 ± 10.5 | 0.77 ± 0.02 | ||
20.6 | 110.7 ± 34.0 b | 466.3 ± 60.1 | 324.2 ± 42.5 abc | 355.6 ± 81.2 | 0.70 ± 0.03 | ||
SW 5819 | 0 | 110.1 ± 15.0 b | 361.2 ± 79.1 | 283.5 ± 51.6 bc | 251.1 ± 73.6 | 0.79 ± 0.02 | |
5 | 192.7 ± 50.1 a | 479.9 ± 60.7 | 358.9 ± 41.6 a | 287.2 ± 92.4 | 0.75 ± 0.01 | ||
10 | 121.9 ± 12.1 b | 425.8 ± 32.3 | 356.9 ± 28.4 a | 303.9 ± 27.1 | 0.84 ± 0.01 | ||
20.6 | 115.4 ± 19.4 b | 431.4 ± 36.9 | 344.9 ± 32.3 ab | 315.9 ± 18.7 | 0.80 ± 0.02 | ||
Mean | 119.3 ± 9.0 | 408.3 ± 20.0 | 308.7 ± 12.7 | 289.2 ± 18.4 | 0.76 ± 0.02 | ||
Source of variation | |||||||
Zn application (Zn) | * | ns | ns | ns | ns | ||
Variety (Var) | * | ns | ** | ns | ** | ||
Zn xVar | * | ns | ** | ns | ns |
Source of Variance | df | 2019 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VT Stage | PM Stage | ||||||||||||||
Stalk | Leaf | Tassel | Stalk | Leaf | Tassel | Grain | |||||||||
MS | p | MS | p | MS | p | MS | p | MS | p | MS | p | MS | p | ||
Zn | 3 | 335.82 | ** | 116.27 | * | 74.34 | ** | 155.87 | * | 44.12 | ns | 0.22 | ns | 111.66 | * |
Var | 1 | 0.94 | ns | 8.65 | ns | 3.88 | ns | 2.70 | ns | 2.50 | ns | 9.09 | ** | 9.41 | ns |
Zn x Var | 7 | 272.23 | ** | 95.12 | * | 61.56 | ** | 99.91 | ns | 45.04 | ns | 1.42 | ** | 63.23 | ns |
2020 | |||||||||||||||
VT stage | PM stage | ||||||||||||||
stalk | Leaf | Tassel | Stalk | Leaf | Tassel | Grain | |||||||||
MS | p | MS | p | MS | p | MS | p | MS | p | MS | p | MS | p | ||
Zn | 3 | 1.17 | ns | 478.48 | ** | 433.14 | ** | 15.07 | ns | 22.86 | ** | 1.27 | ns | 58.57 | ns |
Var | 1 | 238.98 | ** | 198.90 | ns | 1.83 | ns | 87.82 | * | 0.04 | ns | 55.91 | ** | 290.99 | ** |
Zn x Var | 7 | 42.92 | ns | 268.87 | ** | 206.48 | ** | 20.97 | ns | 13.46 | ** | 9.06 | ** | 71.43 | * |
Source of Variance | df | 2019 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
VT Stage | PM Stage | VT Stage | PM Stage | ||||||
MS | p | MS | p | MS | p | MS | p | ||
Zn application (Zn) | 3 | 1.19 | * | 9.65 | ** | 10.53 | ** | 9.89 | ** |
Variety (Var) | 1 | 0.54 | ns | 0.02 | ns | 2.24 | ns | 0.33 | ns |
Zn x Var | 7 | 0.97 | ** | 4.23 | ** | 5.08 | * | 4.77 | ns |
BM- VT | BM- PM | GY | HI | CGR | ZnUpVT | ZnUpPM | GZnUp | pZnUp | ZnHI | SZn- VT | SZn- PM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BMVT | 1 | |||||||||||
BMPM | 0.32 ** | 1 | ||||||||||
GY | 0.26 * | 0.28 * | 1 | |||||||||
HI | 0.04 | −0.50 ** | 0.65 ** | 1 | ||||||||
CGR | −0.05 | 0.89 ** | 0.19 | −0.52 ** | 1 | |||||||
ZnUpVT | 0.32 * | 0.20 | 0.06 | −0.07 | 0.10 | 1 | ||||||
ZnUpPM | 0.10 | 0.42 ** | 0.01 | −0.28 * | 0.44 ** | 0.35 ** | 1 | |||||
GZnUp | 0.03 | 0.24 | −0.31 * | −0.43 ** | 0.28 * | 0.38 ** | 0.79 ** | 1 | ||||
pZnUp | −0.09 | 0.35 ** | −0.06 | −0.31 * | 0.44 ** | −0.14 | 0.85 ** | 0.62 ** | 1 | |||
ZnHI | −0.10 | −0.17 | −0.51 ** | −0.32 ** | −0.14 | 0.14 | −0.05 | 0.57 ** | −0.12 | 1 | ||
SZnVT | −0.10 | −0.19 | −0.36 ** | −0.17 | −0.15 | 0.15 | 0.10 | 0.28 * | 0.04 | 0.29 * | 1 | |
SZnPM | −0.19 | −0.20 | −0.04 | 0.09 | −0.10 | 0.15 | 0.04 | 0.19 | −0.04 | 0.23 | 0.54 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khongchiu, P.; Wongkaew, A.; Murase, J.; Sajjaphan, K.; Rakpenthai, A.; Kumdee, O.; Nakasathien, S. Zinc Application Enhances Biomass Production, Grain Yield, and Zinc Uptake in Hybrid Maize Cultivated in Paddy Soil. Agronomy 2025, 15, 1501. https://doi.org/10.3390/agronomy15071501
Khongchiu P, Wongkaew A, Murase J, Sajjaphan K, Rakpenthai A, Kumdee O, Nakasathien S. Zinc Application Enhances Biomass Production, Grain Yield, and Zinc Uptake in Hybrid Maize Cultivated in Paddy Soil. Agronomy. 2025; 15(7):1501. https://doi.org/10.3390/agronomy15071501
Chicago/Turabian StyleKhongchiu, Phanuphong, Arunee Wongkaew, Jun Murase, Kannika Sajjaphan, Apidet Rakpenthai, Orawan Kumdee, and Sutkhet Nakasathien. 2025. "Zinc Application Enhances Biomass Production, Grain Yield, and Zinc Uptake in Hybrid Maize Cultivated in Paddy Soil" Agronomy 15, no. 7: 1501. https://doi.org/10.3390/agronomy15071501
APA StyleKhongchiu, P., Wongkaew, A., Murase, J., Sajjaphan, K., Rakpenthai, A., Kumdee, O., & Nakasathien, S. (2025). Zinc Application Enhances Biomass Production, Grain Yield, and Zinc Uptake in Hybrid Maize Cultivated in Paddy Soil. Agronomy, 15(7), 1501. https://doi.org/10.3390/agronomy15071501