Seasonal Impacts of Organic Fertilizers, Cover Crop Residues, and Composts on Soil Health Indicators in Sandy Soils: A Case Study with Organic Celery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Organic Fertilization Trial Setup
2.3. Integrated Nutrient Management Trials
2.4. Soil Sampling and Laboratory Analyses
2.5. Statistical Analysis
3. Results
3.1. Soil Health Assessment in the Organic Fertilization Trials
3.2. Soil Health Assessment in the Integrated Nutrient Management Trials
4. Discussion
4.1. Soil Organic Matter, Aggregate Stability, and Active Carbon
4.2. Soil Nutrient Composition and Chemical Indicators of Soil Health
4.3. Soil CO2 Burst and Solvita Labile Amino-N
4.4. Overall Soil Health and Fertility Scoring, and Multivariate Approaches for Soil Health Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Tully, K.L.; McAskill, C. Promoting soil health in organically managed systems: A review. Org. Agric. 2019, 10, 339–358. [Google Scholar] [CrossRef]
- Zhao, X.; Di Gioia, F.; Delate, K.; Rosskopf, E.N.; Guan, W. Advances in organic cultivation of vegetables. In Achieving Sustainable Cultivation of Vegetables; Hochmuch, G., Ed.; Burleigh Dodds Science Publishing: Sawston, Cambridge, UK, 2019; pp. 245–274. [Google Scholar]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil. Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Karlen, D.L.; Ditzler, C.A.; Andrews, S.S. Soil quality: Why and how? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Larkin, R. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 2015, 53, 199–221. [Google Scholar] [CrossRef]
- Snyder, L.; Schonbeck, M.; Velez, T.; Tencer, B. 2022 National Organic Research Agenda Outcomes and Recommendations from the 2020 National Organic & Transitioning Farmer Surveys and Focus Groups; Organic Farming Research Foundation: Santa Cruz, CA, USA, 2022. [Google Scholar]
- Hartz, T.K.; Johnstone, P.R. Nitrogen availability from high-nitrogen-containing organic fertilizers. HortTechnology 2006, 16, 39–42. [Google Scholar] [CrossRef]
- Cassity-Duffey, K.; Cabrera, M.; Gaskin, J.; Franklin, D.; Kissel, D.; Saha, U. Nitrogen mineralization from organic materials and fertilizers: Predicting N release. Soil Sci. Soc. Am. J. 2020, 84, 522–533. [Google Scholar] [CrossRef]
- Lazicki, P.; Geisseler, D.; Lloyd, M. Nitrogen mineralization from organic amendments is variable but predictable. J. Environ. Qual. 2020, 49, 483–495. [Google Scholar] [CrossRef]
- Ciaccia, C.; Ceglie, F.G.; Burgio, G.; Madžarić, S.; Testani, E.; Muzzi, E.; Mimiola, G.; Tittarelli, F. Impact of agroecological practices on greenhouse vegetable production: Comparison among organic production systems. Agronomy 2019, 9, 372. [Google Scholar] [CrossRef]
- Norris, C.; Congreves, K. Alternative management practices improve soil health indices in intensive vegetable cropping systems: A review. Front. Environ. Sci. 2018, 6, 50. [Google Scholar] [CrossRef]
- Tian, S.; Brecht, J.K.; Rathinasabapathi, B.; Zhao, X. Influence of soil and nutrient management practices on crop productivity and quality in high tunnel organic leafy green production. HortScience 2023, 58, 1610–1621. [Google Scholar] [CrossRef]
- Jian, J.; Du, X.; Stewart, R.D. Quantifying cover crop effects on soil health and productivity. Data Brief 2020, 29, 105376. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Maltais-Landry, G.; Paudel, B.R. Dynamics of soil nitrogen availability following Sunn Hemp residue incorporation in organic strawberry production systems. HortScience 2021, 56, 138–146. [Google Scholar] [CrossRef]
- Wulanningtyas, H.S.; Gong, Y.; Li, P.; Sakagami, N.; Nishiwaki, J.; Komatsuzaki, M. A cover crop and no-tillage system for enhancing soil health by increasing soil organic matter in soybean cultivation. Soil. Tillage Res. 2021, 205, 104749. [Google Scholar] [CrossRef]
- De Corato, U. Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere 2020, 13, 100192. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Madaras, M.; Krejčí, R.; Mayerová, M. Assessing soil aggregate stability by measuring light transmission decrease during aggregate disintegration. Soil Water Res. 2024, 19, 25–31. [Google Scholar] [CrossRef]
- Devi, S.; Townshend, A. Determination of nitrate by flow-injection analysis with an on-line anion-exchange column. Anal. Chim. Acta 1989, 225, 331–338. [Google Scholar] [CrossRef]
- Alves, B.J.R.; Boddey, R.M.; Urquiaga, S.S. A rapid and sensitive flow injection technique for the analysis of ammonium in soil extracts. Commun. Soil Sci. Plant Anal. 1993, 24, 277–284. [Google Scholar] [CrossRef]
- Mehlich, A. New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc. Commun. Soil Sci. Plant Anal. 1978, 9, 477–492. [Google Scholar] [CrossRef]
- Peech, M. Hydrogen-ion activity. In Agronomy Monographs; Norman, A.G., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1965; pp. 914–926. [Google Scholar] [CrossRef]
- Cunniff, P.A. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analysis Chemists: Arlington, VA, USA, 1998. [Google Scholar]
- Brinton, W. SLAN—Solvita Labile Amino Nitrogen. Official Solvita® Instructions; Woods End Laboratories Inc.: Mt. Vernon, ME, USA, 2016; Available online: https://solvita.com/product/slan-manual/ (accessed on 19 December 2024).
- Moore, D.B.; Guillard, K.; Morris, T.F.; Brinton, W.F. Correlation between Solvita labile amino-nitrogen and CO2-burst soil health tests and response to organic fertilizer in a turfgrass soil. Commun. Soil Sci. Plant Anal. 2019, 50, 2948–2959. [Google Scholar] [CrossRef]
- Culman, S.W.; Hurisso, T.T.; Wade, J. Chapter 9—Permanganate oxidizable carbon: An indicator of biologically active soil carbon. In Soil Health: Approaches for Sustainable Soil Management; Karlen, D.L., Stott, D.E., Mikha, M.M., Eds.; ASA, CSSA, and SSSA Books: Madison, WI, USA, 2021. [Google Scholar] [CrossRef]
- Margenot, A.J. POXC Protocol—UIUC Soils Lab 2023; University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2023; Available online: https://margenot.cropsciences.illinois.edu/wp-content/uploads/2024/02/POXC-Protocol-UIUC-Soils-Lab-2023.pdf (accessed on 19 December 2024).
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; Volume 5, pp. 425–442. [Google Scholar]
- Leifheit, E.F.; Veresoglou, S.D.; Lehmann, A.; Morris, E.K.; Rillig, M.C. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant Soil 2014, 374, 523–537. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Yilmaz, E.; Sönmez, M. The role of organic/bio–fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil Tillage Res. 2017, 168, 118–124. [Google Scholar] [CrossRef]
- Linquist, B.A.; Singleton, P.W.; Yost, R.S.; Cassman, K.G. Aggregate size effects on the sorption and release of phosphorus in an ultisol. Soil Sci. Soc. Am. J. 1997, 61, 160–166. [Google Scholar] [CrossRef]
- Zhang, M.K.; He, Z.L.; Calvert, D.V.; Stoffella, P.J.; Yang, X.E.; Li, Y.C. Phosphorus and heavy metal attachment and release in sandy soil aggregate fractions. Soil Sci. Soc. Am. J. 2003, 67, 1158–1167. [Google Scholar] [CrossRef]
- Brinton, W.F. Laboratory soil handling affects CO2 respiration, amino-N and water stable aggregate results. Agric. Res. Technol. 2020, 24, 556262. [Google Scholar] [CrossRef]
- Hurisso, T.T.; Culman, S.W.; Horwath, W.R.; Wade, J.; Cass, D.; Beniston, J.W.; Bowles, T.M.; Grandy, A.S.; Franzluebbers, A.J.; Schipanski, M.E.; et al. Comparison of permanganate-oxidizable carbon and mineralizable carbon for assessment of organic matter stabilization and mineralization. Soil Sci. Soc. Am. J. 2016, 80, 1352–1364. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Rabbi, S.M.F.; Zhang, Y.; Young, I.M.; Jones, A.R.; Dennis, P.G.; Menzies, N.W.; Kopittke, P.M.; Dalal, R.C. Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses. Sci. Total Environ. 2021, 778, 146286. [Google Scholar] [CrossRef]
- Guo, L.; Wu, G.; Li, Y.; Li, C.; Liu, W.; Meng, J.; Liu, H.; Yu, X.; Jiang, G. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat–maize rotation system in Eastern China. Soil Tillage Res. 2016, 156, 140–147. [Google Scholar] [CrossRef]
- Gentsch, N.; Riechers, F.L.; Boy, J.; Schweneker, D.; Feuerstein, U.; Heuermann, D.; Guggenberger, G. Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions. Soil 2024, 10, 139–150. [Google Scholar] [CrossRef]
- Paul, B.K.; Vanlauwe, B.; Ayuke, F.; Gassner, A.; Hoogmoed, M.; Hurisso, T.T.; Koala, S.; Lelei, D.; Ndabamenye, T.; Six, J.; et al. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agric. Ecosyst. Environ. 2013, 164, 14–22. [Google Scholar] [CrossRef]
- Brennan, E.B.; Acosta-Martinez, V. Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biol. Biochem. 2017, 109, 188–204. [Google Scholar] [CrossRef]
- White, K.E.; Brennan, E.B.; Cavigelli, M.A.; Smith, R.F. Correction: Winter cover crops increase readily decomposable soil carbon, but compost drives total soil carbon during eight years of intensive, organic vegetable production in California. PLoS ONE 2024, 19, e0307250. [Google Scholar] [CrossRef]
- Leifeld, J.; Siebert, S.; Kögel-Knabner, I. Changes in the chemical composition of soil organic matter after application of compost. Eur. J. Soil Sci. 2002, 53, 299–309. [Google Scholar] [CrossRef]
- Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y.; Shen, Y. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 2012, 112, 171–178. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Y.; Cao, W.; Yang, Y.; Hu, Y.; He, T.; Li, Z.; Wang, P.; Chen, X.; Chen, J.; et al. Legume cover crops sequester more soil organic carbon than non-legume cover crops by stimulating microbial transformations. Geoderma 2024, 450, 117024. [Google Scholar] [CrossRef]
- Allar, J.; Maltais-Landry, G. Limited benefits of summer cover crops on nitrogen cycling in organic vegetable production. Nutr. Cycl. Agroecosyst. 2022, 122, 119–138. [Google Scholar] [CrossRef]
- Geisseler, D.; Smith, R.; Cahn, M.; Muramoto, J. Nitrogen mineralization from organic fertilizers and composts: Literature survey and model fitting. J. Environ. Qual. 2021, 50, 1325–1338. [Google Scholar] [CrossRef]
- Amlinger, F.; Götz, B.; Dreher, P.; Geszti, J.; Weissteiner, C. Nitrogen in biowaste and yard waste compost: Dynamics of mobilisation and availability—A review. Eur. J. Soil Biol. 2003, 39, 107–116. [Google Scholar] [CrossRef]
- Holford, I.C.R. Soil phosphorus: Its measurement, and its uptake by plants. Soil Res. 1997, 35, 227. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Frossard, E. Similar phosphorus transfer from cover crop residues and water-soluble mineral fertilizer to soils and a subsequent crop. Plant Soil 2015, 393, 193–205. [Google Scholar] [CrossRef]
- Beauchemin, S.; Simard, R.R. Soil phosphorus saturation degree: Review of some indices and their suitability for P management in Québec, Canada. Can. J. Soil Sci. 1999, 79, 615–625. [Google Scholar] [CrossRef]
- Fizer, M.; Sidey, V.; Milyovich, S.; Fizer, O. A DFT study of fulvic acid binding with bivalent metals: Cd, Cu, Mg, Ni, Pb, Zn. J. Mol. Graph. Model. 2021, 102, 107800. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Prasher, S.O.; Yan, B.; Ou, Y.; Cui, H.; Cui, Y. Organic matter, a critical factor to immobilize phosphorus, copper, and zinc during composting under various initial C/N ratios. Bioresour. Technol. 2019, 289, 121745. [Google Scholar] [CrossRef]
- Takeda, M.; Nakamoto, T.; Miyazawa, K.; Murayama, T.; Okada, H. Phosphorus availability and soil biological activity in an Andosol under compost application and winter cover cropping. Appl. Soil Ecol. 2009, 42, 86–95. [Google Scholar] [CrossRef]
- Liu, G.; Simonne, E.H.; Morgan, K.T.; Hochmuth, G.; Agehara, S.; Mylavarapu, R.; Frey, C. Chapter 2. Fertilizer management for vegetable production in Florida. In Vegetable Production Handbook Edition 2024–2025; Publication #: CV296; 2024; pp. 1–13. Available online: https://edis.ifas.ufl.edu/publication/CV296 (accessed on 3 January 2025).
- Kolahchi, Z.; Jalali, M. Effect of water quality on the leaching of potassium from sandy soil. J. Arid Environ. 2007, 68, 624–639. [Google Scholar] [CrossRef]
- O’Neill, B.; Sprunger, C.D.; Robertson, G.P. Do soil health tests match farmer experience? Assessing biological, physical, and chemical indicators in the Upper Midwest United States. Soil Sci. Soc. Am. J. 2021, 85, 903–918. [Google Scholar] [CrossRef]
- Sprunger, C.D.; Martin, T.K. Chapter three—An integrated approach to assessing soil biological health. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 182, pp. 131–168. [Google Scholar] [CrossRef]
- Karlen, D.L.; Veum, K.S.; Sudduth, K.A.; Obrycki, J.F.; Nunes, M.R. Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil Tillage Res. 2019, 195, 104365. [Google Scholar] [CrossRef]
- Abbas, F.; Fares, A. Soil organic carbon and carbon dioxide emission from an organically amended Hawaiian tropical soil. Soil Sci. Soc. Am. J. 2009, 73, 995–1003. [Google Scholar] [CrossRef]
- Iovieno, P.; Morra, L.; Leone, A.; Pagano, L.; Alfani, A. Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol. Fertil. Soils 2009, 45, 555–561. [Google Scholar] [CrossRef]
- Chahal, I.; Van Eerd, L.L. Evaluation of commercial soil health tests using a medium-term cover crop experiment in a humid, temperate climate. Plant Soil 2018, 427, 351–367. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D.; et al. Linking soil microbial diversity to modern agriculture practices: A review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef]
Effect | OM i | CB | SLAN | AC | PMN | pH | CEC | NH4-N | AS | SHS | SFS |
---|---|---|---|---|---|---|---|---|---|---|---|
Fertilizer (F) | |||||||||||
Everlizer ii | 0.86 | 37.5 | 16.5 | 462.7 | 37.9 | 6.9 | 6.1 | 3.6 | 2.3 | 13.2 | 60 a |
Nature Safe | 0.82 | 31.7 | 13.5 | 425.5 | 34.3 | 6.6 | 5.6 | 3.2 | 1.8 | 12.4 | 52 b |
Year (Y) | |||||||||||
2022 | 0.85 | 39.7 | 16.9 | 470.5 | 39.8 | 6.8 | 6.2 a | 3.4 | 2.7 | 13.2 | 58 |
2023 | 0.84 | 29.9 | 13.1 | 418.5 | 32.7 | 6.7 | 5.5 b | 3.4 | 1.4 | 12.4 | 54 |
p value | |||||||||||
F | 0.541 | 0.202 | 0.314 | 0.143 | 0.246 | 0.071 | 0.077 | 0.692 | 0.548 | 0.096 | 0.005 |
Y | 0.708 | 0.085 | 0.165 | 0.090 | 0.081 | 0.426 | 0.051 | 0.962 | 0.208 | 0.157 | 0.071 |
F × Y | 0.412 | 0.772 | 0.261 | 0.519 | 0.800 | 0.215 | 0.098 | 0.348 | 0.656 | 0.781 | 0.472 |
Preplant Fertilizer | P iii (mg kg−1) | K (mg kg−1) | Mg (mg kg−1) | Mn (mg kg−1) | B (mg kg−1) | NO3-N (mg kg−1) | P:[Al + Fe] (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |
Everlizer i | 291.0 Aa | 170.0 Ba | 76.3 Aa | 42.3 Ba | 61.4 Aa | 53.0 Aa | 10.5 Aa | 6.1 Ba | 0.3 Aa | 0.2 Ba | 6.3 Aa | 2.1 Ba | 38.7 Aa | 19.8 Ba |
Nature Safe | 210.6 Ab | 159.4 Ba | 33.2 Ab | 31.1 Ab | 26.5 Bb | 37.0 Ab | 5.8 Ab | 5.0 Aa | 0.2 Ab | 0.2 Aa | 4.8 Aa | 2.8 Ba | 27.7 Ab | 18.2 Ba |
p value | ||||||||||||||
F ii | 0.023 | <0.001 | <0.001 | 0.017 | 0.010 | 0.600 | 0.007 | |||||||
Y | 0.007 | 0.005 | 0.345 | 0.016 | <0.001 | <0.001 | <0.001 | |||||||
F × Y | 0.036 | 0.015 | 0.026 | 0.039 | <0.001 | 0.041 | 0.017 |
Effect | Ca i | S | Zn | Cu | Fe | BS-Ca | BS-K | BS-Mg | P:[Ca + Mg] |
---|---|---|---|---|---|---|---|---|---|
Fertilizer (F) | |||||||||
Everlizer ii | 847.4 | 11.4 | 4.1 a | 2.7 a | 110.0 | 71.4 | 2.4 a | 8.1 a | 23.7 |
Nature Safe | 725.1 | 11.5 | 1.5 b | 0.8 b | 112.2 | 67.3 | 1.5 b | 4.9 b | 23.3 |
Year (Y) | |||||||||
2022 | 840.8 | 13.3 a | 3.8 a | 2.8 a | 120.1 a | 72.0 | 2.4 | 6.1 | 26.2 a |
2023 | 730.7 | 9.8 b | 1.6 b | 0.7 b | 102.8 b | 66.7 | 1.5 | 6.8 | 21.1 b |
p value | |||||||||
F | 0.159 | 0.938 | 0.002 | <0.001 | 0.213 | 0.268 | 0.014 | <0.001 | 0.828 |
Y | 0.270 | 0.018 | 0.003 | <0.001 | <0.001 | 0.164 | 0.156 | 0.208 | 0.024 |
F × Y | 0.382 | 0.079 | 0.498 | 0.889 | 0.700 | 0.977 | 0.206 | 0.158 | 0.630 |
Effect | OM i | CB | SLAN | AC | PMN | pH | CEC | NO3-N | NH4-N | AS | SHS |
---|---|---|---|---|---|---|---|---|---|---|---|
Cover cropping (Cv) | |||||||||||
Sunn hemp | 0.91 | 31.3 | 16.0 | 443.6 | 34.3 | 6.6 | 6.1 | - ii | 6.4 a | 2.7 | 12.9 |
Weedy fallow | 0.92 | 31.4 | 14.9 | 433.9 | 33.9 | 6.5 | 6.0 | - | 4.8 b | 2.4 | 12.8 |
Compost (Cp) | |||||||||||
Control iii | 0.91 | - ii | 14.9 | 420.6 b | 35.3 | 6.5 | - | - | 6.0 | - | 12.4 b |
Vermi | 0.91 | - | 18.5 | 436.5 ab | 33.5 | 6.5 | - | - | 5.4 | - | 12.9 a |
Yard | 0.91 | - | 15.2 | 466.2 a | 32.5 | 6.6 | - | - | 6.0 | - | 12.9 a |
Mixed | 0.93 | - | 13.4 | 432.8 b | 35.1 | 6.6 | - | - | 5.0 | - | 13.1 a |
Year (Y) | |||||||||||
2022 | 0.87 b | - ii | 15.2 | 396.5 b | 33.9 | 6.8 a | - | - | 7.2 a | - | 12.6 b |
2023 | 0.96 a | - | 15.7 | 485.1 a | 34.4 | 6.2 b | - | - | 4.3 b | - | 13.1 a |
p value | |||||||||||
Cv | 0.313 | 0.952 | 0.407 | 0.382 | 0.726 | 0.058 | 0.421 | 0.495 | 0.009 | 0.336 | 0.445 |
Cp | 0.650 | 0.322 | 0.071 | 0.052 | 0.219 | 0.102 | 0.083 | 0.251 | 0.646 | 0.038 | 0.006 |
Y | <0.001 | 0.487 | 0.688 | <0.001 | 0.625 | <0.001 | <0.001 | 0.839 | <0.001 | 0.325 | <0.001 |
Cv × Cp | 0.226 | 0.097 | 0.275 | 0.321 | 0.321 | 0.900 | 0.194 | 0.048 | 0.608 | 0.204 | 0.492 |
Cv × Y | 0.642 | 0.897 | 0.819 | 0.065 | 0.596 | 0.555 | 0.072 | 0.004 | 0.189 | 0.057 | 0.445 |
Cp × Y | 0.157 | 0.005 | 0.753 | 0.380 | 0.140 | 0.321 | <0.001 | 0.886 | 0.297 | 0.036 | 0.387 |
Cv × Cp × Y | 0.554 | 0.176 | 0.359 | 0.867 | 0.302 | 0.736 | 0.871 | 0.717 | 0.798 | 0.204 | 0.604 |
Effect | Ca i | Mg | S | B | Zn | Cu | Mn | Fe | BS-Ca | BS-Mg | P:[Ca + Mg] |
---|---|---|---|---|---|---|---|---|---|---|---|
Cover cropping (Cv) | |||||||||||
Sunn hemp | 806.5 | - ii | 10.8 | 0.2 | 1.3 | 0.8 | 5.9 | 112.3 | 65.9 | - | 25.8 |
Weedy fallow | 785.6 | - | 10.8 | 0.2 | 1.4 | 0.8 | 6.3 | 113.6 | 64.4 | - | 25.5 |
Compost (Cp) | |||||||||||
Control iii | - ii | - | 10.6 | 0.2 | 1.3 | 0.8 | 6.1 | 115.3 | 65.3 a | - | 26.9 a |
Vermi | - | - | 10.7 | 0.2 | 1.3 | 0.7 | 6.0 | 112.8 | 62.4 b | - | 28.2 a |
Yard | - | - | 10.4 | 0.2 | 1.4 | 0.8 | 6.4 | 111.2 | 67.2 a | - | 23.2 b |
Mixed | - | - | 11.6 | 0.2 | 1.4 | 0.9 | 6.0 | 112.4 | 65.7 a | - | 24.4 b |
Year (Y) | |||||||||||
2022 | - ii | 37.7 | 10.5 | 0.2 | 1.5 a | 1.3 a | 5.1 b | 130.3 a | 71.2 a | 5.5 | 24.2 b |
2023 | - | 40.1 | 11.2 | 0.2 | 1.2 b | 0.4 b | 7.4 a | 97.8 b | 59.6 b | 5.2 | 27.1 a |
p value | |||||||||||
Cv | 0.462 | 0.906 | 0.984 | 0.528 | 0.139 | 0.679 | 0.090 | 0.492 | 0.268 | 0.833 | 0.708 |
Cp | 0.019 | 0.680 | 0.381 | 0.887 | 0.743 | 0.616 | 0.655 | 0.140 | 0.010 | 0.429 | <0.001 |
Y | 0.007 | 0.190 | 0.166 | 0.263 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.237 | <0.001 |
Cv × Cp | 0.418 | 0.031 | 0.454 | 0.752 | 0.198 | 0.568 | 0.412 | 0.129 | 0.960 | 0.006 | 0.836 |
Cv × Y | 0.847 | 0.302 | 0.608 | 0.928 | 0.782 | 0.953 | 0.500 | 0.795 | 0.401 | 0.639 | 0.583 |
Cp × Y | 0.011 | 0.213 | 0.312 | 0.917 | 0.074 | 0.658 | 0.881 | 0.877 | 0.262 | 0.297 | 0.559 |
Cv × Cp × Y | 0.655 | 0.542 | 0.206 | 0.879 | 0.527 | 0.734 | 0.940 | 0.446 | 0.168 | 0.131 | 0.739 |
Effect | Solvita CO2 Burst (mg CO2-C/kg/day) | CEC iii (meq/100 g) | Aggregate Stability (%) | Ca (mg/kg) | Mg (mg/kg) | Base Saturation -Mg (%) | NO3-N (mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | SH i | WF | SH | WF | SH | WF | |
Control ii | 33.1 Aab | 33.4 Aa | 5.4 Bb | 6.7 Aa | 2.5 Aab | 2.1 Aab | 754.5 Ab | 803.0 Aa | 39.2 Aab | 35.7 Aa | 5.3 Aab | 4.7 Ab | 2.0 Aab | 1.7 Aa |
Vermi | 28.5 Ab | 31.7 Aa | 5.8 Aa | 6.0 Ab | 2.0 Ab | 3.3 Aa | 788.9 Aab | 738.4 Aa | 33.2 Bb | 44.1 Aa | 4.6 Bb | 6.2 Aa | 2.5 Aa | 2.0 Aa |
Yard | 26.9 Bb | 34.0 Aa | 5.9 Ba | 6.5 Aa | 2.9 Aab | 1.6 Bb | 898.0 Aa | 788.2 Ba | 41.2 Aa | 38.2 Aa | 5.6 Aa | 5.2 Ab | 1.7 Ab | 2.3 Aa |
Mixed | 35.8 Aa | 28.5 Ba | 5.9 Aa | 6.2 Ab | 4.0 Aa | 3.2 Aa | 850.4 Aab | 758.6 Ba | 43.3 Aa | 37.8 Aa | 6.0 Aa | 5.1 Ab | 2.0 Aab | 1.8 Aa |
P iii (mg kg−1) | K (mg kg−1) | Base Saturation-K (%) | P:[Al + Fe] (%) | Soil Fertility Score | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |||||||||||
Compost | SH i | WF | SH | WF | SH | WF | SH | WF | SH | WF | SH | WF | SH | WF | SH | WF | SH | WF | SH | WF |
Control ii | 207.7 Aa | 200.2 Aa | 246.2 Aa | 225.3 Aa | 46.9 Aa | 43.2 Ab | 42.1 Aa | 41.0 Ab | 2.2 Aa | 2.1 Ab | 1.6 Aa | 1.6 Ab | 25.7 Aa | 23.7 Aa | 25.8 Aa | 24.8 Aa | 56 Aa | 55 Aa | 55 Aa | 56 Aab |
Vermi | 203.5 Aa | 207.2 Aa | 262.6 Aa | 208.7 Ba | 51.8 Aa | 54.0 Aa | 33.1 Ab | 31.9 Ac | 2.4 Aa | 2.8 Aa | 1.4 Aa | 1.4 Ab | 26.0 Aa | 24.4 Aa | 28.6 Aa | 23.2 Ba | 57 Aa | 56 Aa | 54 Aa | 51 Ab |
Yard | 208.2 Aa | 187.8 Aa | 192.9 Bb | 230.8 Aa | 51.0 Aa | 35.6 Bb | 34.2 Bb | 58.0 Aa | 2.2 Aa | 1.4 Bc | 1.3 Ba | 2.4 Aa | 27.2 Aa | 23.5 Aa | 21.0 Bb | 24.8 Aa | 56 Aa | 52 Bb | 54 Ba | 60 Aa |
Mixed | 216.8 Aa | 215.7 Aa | 210.4 Ab | 224.9 Aa | 48.9 Aa | 52.6 Aa | 41.3 Aab | 33.5 Abc | 2.2 Aa | 2.3 Ab | 1.6 Aa | 1.3 Ab | 27.5 Aa | 25.1 Aa | 21.1 Ab | 24.4 Aa | 58 Aa | 58 Aa | 54 Aa | 53 Ab |
p value | ||||||||||||||||||||
Cv | 0.654 | 0.804 | 0.634 | 0.394 | 0.964 | |||||||||||||||
Cp | 0.118 | 0.760 | 0.765 | 0.396 | 0.595 | |||||||||||||||
Y | <0.001 | <0.001 | <0.001 | 0.048 | 0.013 | |||||||||||||||
Cv × Cp | 0.105 | 0.503 | 0.416 | 0.127 | 0.653 | |||||||||||||||
Cv × Y | 0.749 | 0.059 | 0.011 | 0.034 | 0.150 | |||||||||||||||
Cp × Y | 0.113 | <0.001 | <0.001 | 0.042 | 0.001 | |||||||||||||||
Cv × Cp × Y | <0.001 | <0.001 | <0.001 | 0.018 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ray, Z.T.; Zhao, X. Seasonal Impacts of Organic Fertilizers, Cover Crop Residues, and Composts on Soil Health Indicators in Sandy Soils: A Case Study with Organic Celery. Agronomy 2025, 15, 1334. https://doi.org/10.3390/agronomy15061334
Ray ZT, Zhao X. Seasonal Impacts of Organic Fertilizers, Cover Crop Residues, and Composts on Soil Health Indicators in Sandy Soils: A Case Study with Organic Celery. Agronomy. 2025; 15(6):1334. https://doi.org/10.3390/agronomy15061334
Chicago/Turabian StyleRay, Zachary T., and Xin Zhao. 2025. "Seasonal Impacts of Organic Fertilizers, Cover Crop Residues, and Composts on Soil Health Indicators in Sandy Soils: A Case Study with Organic Celery" Agronomy 15, no. 6: 1334. https://doi.org/10.3390/agronomy15061334
APA StyleRay, Z. T., & Zhao, X. (2025). Seasonal Impacts of Organic Fertilizers, Cover Crop Residues, and Composts on Soil Health Indicators in Sandy Soils: A Case Study with Organic Celery. Agronomy, 15(6), 1334. https://doi.org/10.3390/agronomy15061334