Synergistic Effects of Fulvic Acid and Phosphorus Fertilizers on Cotton Photosynthetic Capacity, Root Productivity, and Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Plant Sampling and Analysis
2.4. Cotton Yield and Yield Components
2.5. Cotton Root Productivity
2.6. The Non-Structural Carbohydrate Content of Cotton Roots
2.7. Cotton Photosynthetic Capacity
2.8. Statistical Analysis
3. Results
3.1. Cotton Lint Yield
3.2. Cotton Biomass Allocation
3.3. Cotton Photosynthetic Capacity
3.4. Cotton Root Productivity
3.5. Carbohydrate Contents in Cotton Roots
3.6. Correlation Analysis Among Yield, Cotton Photosynthetic Capacity, Root Productivity, and Carbohydrate Contents in Cotton Roots
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics Data. Available online: http://www.stats.gov.cn/ (accessed on 15 December 2024).
- Zhou, B.B.; Liu, Y.; Chen, X.P.; Ye, S.T.; Yao, P.; Liang, C.F. Effect of magnetic water irrigation on the improvement of salinized soil and cotton growth in Xinjiang. Agric. Water Manag. 2021, 248, 106784. [Google Scholar] [CrossRef]
- Feng, L.; Wan, S.M.; Zhang, Y.L.; Dong, H.Z. Xinjiang cotton: Achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crops Res. 2024, 312, 109401. [Google Scholar] [CrossRef]
- Navghare, N.R.; Age, A.B.; Pandao, M.R.; Kakade, S.U.; Rakhonde, O.S.; Bhosle, A.S. Effect of Various Levels of Phosphorus on Growth Attributing Characters, Yield and Nutrient Uptake by Cotton in Vertisol. Int. J. Plant Soil Sci. 2023, 35, 1086–1092. [Google Scholar] [CrossRef]
- Carreira, J.A.; Vinegla, B.; Lajtha, K. Secondary CaCO3 and precipitation of P-Ca compounds control the retention of soil P in arid ecosystems. J. Arid Environ. 2006, 64, 460–473. [Google Scholar] [CrossRef]
- Wang, B.; Liu, H.; Wang, X.H.; Li, J.M.; Ma, Y.B.; Ma, X.W. Soil phosphorus accumulation model for an arid area of north-western China with 3-year rotation of wheat, maize and cotton. J. Agric. Sci. 2014, 153, 1247–1256. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Wang, P.; Li, Y.S.; Wang, G.; Liu, P.; Khan, A. Leaf gas exchange, phosphorus uptake, growth and yield responses of cotton cultivars to different phosphorus rates. Photosynthetica 2018, 56, 1414–1421. [Google Scholar] [CrossRef]
- Gao, F.; Li, Z.L.; Du, Y.P.; Duan, J.H.; Zhang, T.J.; Wei, Z.B.; Guo, L.; Gong, W.J.; Liu, Z.G.; Zhang, M. The combined application of urea and fulvic acid solution improved maize carbon and nitrogen metabolism. Agronomy 2022, 12, 1400. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Ma, Y.T.; Tian, Y.; Liu, P.G.; Zhang, M.; Liu, Z.G.; Zhu, X.F.; Wang, C.H.; Zhuang, Y.Z.; Zhang, W.R.; et al. Co-Application of Coated Phosphate Fertilizer and Humic Acid for Wheat Production and Soil Nutrient Transport. Agronomy 2024, 14, 1621. [Google Scholar] [CrossRef]
- Raines, C.A. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: Current and future strategies. Plant Physiol. 2011, 155, 36–42. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.Q.; Xiemuxiding, A.; Zhang, X.F.; Duan, L.S.; Li, R.Z. Fulvic Acid, Brassinolide, and Uniconazole Mediated Regulation of Morphological and Physiological Traits in Maize Seedlings Under Water Stress. J. Plant Growth Regul. 2022, 42, 1762–1774. [Google Scholar] [CrossRef]
- Roomi, S.; Masi, A.; Conselvan, G.B.; Trevisan, S.; Quaggiotti, S.; Pivato, M.; Arrigoni, G.; Yasmin, T.; Carletti, P. Protein Profiling of Arabidopsis Roots Treated with Humic Substances: Insights into the Metabolic and Interactome Networks. Front. Plant Sci. 2019, 9, 1812. [Google Scholar] [CrossRef] [PubMed]
- Ron, M.; Dorrity, M.W.; Lucas, M.; Toal, T.; Hernandez, R.L.; Stefan, A.; Maloof, J.N.; Kliebenstein, D.J.; Brady, S.M. Identification of novel loci regulating interspecific variation in root morphology and cellular development in Tomato. Plant Physiol. 2013, 162, 755–768. [Google Scholar] [CrossRef]
- Ruan, Y.L. Sucrose metabolism: Gateway to diverse carbon use and sugarsignaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Wang, J.F.; Yang, X.Y.; Huang, S.M.; Wu, L.; Cai, Z.J.; Xu, M.G. Long-term combined application of organic and inorganic fertilizers increases crop yield sustainability by improving soil fertility in maize-wheat cropping systems. J. Integr. Agric. 2024, 24, 290–305. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley and Sons: New York, NY, USA, 1994. [Google Scholar]
- Gerke, J. Review Article: The effect of humic substances on phosphate and iron acquisition by higher plants: Qualitative and quantitative aspects. J. Plant Nutr. Soil Sci. 2021, 184, 329–338. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Wang, J.B.; Wang, Z.P.; Hu, D.S.; Jiang, Y.; Han, Y.L.; Wang, Y. Fulvic acid alleviates the stress of low nitrogen on maize by promoting root development and nitrogen metabolism. Physiol. Plant 2024, 176, e14249. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, X.P.; Ma, C.; Chen, B.; Yuan, F.; Sheng, J.D. The Impact of Fulvic Acids on Cotton Growth, Yield and Phosphorus Fertilizer Use Efficiency Under Different Phosphorus Fertilization Rates in Xinjiang, China. Agronomy 2025, 15, 992. [Google Scholar] [CrossRef]
- Yang, F.; Sui, L.; Tang, C.Y.; Li, J.S.; Cheng, K.; Xue, Q. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. Sci. Total Environ. 2021, 768, 145106. [Google Scholar] [CrossRef]
- Iqbal, A.; Dong, Q.; Wang, X.R.; Gui, H.P.; Zhang, H.H.; Zhang, X.L.; Song, M.Z. Phosphorus and carbohydrate metabolism contributes to low phosphorus tolerance in cotton. BMC Plant Biol. 2023, 23, 97. [Google Scholar] [CrossRef]
- Chen, Q.; Qu, Z.M.; Ma, G.H.; Wang, W.J.; Dai, J.Y.; Zhang, M.; Wei, Z.B.; Liu, Z.G. Humic acid modulates growth, photosyn- thesis, hormone and osmolytes system of maize under drought conditions. Agric. Water Manag. 2022, 263, 107447. [Google Scholar] [CrossRef]
- Liu, Z.T.; Jin, W.; Wang, Q.; Hu, W.; Chen, B.L.; Meng, Y.L.; Yang, H.S.; Zhou, Z.G. Optimized boll-loading capacity of cotton root system increases seedcotton yield under wheat-cotton straw return with appropriate nitrogen fertilization. Crop J. 2025, 13, 576–586. [Google Scholar] [CrossRef]
- Tan, K.H. Humic Matter in Soil and the Environment: Principles and Controversies; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Zhang, Z.Q.; Gao, Q.; Xie, Z.L.; Yang, J.M.; Liu, J.H. Adsorption of nitrification inhibitor nitrapyrin by humic acid and fulvic acid in black soil: Characteristics and mechanism. RSC Adv. 2021, 11, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, J.W.; Huang, X.; Liu, Z.T.; Jin, W.; Hu, W.; Meng, Y.L.; Zhou, Z.G. Phosphorus application under continuous wheat-cotton straw retention enhanced cotton root productivity and seedcotton yield by improving the carbohydrate metabolism of root. Field Crops Res. 2024, 317, 109541. [Google Scholar] [CrossRef]
- Noor, H.; Yan, Z.; Sun, P.; Zhang, L.; Ding, P.; Li, L.; Ren, A.; Sun, M.; Gao, Z. Effects of nitrogen on photosynthetic productivity and yield quality of wheat (Triticum aestivum L.). Agronomy 2023, 13, 1448. [Google Scholar] [CrossRef]
- Fang, X.; Li, Y.; Nie, J.; Wang, C.; Huang, K.; Zhang, Y.; Zhang, Y.; She, H.; Liu, X.; Ruan, R.; et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Res. 2018, 219, 160–168. [Google Scholar] [CrossRef]
- Echer, F.R.; Rosolem, C.A. Cotton yield and fiber quality affected by row spacing and shading at different growth stages. Eur. J. Agron. 2015, 65, 18–26. [Google Scholar] [CrossRef]
- Alarcon, V.J.; Sassenrath, G.F. Optimizing canopy photosynthetic rate through PAR modeling in cotton (Gossypium spp.) crops. Comput. Electron. Agric. 2015, 119, 142–152. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Kong, X.Q.; Dong, H.Z. Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown Cotton. Field Crops Res. 2018, 216, 10–21. [Google Scholar] [CrossRef]
- Tung, S.A.; Huang, Y.; Ali, S.; Hafeez, A.; Shah, A.N.; Song, X.H.; Ma, X.L.; Luo, D.; Yang, G.Z. Mepiquat chloride application does not favor leaf photosynthesis and carbohydrate metabolism as well as lint yield in late-planted cotton at high plant density. Field Crops Res. 2018, 221, 108–118. [Google Scholar] [CrossRef]
- Brodrick, R.; Bange, M.P.; Milroy, S.P.; Hammer, G.L. Physiological determinants of high yielding ultra-narrow row cotton: Biomass accumulation and partitioning. Field Crops Res. 2012, 134, 122–129. [Google Scholar] [CrossRef]
- Kayoumu, M.; Li, X.T.; Iqbal, A.; Wang, X.R.; Gui, H.P.; Qi, Q.; Ruan, S.J.; Guo, R.S.; Dong, Q.; Zhang, X.L.; et al. Genetic variation in morphological traits in cotton and their roles in increasing phosphorus use efficiency in response to low phosphorus availability. Front. Plant Sci. 2022, 13, 1051080. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K. Influence of dry matter and length of root on growth of five field crops at varying soil zinc and copper levels. J. Plant Nutr. 2005, 27, 1517–1523. [Google Scholar] [CrossRef]
- Dong, H.Z.; Mao, S.C.; Zhang, W.F.; Chen, D.H. On boll-setting optimization theory for cotton cultivation and its new development. Sci. Agric. 2014, 47, 441–451. [Google Scholar]
- Wells, R. Stem and root carbohydrate dynamics of two cotton cultivars bred fifty years apart. Agron. J. 2002, 94, 876–882. [Google Scholar] [CrossRef]
- Meng, T.Y.; Wei, H.H.; Li, X.Y.; Dai, Q.G.; Huo, Z.Y. A better root morphophysiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Res. 2018, 228, 135–146. [Google Scholar] [CrossRef]
- Hu, Y.X.; Liu, J.J.; Lin, Y.; Xu, X.M.; Xia, Y.Q.; Bai, J.; Yu, Y.C.; Xiao, F.; Ding, Y.F.; Ding, C.Q.; et al. Sucrose nonfermenting-1-related protein kinase 1 regulates sheath-to-panicle transport of nonstructural carbohydrates during rice grain filling. Plant Physiol. 2022, 189, 1694–1714. [Google Scholar] [CrossRef]
- Teixeira, E.I.; Moot, D.J.; Mickelbart, M.V. Seasonal patterns of root C and N reserves of lucerne crops (Medicago sativa L.) grown in a temperate climate were affected by defoliation regime. Eur. J. Agron. 2007, 26, 10–20. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef]
2023 | Treatment | Vegetative organ | Reproductive organ | ||||||
PSS | PFS | PBS | BOS | PSS | PFS | PBS | BOS | ||
CK | 2.1 c | 4.6 c | 7.6 e | 9.7 e | 0.3 b | 1.8 d | 6.0 d | 9.2 d | |
P1 | 2.3 b | 6.4 b | 9.2 d | 11.0 d | 0.3 a | 2.1 c | 9.4 c | 11.1 c | |
P2 | 2.6 a | 6.7 a | 9.5 c | 11.6 c | 0.3 a | 2.3 b | 9.7 b | 11.7 b | |
FP1 | 2.6 a | 6.8 a | 9.8 b | 11.7 b | 0.4 a | 2.3 a | 10.8 a | 13.8 a | |
FP2 | 2.6 a | 6.8 a | 10.0 a | 12.0 a | 0.4 a | 2.3 a | 9.7 b | 11.6 b | |
2024 | Treatment | Vegetative organ | Reproductive organ | ||||||
PSS | PFS | PBS | BOS | PSS | PFS | PBS | BOS | ||
CK | 2.2 d | 3.4 d | 6.1 d | 7.6 e | 0.2 c | 1.8 c | 5.6 d | 9.4 d | |
P1 | 2.8 c | 5.6 c | 9.1 c | 11.5 d | 0.3 b | 2.3 b | 9.1 c | 10.9 c | |
P2 | 3.0 b | 6.1 b | 9.5 b | 12.0 c | 0.4 a | 2.5 ab | 9.6 b | 12.4 b | |
FP1 | 3.1 a | 6.2 a | 9.6 b | 12.1 b | 0.4 a | 2.7 a | 10.9 a | 13.2 a | |
FP2 | 3.1 ab | 6.2 a | 9.9 a | 12.3 a | 0.4 a | 2.7 a | 9.6 b | 11.4 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Lin, J.; Hu, Q.; Xiao, Y.; Wang, X.; Zhou, Z.; Hu, W.; Cao, N.; Wan, S. Synergistic Effects of Fulvic Acid and Phosphorus Fertilizers on Cotton Photosynthetic Capacity, Root Productivity, and Yield. Agronomy 2025, 15, 1327. https://doi.org/10.3390/agronomy15061327
Li H, Lin J, Hu Q, Xiao Y, Wang X, Zhou Z, Hu W, Cao N, Wan S. Synergistic Effects of Fulvic Acid and Phosphorus Fertilizers on Cotton Photosynthetic Capacity, Root Productivity, and Yield. Agronomy. 2025; 15(6):1327. https://doi.org/10.3390/agronomy15061327
Chicago/Turabian StyleLi, Huqiang, Jiao Lin, Qiang Hu, Yu Xiao, Xiaofeng Wang, Zhiguo Zhou, Wei Hu, Nan Cao, and Sumei Wan. 2025. "Synergistic Effects of Fulvic Acid and Phosphorus Fertilizers on Cotton Photosynthetic Capacity, Root Productivity, and Yield" Agronomy 15, no. 6: 1327. https://doi.org/10.3390/agronomy15061327
APA StyleLi, H., Lin, J., Hu, Q., Xiao, Y., Wang, X., Zhou, Z., Hu, W., Cao, N., & Wan, S. (2025). Synergistic Effects of Fulvic Acid and Phosphorus Fertilizers on Cotton Photosynthetic Capacity, Root Productivity, and Yield. Agronomy, 15(6), 1327. https://doi.org/10.3390/agronomy15061327