Identification and Utilization of the Soybean Plant Height Locus PH19-31
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Phenotypic Identification
2.3. DNA Extraction
2.4. Bulked Segregant Sequencing (BSA-Seq)
2.5. Sequencing Data Processing
2.6. SSR Marker Screening and Genotyping
2.7. QTL Mapping and Validation for Plant Height
2.8. Development and Validation of InDel Markers
2.9. Quantitative Real-Time PCR (qRT-PCR)
2.10. Functional Annotation and Candidate Gene Screening Within the Candidate Region
2.11. Statistical Analysis
3. Results
3.1. Phenotypic Analysis of Plant Height in Heinong 63, Longken 3077, and the F2 Segregating Population
3.2. Sequencing Data Analysis
3.2.1. Sequencing Data Quality Control
3.2.2. Association Analysis
3.3. Fine Mapping of the PH19-31 Locus
3.4. Validation of the Candidate Region and Linkage Marker Analysis
3.5. Functional Validation and Genetic Association of the InDel Marker PL7
3.6. Verification of the Mapping Interval in the F2 Population
3.7. Functional Analysis of Genes Within the Mapped Interval
3.8. Protein Function Analysis of Candidate Genes
4. Discussion
4.1. Regulatory Genes and QTLs Associated with Plant Height in Soybeans
4.2. Functions and Potential Biological Roles of Candidate Genes
4.3. Utility of InDel Markers in Molecular Breeding
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, D.; Huang, L.; Zhang, X.; Zhang, S.; Yuan, Y.; Wu, G.; Hou, Y.; Yuan, X.; Chen, X.; Xue, C. Identification of a branch number locus in Soybean using BSA-Seq and GWAS approaches. Int. J. Mol. Sci. 2024, 25, 873. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Yan, L.; Ma, X.; Chen, Y.; Wu, L.; Ma, T.; Zhao, L.; Yi, B.; Ma, C.; Tu, J.; et al. Combined BSA-Seq based mapping and RNA-Seq profiling reveal candidate genes associated with plant architecture in Brassica napus. Int. J. Mol. Sci. 2022, 23, 2472. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, W.; Xu, X.; Li, J.; Lu, W. Relationship of dynamic plant height and its relative growth rate with yield using recombinant inbred lines of soybean. Acta Agron. Sin. 2011, 37, 559–562. [Google Scholar] [CrossRef]
- Qin, C.; Li, Y.H.; Li, D.; Zhang, X.; Kong, L.; Zhou, Y.; Lyu, X.; Ji, R.; Wei, X.; Cheng, Q.; et al. PH13 improves soybean shade traits and enhances yield for high-density planting at high latitudes. Nat. Commun. 2023, 14, 6813. [Google Scholar] [CrossRef]
- Lee, S.H.; Bailey, M.A.; Mian, M.a.R.; Carter, T.E., Jr.; Ashley, D.A.; Hussey, R.S.; Parrott, W.A.; Boerma, H.R. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci. 1996, 36, 728–735. [Google Scholar] [CrossRef]
- Kabelka, E.; Diers, B.; Fehr, W.; Leroy, A.; Baianu, I.; You, T.; Neece, D.; Nelson, R. Putative alleles for increased yield from soybean plant introductions. Crop Sci. 2004, 44, 784–791. [Google Scholar] [CrossRef]
- Wang, D.; Graef, G.; Procopiuk, A.; Diers, B. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor. Appl. Genet. 2004, 108, 458–467. [Google Scholar] [CrossRef]
- Chen, Q.S.; Zhang, Z.C.; Liu, C.Y.; Xin, D.W.; Shan, D.P.; Qiu, H.M. QTL Analysis of main agronomic traits in soybean. Sci. Agric. Sin. 2007, 40, 41–47. [Google Scholar]
- Su, J.; Zhang, H.; Yang, Y.; Wang, S.; Zhang, X.; Zeng, J.; Zhang, F.; Ding, L.; Jiang, J.; Fang, W.; et al. BSA-seq identified candidate genes and diagnostic KASP markers for anemone type flower in chrysanthemum. Sci. Hortic. 2024, 327, 112790. [Google Scholar] [CrossRef]
- Takagi, H.; Tamiru, M.; Abe, A.; Yoshida, K.; Uemura, A.; Yaegashi, H.; Obara, T.; Oikawa, K.; Utsushi, H.; Kanzaki, E.; et al. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat. Biotechnol. 2015, 33, 445–449. [Google Scholar] [CrossRef]
- Li, C.; Huang, L.; Huang, Y.; Kuang, M.; Wu, Y.; Ma, Z.; Fu, X. Fine mapping of a major QTL controlling plant height by BSA-seq and transcriptome sequencing in cotton. Theor. Appl. Genet. 2024, 137, 217. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Lei, Y.; Lu, H.F.; Zhang, B.; Li, Y.F.; Chen, L.; Ge, T.L.; Liu, Y.L.; Han, J.N.; Li, Y.H. QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean. J. Integr. Agric. 2022, 21, 933–946. [Google Scholar]
- Sun, H.; Zhang, J.; Zhao, T.; Gai, J. Association analysis between submergence tolerance and SSR markers in domestic and foreign soybean cultivars in Asia. Acta Agron. Sin. 2010, 36, 1615–1623. [Google Scholar]
- Zhang, J.; Zhao, T.; Gai, J. Association analysis of agronomic trait QTLs with SSR markers in released soybean cultivars. Acta Agron. Sin. 2008, 34, 2059–2069. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- SourceForge. Picard; SourceForge: San Diego, CA, USA, 2015; Available online: http://sourceforge.net/projects/picard/ (accessed on 1 September 2024).
- Mckenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A MapReduce framework for analyzing next generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang Le, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Hill, J.T.; Demarest, B.L.; Bisgrove, B.W.; Gorsi, B.; Su, Y.C.; Yost, H.J. MMAPPR: Mutation mapping analysis pipeline for pooled RNA-seq. Genome Res. 2013, 23, 687–697. [Google Scholar] [CrossRef]
- Fekih, R.; Takagi, H.; Tamiru, M.; Abe, A.; Natsume, S.; Yaegashi, H.; Sharma, S.; Sharma, S.; Kanzaki, H.; Matsumura, H.; et al. MutMap+: Genetic mapping and mutant identification without crossing in rice. PLoS ONE 2013, 8, e68529. [Google Scholar] [CrossRef]
- Song, Q.; Jia, G.; Zhu, Y.; Grant, D.; Nelson, R.T.; Hwang, E.Y.; Hyten, D.L.; Cregan, P.B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1. 0) in soybean. Crop Sci. 2010, 50, 1950–1960. [Google Scholar] [CrossRef]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Li, R.; Jiang, H.; Zhang, Z.; Zhao, Y.; Xie, J.; Wang, Q.; Zheng, H.; Hou, L.; Xiong, X.; Xin, D.; et al. Combined linkage mapping and BSA to identify QTL and candidate genes for plant height and the number of nodes on the main stem in soybean. Int. J. Mol. Sci. 2019, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y. Integrated nr database in protein annotation system and its localization. Comput. Eng. 2006, 32, 71. [Google Scholar]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef]
- Khatir, Z.; Thabet, S.G.; Alqahtani, M.D.; Schierenbeck, M.; Sehmisch, S.; Lantos, E.; Krebes, C.; Börner, A.; Alqudah, A.M. Discovery of new genomic regions and candidate genes implicated in the natural variation of barley peduncle length and plant height. Genet. Resour. Crop Evol. 2024, 72, 1741–1752. [Google Scholar] [CrossRef]
- Máthé, C.; Garda, T.; Freytag, C.; M-Hamvas, M. The role of serine-threonine protein phosphatase PP2A in plant oxidative stress signaling—Facts and hypotheses. Int. J. Mol. Sci. 2019, 20, 3028. [Google Scholar] [CrossRef]
- Orf, J.; Chase, K.; Jarvik, T.; Mansur, L.; Cregan, P.; Adler, F.; Lark, K. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci. 1999, 39, 1642–1651. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Q.; Cregan, P.B.; Nelson, R.L.; Wang, X.; Wu, J.; Jiang, G.L. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics 2015, 16, 1–11. [Google Scholar] [CrossRef]
- Chen, L.; Yu, T.; Liu, Z.X.; Gu, Y.Z.; Zhang, B.; Li, Y.H.; Jie, N.; Qiu, L.J. Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.). J. Integr. Agric. 2022, 21, 1903–1912. [Google Scholar]
- Bajsa, J.; Pan, Z.; Duke, S.O. Serine/threonine protein phosphatases: Multi-purpose enzymes in control of defense mechanisms. Plant Signal. Behav. 2011, 6, 1921–1925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, Y.; Wang, J. A single-cell analysis of the Arabidopsis vegetative shoot apex. Dev. Cell 2021, 56, 1056–1074. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.A.; Jones, A.; Godin, C.; Traas, J. Systems analysis of shoot apical meristem growth and development: Integrating hormonal and mechanical signaling. Plant Cell 2012, 24, 3907–3919. [Google Scholar] [CrossRef]
- Xu, H.; Cao, D.; Chen, Y.; Wei, D.; Wang, Y.; Stevenson, R.A.; Zhu, Y.; Lin, J. Gene expression and proteomic analysis of shoot apical meristem transition from dormancy to activation in Cunninghamia lanceolata (Lamb.) Hook. Sci. Rep. 2016, 6, 19938. [Google Scholar] [CrossRef]
- Armezzani, A.; Abad, U.; Ali, O.; Andres Robin, A.; Vachez, L.; Larrieu, A.; Mellerowicz, E.J.; Taconnat, L.; Battu, V.; Stanislas, T.; et al. Transcriptional induction of cell wall remodelling genes is coupled to microtubule-driven growth isotropy at the shoot apex in Arabidopsis. Development 2018, 145, dev162255. [Google Scholar] [CrossRef]
- Babaei, S.; Singh, M.B.; Bhalla, P.L. Circular RNAs modulate the floral fate acquisition in soybean shoot apical meristem. BMC Plant Biol. 2023, 23, 322. [Google Scholar] [CrossRef]
- Haerizadeh, F.; Wong, C.E.; Singh, M.B.; Bhalla, P.L. Genome-wide analysis of gene expression in soybean shoot apical meristem. Plant Mol. Biol. 2009, 69, 711–727. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhou, G.; Ma, J.; Jiang, W.; Jin, L.G.; Zhang, Z.; Guo, Y.; Zhang, J.; Sui, Y.; Zheng, L. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 2014, 32, 1045–1052. [Google Scholar] [CrossRef]
- Seo, J.H.; Dhungana, S.K.; Kang, B.K.; Baek, I.Y.; Sung, J.S.; Ko, J.Y.; Jung, C.S.; Kim, K.S.; Jun, T.H. Development and validation of SNP and InDel markers for pod-shattering tolerance in soybean. Int. J. Mol. Sci. 2022, 23, 2382. [Google Scholar] [CrossRef]
Primer Name | Forward Sequence (5′-3′) | Reverse Sequence (5′-3′) |
---|---|---|
BARCSOYSSR_19_1452 | TGACACATTCTGAAACGGATG | GTAGCATTTAAATTAAGGCAAAAGA |
BARCSOYSSR_19_1456 | TATGGCCCGAAAATAACGAA | CGCATATGACAAGGAAGCAA |
BARCSOYSSR_19_1459 | TCCAACCCTAATCTGTCCTGTT | GAGAAGGTTTTGCTACGCCA |
BARCSOYSSR_19_1462 | CATAACTTCATTACAATTTTTACACCA | TGGATAAACTAGGTTTTTGGCTT |
BARCSOYSSR_19_1468 | GGGAAAATCAAAGATAATGTCAAA | AAATTGCAGCGGGTGTGTAT |
BARCSOYSSR_19_1469 | TTAACGGTGTCTCCAGCGTA | ATGTTTGGATCCCCATTCCT |
BARCSOYSSR_19_1472 | AAGGTTGCATTGTCAGGGAG | CAAACATTTCTCTTAACATTTAGCCA |
BARCSOYSSR_19_1478 | GTTTGCTGGAAGGATGTGGT | TCTCTTTCCAACAAGAAGTCGTC |
BARCSOYSSR_19_1483 | TCAAAAGAAAAGAAATGAAAAAGAA | TTGTTGTTTTGCCTTCACGA |
BARCSOYSSR_19_1491 | CAGCTACATTGCATCCGTGT | CAATGGTGCTTTTTCCTTTCA |
BARCSOYSSR_19_1496 | ATATATAACCATATAACCCATCAGCA | TCAATGGTTTCTTTTGGAACAA |
BARCSOYSSR_19_1501 | CGAATCACCCTAAATCCTTGTG | ACAGGGTCATGCAACAATTT |
BARCSOYSSR_19_1506 | TGTTCCTTGTTGGGGTTTTC | GCCACTGTAATTTGTGGCAA |
BARCSOYSSR_19_1513 | CCCTCTCCCTCTTTGAATCC | TTGCCACCAAGGTTGATGTA |
BARCSOYSSR_19_1516 | TGTGCCCTACAACAGAACCA | TAGGTATACCATGGAGCGGC |
BARCSOYSSR_19_1521 | ATTTTCCTTAACGGGCACAA | ACAATCACATCAGAAAAGATGACTA |
BARCSOYSSR_19_1527 | TTTCCTCTAATAAACATAATGTCGAG | AAATTGTGAGATTAATGGGAATG |
BARCSOYSSR_19_1532 | CCTTTTCGAGACAATCCCAA | TGATCCTATTTTGTTTCCCACA |
BARCSOYSSR_19_1536 | AATCGAATTAACCCAAACCAAA | TCAATTGGATTTGATTTTTGAA |
BARCSOYSSR_19_1541 | GCGCATCACAAGTTTTATAGATGCTGA | GAGGTCTAGTGCTTTGGTAAGGTT |
BARCSOYSSR_19_1545 | TCAGATCAGGTTGGTGCTTCT | TCACTTTTTGGTCGTCACAAG |
BARCSOYSSR_19_1550 | TTCTCCACCCCATTTTAAGG | TTGGCATATGACTAAAAGGGAA |
BARCSOYSSR_19_1554 | TCCCCCTCTCAATCTTTTCC | AGGATCCATCGCTACCCTG |
BARCSOYSSR_19_1555 | ACTTGAGCTTGGCATTGAGC | AAGCTTGAGTTTGGTTTCTTTAGC |
Primer Name | Physical Position (bp) | Forward Sequence (5′-3′) | Reverse Sequence (5′-3′) | Product Size (bp) | |
---|---|---|---|---|---|
Heinong 63 | Longken 3077 | ||||
PL7 | 48,052,853–48,052,900 | TTTGGAAAATCCACCAATTATGTT | ACTATTGTGCGACTTGATATACT | 319 | 272 |
Population | Male Parent (Mean ± SD, cm) | Female Parent (Mean ± SD, cm) | F2 Segregation Population | ||||
---|---|---|---|---|---|---|---|
Range | Mean ± SD (cm) | CV (%) | Kurtosis | Skewness | |||
HN63 × LK3077 | 136.0 ± 5.8 | 88.6 ± 4.2 | 46.0–147.0 | 96.7 ± 16.2 | 16.7 | 3.1 | 0.8 |
Association Analysis Type | Chr. | Start Position | End Position | Region Size (Mb) | Gene Number in the Regions |
---|---|---|---|---|---|
SNP correlates results | Chr.19 | 47,239,765 | 47,472,236 | 0.2 | 23 |
Chr.19 | 47,558,547 | 49,368,580 | 1.8 | 243 | |
InDel correlates results | Chr.19 | 47,526,896 | 50,124,372 | 2.6 | 342 |
The intersection of the two association results | Chr.19 | 47,558,547 | 49,368,580 | 1.8 | 243 |
Gene ID | Start Position | End Position | Gene Function Annotation |
---|---|---|---|
Glyma.19G229400 | 48,048,375 | 48,052,530 | Calmodulin-binding protein-like function |
Glyma.19G229500 | 48,059,444 | 48,063,147 | Calmodulin-binding protein-like function |
Glyma.19G229600 | 48,064,703 | 48,067,937 | Protein of unknown function |
Glyma.19G229700 | 48,069,220 | 48,070,638 | Chaperone DnaJ-domain superfamily protein |
Glyma.19G229800 | 48,072,274 | 48,078,300 | α Karyopherin (importin)α |
Glyma.19G229900 | 48,081,061 | 48,081,390 | Transcription factor GATA (GATA binding factor) |
Glyma.19G230000 | 48,084,644 | 48,087,743 | Polynucleotidyl transferase |
Glyma.19G230100 | 48,093,731 | 48,099,790 | Kinesin (KAR3 subfamily) |
Glyma.19G230200 | 48,103,324 | 48,106,756 | Serine/threonine protein phosphatase |
Gene ID | Proteins with Homologous Sequences |
---|---|
Glyma.19G230000 | Three prime repair exonuclease 1, 2 |
Glyma.19G230200 | Protein phosphatase 2C 5-related |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, M.; Su, X.; Hu, X.; Zhang, X.; Gu, Y.; Liu, Z.; Xie, J.; Qiu, L. Identification and Utilization of the Soybean Plant Height Locus PH19-31. Agronomy 2025, 15, 1316. https://doi.org/10.3390/agronomy15061316
Ling M, Su X, Hu X, Zhang X, Gu Y, Liu Z, Xie J, Qiu L. Identification and Utilization of the Soybean Plant Height Locus PH19-31. Agronomy. 2025; 15(6):1316. https://doi.org/10.3390/agronomy15061316
Chicago/Turabian StyleLing, Manqing, Xin Su, Xiping Hu, Xiang Zhang, Yongzhe Gu, Zhangxiong Liu, Jiankun Xie, and Lijuan Qiu. 2025. "Identification and Utilization of the Soybean Plant Height Locus PH19-31" Agronomy 15, no. 6: 1316. https://doi.org/10.3390/agronomy15061316
APA StyleLing, M., Su, X., Hu, X., Zhang, X., Gu, Y., Liu, Z., Xie, J., & Qiu, L. (2025). Identification and Utilization of the Soybean Plant Height Locus PH19-31. Agronomy, 15(6), 1316. https://doi.org/10.3390/agronomy15061316