Evolution of Rice Cultivar Performance Across China: A Multi-Dimensional Study on Yield and Agronomic Characteristics over Three Decades
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Spatial Distribution of Rice Cultivars
3.2. Temporal Dynamics of Yield and Agronomic Traits
3.3. Relationships Between Agronomic Traits and Yield
3.4. Inter-Regional Differences in Ideal Rice Characteristics
4. Discussion
4.1. Ecological Explanations for Inter-Regional Differences in Ideal Rice Characteristics
4.2. Trade-Offs in Yield Components: Dynamic Balance Between Grain Number and Weight
4.3. Importance of Region-Specific Breeding Strategies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An Overview of Global Rice Production, Supply, Trade, and Consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: https://www.fao.org/faostat/zh/#rankings/countries_by_commodity (accessed on 23 October 2024).
- Long, S.P. Virtual Special Issue on Food Security—Greater than Anticipated Impacts of near-Term Global Atmospheric Change on Rice and Wheat. Glob. Chang. Biol. 2012, 18, 1489–1490. [Google Scholar] [CrossRef]
- Gerber, J.S.; Ray, D.K.; Makowski, D.; Butler, E.E.; Mueller, N.D.; West, P.C.; Johnson, J.A.; Polasky, S.; Samberg, L.H.; Siebert, S.; et al. Global Spatially Explicit Yield Gap Time Trends Reveal Regions at Risk of Future Crop Yield Stagnation. Nat. Food 2024, 5, 125–135. [Google Scholar] [CrossRef]
- Mokhtar, A.; He, H.; Nabil, M.; Kouadri, S.; Salem, A.; Elbeltagi, A. Securing China’s Rice Harvest: Unveiling Dominant Factors in Production Using Multi-Source Data and Hybrid Machine Learning Models. Sci. Rep. 2024, 14, 14699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, X.; Jiang, C.; Hu, X.; Liu, B.; Liu, L.; Xiao, L.; Zhu, Y.; Cao, W.; Tang, L. Predicting Rice Phenology across China by Integrating Crop Phenology Model and Machine Learning. Sci. Total Environ. 2024, 951, 175585. [Google Scholar] [CrossRef]
- Yuan, S.; Linquist, B.A.; Wilson, L.T.; Cassman, K.G.; Stuart, A.M.; Pede, V.; Miro, B.; Saito, K.; Agustiani, N.; Aristya, V.E.; et al. Sustainable Intensification for a Larger Global Rice Bowl. Nat. Commun. 2021, 12, 7163. [Google Scholar] [CrossRef]
- Deng, N.; Grassini, P.; Yang, H.; Huang, J.; Cassman, K.G.; Peng, S. Closing Yield Gaps for Rice Self-Sufficiency in China. Nat. Commun. 2019, 10, 1725. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wu, B.; Wang, B.; Li, L.; Shi, H.; Jin, N.; Liu, D.L.; Miao, R.; Lu, X.; et al. Building Social Resilience in North Korea Can Mitigate the Impacts of Climate Change on Food Security. Nat. Food 2022, 3, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Tao, Y.; van Groenigen, K.J.; Chang, S.X.; Peñuelas, J.; Zhang, J.; You, L.; Cai, C.; Wang, S.; Jiang, Y.; et al. Rising Atmospheric Carbon Dioxide Concentrations Increase Gaps of Rice Yields between Low- and Middle-to-High-Income Countries. Nat. Food 2024, 5, 754–763. [Google Scholar] [CrossRef]
- Zhan, P.; Zhu, W.; Zhang, T.; Li, N. Regional Inequalities of Future Climate Change Impact on Rice (Oryza sativa L.) Yield in China. Sci. Total Environ. 2023, 898, 165495. [Google Scholar] [CrossRef]
- Izawa, T. Adaptation of Flowering-Time by Natural and Artificial Selection in Arabidopsis and Rice. J. Exp. Bot. 2007, 58, 3091–3097. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, M.J.; Slafer, G.A.; Davies, W.J.; Berry, P.M.; Sylvester-Bradley, R.; Martre, P.; Calderini, D.F.; Griffiths, S.; Reynolds, M.P. Raising Yield Potential of Wheat. III. Optimizing Partitioning to Grain While Maintaining Lodging Resistance. J. Exp. Bot. 2011, 62, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tang, J.; Zheng, J.; Chu, C. Exploration of Rice Yield Potential: Decoding Agronomic and Physiological Traits. Crop J. 2021, 9, 577–589. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, F.; Xiao, D.; Shi, W.; Liu, F.; Zhang, S.; Liu, Y.; Wang, M.; Bai, H. Contributions of Climate, Varieties, and Agronomic Management to Rice Yield Change in the Past Three Decades in China. Front. Earth Sci. 2016, 10, 315–327. [Google Scholar] [CrossRef]
- Mongiano, G.; Titone, P.; Tamborini, L.; Pilu, R.; Bregaglio, S. Evolutionary Trends and Phylogenetic Association of Key Morphological Traits in the Italian Rice Varietal Landscape. Sci. Rep. 2018, 8, 13612. [Google Scholar] [CrossRef]
- Li, Y.; Tao, F. Rice Yield Response to Climate Variability Diverges Strongly among Climate Zones across China and Is Sensitive to Trait Variation. Field Crops Res. 2023, 301, 109034. [Google Scholar] [CrossRef]
- Lu, H.; Xie, M.; Zhuang, B.; Ma, D.; Liu, B.; Zhan, Y.; Wang, T.; Li, S.; Li, M.; Zhu, K. Impacts of Atmospheric Circulation Patterns and Cloud Inhibition on Aerosol Radiative Effect and Boundary Layer Structure during Winter Air Pollution in Sichuan Basin, China. Atmos. Chem. Phys. 2024, 24, 8963–8982. [Google Scholar] [CrossRef]
- Lou, Y.-G.; Zhang, G.-R.; Zhang, W.-Q.; Hu, Y.; Zhang, J. Biological Control of Rice Insect Pests in China. Biol. Control 2013, 67, 8–20. [Google Scholar] [CrossRef]
- Shen, Z.-Q.; Nie, G.-Z.; Qiu, X.; Gu, J.-F.; Zhang, Y. Outer Size Distribution of Landfalling Tropical Cyclones over China Changes in the Recent Decades. J. Clim. 2023, 36, 6427–6445. [Google Scholar] [CrossRef]
- El-Refaee, Y.Z.; Gharib, H.S.; Badawy, S.A.; Elrefaey, E.M.; El-Okkiah, S.A.F.; Okla, M.K.; Maridueña-Zavala, M.G.; AbdElgawad, H.; El-Tahan, A.M. Mitigating Cold Stress in Rice: A Study of Genotype Performance and Sowing Time. BMC Plant Biol. 2024, 24, 713. [Google Scholar] [CrossRef]
- Yang, H.; Huang, J.; Ye, Y.; Xu, Y.; Xiao, Y.; Chen, Z.; Li, X.; Ma, Y.; Lu, T.; Rao, Y. Research Progress on Mechanical Strength of Rice Stalks. Plants 2024, 13, 1726. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Matsuoka, M. Identifying and Exploiting Grain Yield Genes in Rice. Curr. Opin. Plant Biol. 2008, 11, 209–214. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, Q. Genetic and Molecular Bases of Rice Yield. Annu. Rev. Plant Biol. 2010, 61, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-G.; Zhu, X.-G. Source–Sink Interaction: A Century Old Concept under the Light of Modern Molecular Systems Biology. J. Exp. Bot. 2017, 68, 4417–4431. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, L.; Zhang, X.; Yang, N.; Guo, J.; Wang, M.; Ji, S.; Zhao, X.; Yin, P.; Cai, L.; et al. Convergent Selection of a WD40 Protein That Enhances Grain Yield in Maize and Rice. Science 2022, 375, eabg7985. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.-Y.; Kim, M.-S.; Cho, Y.-G.; Fernie, A.R.; Sung, J. Transcriptional Comparison of Genes Associated with Photosynthesis, Photorespiration, and Photo-Assimilate Allocation and Metabolic Profiling of Rice Species. Int. J. Mol. Sci. 2022, 23, 8901. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, J.; Lin, Y.; Xu, X.; Xia, Y.; Bai, J.; Yu, Y.; Xiao, F.; Ding, Y.; Ding, C.; et al. Sucrose Nonfermenting-1-Related Protein Kinase 1 Regulates Sheath-to-Panicle Transport of Nonstructural Carbohydrates during Rice Grain Filling. Plant Physiol. 2022, 189, 1694–1714. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Samanta, M.K.; Gayen, S.; Maiti, M.K. The Sucrose Non-Fermenting 1-Related Kinase 2 Gene SAPK9 Improves Drought Tolerance and Grain Yield in Rice by Modulating Cellular Osmotic Potential, Stomatal Closure and Stress-Responsive Gene Expression. BMC Plant Biol. 2016, 16, 158. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, M.; Ashraf, U.; Liu, S.; Zhang, J. Exploring the Relationships Between Yield and Yield-Related Traits for Rice Varieties Released in China From 1978 to 2017. Front. Plant Sci. 2019, 10, 543. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.R.; Vincent, J.R.; Auffhammer, M.; Moya, P.F.; Dobermann, A.; Dawe, D. Rice Yields in Tropical/Subtropical Asia Exhibit Large but Opposing Sensitivities to Minimum and Maximum Temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 14562–14567. [Google Scholar] [CrossRef]
- Wang, X.; Jing, Z.-H.; He, C.; Liu, Q.-Y.; Jia, H.; Qi, J.-Y.; Zhang, H.-L. Breeding Rice Varieties Provides an Effective Approach to Improve Productivity and Yield Sensitivity to Climate Resources. Eur. J. Agron. 2021, 124, 126239. [Google Scholar] [CrossRef]
- Hang, Y.; Yue, L.; Bingrui, S.; Qing, L.; Xingxue, M.; Liqun, J.; Shuwei, L.; Jing, Z.; Pingli, C.; Dajian, P.; et al. Genetic Diversity and Breeding Signatures for Regional Indica Rice Improvement in Guangdong of Southern China. Rice 2023, 16, 25. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, S.; Wang, Q.; Wang, Y.; Xiang, H. Evolution of Rice Cultivar Performance Across China: A Multi-Dimensional Study on Yield and Agronomic Characteristics over Three Decades. Agronomy 2024, 14, 2780. https://doi.org/10.3390/agronomy14122780
Hang S, Wang Q, Wang Y, Xiang H. Evolution of Rice Cultivar Performance Across China: A Multi-Dimensional Study on Yield and Agronomic Characteristics over Three Decades. Agronomy. 2024; 14(12):2780. https://doi.org/10.3390/agronomy14122780
Chicago/Turabian StyleHang, Song, Qi Wang, Yuan Wang, and Haitao Xiang. 2024. "Evolution of Rice Cultivar Performance Across China: A Multi-Dimensional Study on Yield and Agronomic Characteristics over Three Decades" Agronomy 14, no. 12: 2780. https://doi.org/10.3390/agronomy14122780
APA StyleHang, S., Wang, Q., Wang, Y., & Xiang, H. (2024). Evolution of Rice Cultivar Performance Across China: A Multi-Dimensional Study on Yield and Agronomic Characteristics over Three Decades. Agronomy, 14(12), 2780. https://doi.org/10.3390/agronomy14122780