Regulatory Effect of Light and Rhizobial Inoculation on the Root Architecture and Plant Performance of Pasture Legumes
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramana, V.; Ramakrishna, M.; Purushotham, K.; Reddy, K.B. Effect of bio-fertilizers on growth, yield attributes and yield of french bean (Phaseolus vulgaris L.). Legume Res. 2010, 33, 178–183. [Google Scholar]
- Sadowsky, M.J.; Cregan, P.B.; Keyser, H.H. Nodulation and Nitrogen Fixation Efficacy of Rhizobium fredii with Phaseolus vulgaris Genotypes. Appl. Environ. Microbiol. 1988, 54, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-Fixing Bacteria Associated with Leguminous and Non-Leguminous Plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Magadlela, A.; Vardien, W.; Kleinert, A.; Dreyer, L.L.; Valentine, A.J. The Role of Phosphorus Deficiency in Nodule Microbial Composition, and Carbon and Nitrogen Nutrition of a Native Legume Tree in the Cape Fynbos Ecosystem. Aust. J. Bot. 2015, 63, 379. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.; Míguez-Montero, Á.; Valentine, A. Phosphorus and Nitrogen Modulate Plant Performance in Shrubby Legumes from the Iberian Peninsula. Plants 2019, 8, 334. [Google Scholar] [CrossRef]
- Míguez-Montero, M.A.; Valentine, A.; Pérez-Fernández, M.A. Regulatory Effect of Phosphorus and Nitrogen on Nodulation and Plant Performance of Leguminous Shrubs. AoB Plants 2019, 12, plz047. [Google Scholar] [CrossRef]
- Sprent, J.I.; Sprent, P. Nitrogen Fixing Organisms: Pure and Applied Aspects, 1st ed.; Chapman and Hall: London, UK, 1990. [Google Scholar]
- Carney, K.M.; Matson, P.A. Plant Communities, Soil Microorganisms, and Soil Carbon Cycling: Does Altering the World Belowground Matter to Ecosystem Functioning? Ecosystems 2005, 8, 928–940. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Lodge, D.J.; Hawksworth, D.L.; Ritchie, B.J. Microbial diversity and tropical forest functioning. In Biodiversity and Ecosystem Processes in Tropical Forests; Orians, G.H., Dirzo, R., Cushman, J.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 122, pp. 69–100. [Google Scholar]
- Safapour, M.; Ardakani, M.; Khaghani, S.; Rejali, F.; Zargari, K.; Changizi, M.; Teimuri, M. Response of Yield and Yield Components of Three Red Bean (Phaseolus vulgaris L.) Genotypes to Co-Inoculation with Glomus intraradices and Rhizobium phaseoli. Am.-Eurasian J. Agric. Environ. Sci. 2011, 11, 398–405. [Google Scholar]
- Hayman, D.S. Mycorrhizae of Nitrogen-Fixing Legumes. Mircen J. 1986, 2, 121–145. [Google Scholar] [CrossRef]
- Mathur, N.; Vyas, A. Influence of Arbuscular Mycorrhizae on Biomass Production, Nutrient Uptake and Physiological Changes in Ziziphus Mauritiana Lam. under Water Stress. J. Arid Environ. 2000, 45, 191–195. [Google Scholar] [CrossRef]
- Vejsadova, H.; Siblikova, D.; Gryndler, M.; Simon, T.; Miksik, I. Influence of inoculation with Bradyrhizobium japonicum and Glomus claroideum on seed yield of soybean under greenhouse and field conditions. J. Plant Nutr. 1993, 16, 619–629. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Menexes, G.; Rillig, M.C. Do Arbuscular Mycorrhizal Fungi Affect the Allometric Partition of Host Plant Biomass to Shoots and Roots? A Meta-Analysis of Studies from 1990 to 2010. Mycorrhiza 2012, 22, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Gavito, M.E.; Curtis, P.S.; Mikkelsen, T.N.; Jakobsen, I. Atmospheric CO2 and Mycorrhiza Effects on Biomass Allocation and Nutrient Uptake of Nodulated Pea (Pisum sativum L.). Plants 2000, 51, 1931–1938. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.; Calvo-Magro, E.; Ramírez-Rojas, I.; Moreno-Gallardo, L.; Alexander, V. Patterns of Growth Costs and Nitrogen Acquisition in Cytisus striatus (Hill) Rothm. and Cytisus balansae (Boiss.) Ball Are Mediated by Sources of Inorganic N. Plants 2016, 5, 20. [Google Scholar] [CrossRef]
- Muleta, D. Legume Responses to Arbuscular Mycorrhizal Fungi Inoculation in Sustainable Agriculture. Microbes for Legume Improvement; Springer: Vienna, Austria, 2010; pp. 293–323. [Google Scholar] [CrossRef]
- Haystead, A.; Malajczuk, N.; Grove, T.S. Underground Transfer of Nitrogen between Pasture Plants Infected with Vesicular-Arbuscular Mycorrhizal Fungi. New Phytol. 1988, 108, 417–423. [Google Scholar] [CrossRef]
- Thamer, S.; Schädler, M.; Bonte, D.; Ballhorn, D.J. Dual Benefit from a Belowground Symbiosis: Nitrogen Fixing Rhizobia Promote Growth and Defense against a Specialist Herbivore in a Cyanogenic Plant. Plant Soil 2011, 341, 209–219. [Google Scholar] [CrossRef]
- Ballhorn, D.J.; Schädler, M.; Elias, J.D.; Millar, J.A.; Kautz, S. Friend or Foe—Light Availability Determines the Relationship between Mycorrhizal Fungi, Rhizobia and Lima Bean (Phaseolus lunatus L.). PLoS ONE 2016, 11, e0154116. [Google Scholar] [CrossRef]
- Kaschuk, G.; Kuyper, T.W.; Leffelaar, P.A.; Hungria, M.; Giller, K.E. Are the Rates of Photosynthesis Stimulated by the Carbon Sink Strength of Rhizobial and Arbuscular Mycorrhizal Symbioses? Soil Biol. Biochem. 2009, 41, 1233–1244. [Google Scholar] [CrossRef]
- Stevens, G.G.; Pérez-Fernández, M.A.; Morcillo, R.J.L.; Kleinert, A.; Hills, P.; Brand, D.J.; Steenkamp, E.T.; Valentine, A.J. Roots and Nodules Response Differently to P Starvation in the Mediterranean-Type Legume Virgilia Divaricata. Front. Plant Sci. 2019, 10, 73. [Google Scholar] [CrossRef]
- Chirko, C.P.; Gold, M.A.; Nguyen, P.V.; Jiang, J.P. Influence of Direction and Distance from Trees on Wheat Yield and Photosynthetic Photon Flux Density (Qp) in a Paulownia and Wheat Intercropping System. For. Ecol. Manag. 1996, 83, 171–180. [Google Scholar] [CrossRef]
- Villordon, A.; Ginzberg, I.; Firon, N. Root Architecture and Root and Tuber Crop Productivity. Trends Plant Sci. 2014, 19, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jennings, A.; Barlow, P.W.; Forde, B.G. Dual Pathways for Regulation of Root Branching by Nitrate. Proc. Natl. Acad. Sci. USA 1999, 96, 6529–6534. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.R.; Islam, M.T.; Robin, A.H.K. Salinity Stress Alters Root Morphology and Root Hair Traits in Brassica Napus. Plants 2019, 8, 192. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Li, K.; Sun, F.; Han, C.; Wang, Y.; Li, X. Salt-Induced Plasticity of Root Hair Development Is Caused by Ion Disequilibrium in Arabidopsis Thaliana. J. Plant Res. 2008, 121, 87–96. [Google Scholar] [CrossRef]
- IPCC; IPCC5 WGII. Climate Change 2013. The Fifth Assessment Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Volume 5. [Google Scholar]
- Gibson, P.B.; Cope, W.A. White clover. In Agronomy Monographs; American Society of Agronomy: Madison, WI, USA, 1985; Chapter 20. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Khan, M.N. Introduction of White Clover for Herbage Production and Nitrogen Fixation in the Hilly Areas of Azad Jammu and Kashmir. Mt. Res. Dev. 2004, 24, 134–140. [Google Scholar] [CrossRef][Green Version]
- Wasser, C.H.; Shoemaker, J.W. Ecology and Culture of Selected Species Useful in Revegetating Disturbed Lands in the West; Clinton, H.W., Ed.; Fish and Wildlife Service, U.S. Department of the Interior: Washington, DC, USA, 1982; 347p. [Google Scholar]
- Matlack, G.R.; Gibson, D.J.; Good, R.E. Clonal Propagation, Local Disturbance, and the Structure of Vegetation: Ericaceous Shrubs in the Pine Barrens of New Jersey. Biol. Conserv. 1993, 63, 1–8. [Google Scholar]
- Coca Pérez, M. Árboles, Arbustos y Matas Del Parque Natural Los Alcornocales (Cádiz-Málaga): Clave de Determinación, Descripción, Usos, 2nd ed.; ORNI TOUR: Cádiz, Spain, 2001. [Google Scholar]
- Menéndez Valderrey, J.L. Ornithopus compressus. 2013. Available online: https://www.asturnatura.com/especie/ornithopus-perpusillus (accessed on 9 May 2023).
- Pérez-Fernández, M.A.; Calvo-Magro, E.; Rodríguez-Sánchez, J.; Valentine, A. Differential growth costs and nitrogen fixation in Cytisus multiflorus (L0H_er.) Sweet and Cytisus scoparius (L.) Link are mediated by sources of inorganic N. Plant Biol. J. 2017, 19, 742–748. [Google Scholar] [CrossRef]
- Valladares, F.; Villar-Salvador, P.; Domínguez, S.; Fernandez, M.; Penuelas, J.L.; Pugnaire, F.I. Enhancing the Early Performance of the Leguminous Shrub Retama sphaerocarpa (L.) Boiss.: Fertilisation versus Rhizobium Inoculation. Plant Soil 2002, 240, 253–262. [Google Scholar] [CrossRef]
- Valverde, C.; Ferrari, A.; Gabriel Wall, L. Effects of Calcium in the Nitrogen-Fixing Symbiosis between Actinorhizal Discaria Trinervis (Rhamnaceae) and Frankia. Symbiosis 2009, 49, 151–155. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.A.; Hill, Y.J.; Calvo-Magro, E.; Valentine, A. Competing Bradyrhizobia Strains Determine Niche Occupancy by Two Native Legumes in the Iberian Peninsula. Plant Ecol. 2015, 216, 1537–1549. [Google Scholar] [CrossRef]
- Piceno, Y.M.; Lovell, C.R. Stability in natural bacterial communities: II. Plant resource allocation effects on rhizosphere diazotroph assemblage competition. Microb. Ecol. 2000, 39, 41–48. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- IBM SPSS Software. Available online: https://www.ibm.com/analytics/spss-statistics-software (accessed on 9 May 2023).
- Ames, R.N.; Bethlenfalvay, G.J. Localized increase in nodule activity but no competitive interaction of cowpea rhizobia due to pre-establishment of vesicular-arbuscular mycorrhiza. New Phytol. 1987, 106, 207–215. [Google Scholar] [CrossRef]
- Ballhorn, D.J.; Kautz, S.; Schädler, M. Induced Plant Defense via Volatile Production Is Dependent on Rhizobial Symbiosis. Oecologia 2013, 172, 833–846. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Mineral Nutrition of Higher Plants; Academic Press: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Millar, J. Effect of Mycorrhizal Colonization and Light Limitation on Growth and Reproduction of Lima Bean (Phaseolus lunatus L.). J. Appl. Bot. Food Qual. 2013, 86, 172–179. [Google Scholar] [CrossRef]
- Kiers, E.T.; Denison, R.F. Sanctions, Cooperation, and the Stability of Plant-Rhizosphere Mutualisms. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 215–236. [Google Scholar] [CrossRef]
- Gubry-Rangin, C.; Garcia, M.; Béna, G. Partner Choice in Medicago Truncatula–Sinorhizobium Symbiosis. Proc. R. Soc. B 2010, 277, 1947–1951. [Google Scholar] [CrossRef]
- Reinhard, S.; Weber, E.; Martin, P.; Marschner, H. Influence of Phosphorus Supply and Light Intensity on Mycorrhizal Response in Pisum-Rhizobium-Glomus Symbiosis. Experientia 1994, 50, 890–896. [Google Scholar] [CrossRef]
- Ronsheim, M.L. The Effect of Mycorrhizae on Plant Growth and Reproduction Varies with Soil Phosphorus and Developmental Stage. Am. Midl. Nat. 2012, 167, 28–39. [Google Scholar] [CrossRef]
- Mortimer, P.E.; Pérez-Fernández, M.A.; Valentine, A.J. The Role of Arbuscular Mycorrhizal Colonization in the Carbon and Nutrient Economy of the Tripartite Symbiosis with Nodulated Phaseolus vulgaris. Soil Biol. Biochem. 2008, 40, 1019–1027. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes: Importance and Constraints to Greater Use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Concentration (mg/L) |
---|---|
KH2PO4 | 123.35 |
KNO3 | 257.05 |
CaSO4 | 0.020 |
MgSO4 | 322.51 |
H3BO3 | 0.14 |
Harvest One at 75 Days | Harvest Two at 105 Days | |||||
---|---|---|---|---|---|---|
Shoot Biomass (mg) | Root Biomass (mg) | Total Plant Biomass | Shoot Biomass (mg) | Root Biomass (mg) | Total Plant Biomass | |
C. juncea HR-C | 73 | 8 | 81 | 387 | 55 | 442 |
C. juncea HR-I | 18 | 16 | 34 | 62 | 24 | 86 |
C. juncea IR-C | 30 | 10 | 40 | 105 | 20 | 125 |
C. juncea IR-I | 176 | 28 | 204 | 247 | 83 | 330 |
C. juncea LR-C | 139 | 4 | 180 | 143 | 46 | 189 |
C. juncea LR-I | 220 | 50 | 270 | 429 | 92 | 522 |
O. compressus HR-C | 6 | 0 | 6 | 7 | 1 | 8 |
O. compressus HR-I | 7 | 1 | 8 | 10 | 3 | 13 |
O. compressus IR-C | 105 | 60 | 165 | 265 | 159 | 424 |
O. compressus IR-I | 1019 | 409 | 1428 | 300 | 1301 | 4304 |
O. compressus LR-C | 98 | 45 | 143 | 195 | 117 | 312 |
O. compressus LR-I | 865 | 146 | 1011 | 1980 | 1168 | 3148 |
T. repens HR-C | 2 | 2 | 4 | 5 | 5 | 10 |
T. repens HR-I | 28 | 8 | 36 | 503 | 108 | 611 |
T. repens IR-C | 27 | 13 | 40 | 203 | 88 | 291 |
T. repens IR-I | 1292 | 176 | 1468 | 2986 | 481 | 3467 |
T. repens LR-C | 1 | 1 | 2 | 6 | 1 | 7 |
T. repens LR-I | 1 | 1 | 2 | 6 | 1 | 7 |
V. sativa HR-C | 375 | 112 | 487 | 751 | 281 | 1032 |
V. sativa HR-I | 223 | 88 | 311 | 2525 | 637 | 3162 |
V. sativa IR-C | 295 | 80 | 375 | 1063 | 411 | 1474 |
V. sativa IR-I | 895 | 191 | 1086 | 2467 | 448 | 2915 |
V. sativa LR-C | 81 | 58 | 139 | 186 | 121 | 307 |
V. sativa LR-I | 49 | 39 | 88 | 51 | 56 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lara-Del Rey, I.A.; Pérez-Fernández, M.A. Regulatory Effect of Light and Rhizobial Inoculation on the Root Architecture and Plant Performance of Pasture Legumes. Agronomy 2023, 13, 2058. https://doi.org/10.3390/agronomy13082058
De Lara-Del Rey IA, Pérez-Fernández MA. Regulatory Effect of Light and Rhizobial Inoculation on the Root Architecture and Plant Performance of Pasture Legumes. Agronomy. 2023; 13(8):2058. https://doi.org/10.3390/agronomy13082058
Chicago/Turabian StyleDe Lara-Del Rey, Irene Ariadna, and María A. Pérez-Fernández. 2023. "Regulatory Effect of Light and Rhizobial Inoculation on the Root Architecture and Plant Performance of Pasture Legumes" Agronomy 13, no. 8: 2058. https://doi.org/10.3390/agronomy13082058
APA StyleDe Lara-Del Rey, I. A., & Pérez-Fernández, M. A. (2023). Regulatory Effect of Light and Rhizobial Inoculation on the Root Architecture and Plant Performance of Pasture Legumes. Agronomy, 13(8), 2058. https://doi.org/10.3390/agronomy13082058