Effect of the Forecast Air Temperature Change on the Water Needs of Vines in the Region of Bydgoszcz, Northern Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Grapevine Water Needs Calculation
- ETo = reference evapotranspiration (mm);
- n = number of days in the month;
- p = coefficients of evaporation according to Doorenbos and Pruitt [55] for the individual months of the grapevine growing season;
- t = monthly average air temperature (°C).
- ETp = potential (crop) evapotranspiration (mm);
- ETo = reference evapotranspiration (mm);
- kc = crop coefficient being the ratio of evapotranspiration measured in conditions of sufficient soil humidity to reference evapotranspiration according to Łabędzki [60].
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NASC (National Agricultural Support Center). Rynek Wina w Liczbach [Wine Market in Numbers]; KOWR: Warszawa, Poland, 2020. Available online: http://www.kowr.gov.pl (accessed on 2 May 2022).
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Myśliwiec, R. Uprawa Winorośli [Viticulture]; PWRiL: Warszawa, Poland, 2013. [Google Scholar]
- Szymanowski, M.; Smaza, M. Zmiana zasobów klimatycznych a możliwości uprawy winorośli na Dolnym Śląsku [Change of climatic resources and possibilities of viticulture in Lower Silesia]. In Proceedings of the XXXII National Congress of Agrometeorologists and Climatologists, Kołobrzeg, Poland, 13–15 September 2007; pp. 69–70. [Google Scholar]
- Muszkat, O. Klimat w Średniowiecznej Polsce na Podstawie Rodzimych Źródeł Historycznych [Climate in Medieval Poland Based on Native Historical Sources]. Available online: https://histmag.org/Klimat-w-sredniowiecznej-Polsce-na-podstawie-rodzimych-zrodel-historycznych-7505 (accessed on 16 May 2022).
- Woś, A. Klimat Polski [Climate of Poland]; PWN: Warszawa, Poland, 1999. [Google Scholar]
- Brzeziński, W. Klimatyczny Mit: W Średniowieczu w Polsce Było Jeszcze Cieplej [Climatic Myth: In the Middle Ages, it Was Even Warmer in Poland]. Available online: https://zielona.interia.pl/wideo/czysta-polska/news-klimatyczny-mit-w-sredniowieczu-w-polsce-bylo-jeszcze-cieple,nId,5147246 (accessed on 26 May 2022).
- Maruszczak, H. Tendencje do zmian klimatu w ostatnim tysiącleciu [Climate change trends in the last millennium]. In Geografia Polski, Środowisko Przyrodnicze [Climate Change Trends in the Last Millennium. Polish Geography, Natural Environment]; PWN: Warszawa, Poland, 1991. [Google Scholar]
- Kapłan, M. Możliwości uprawy winorośli w Polsce [Possibilities of viticulture in Poland]. Nauk. Przyr. 2013, 2, 4–12. [Google Scholar]
- Lisek, J. Winorośl w Uprawie Przydomowej i Towarowej [Grapevines in Home and Commercial Cultivation]; Hortpress: Warszawa, Poland, 2011. [Google Scholar]
- Łabędzki, L. Expected development of irrigation in Poland in the context of climate change. J. Water Land Dev. 2009, 13b, 17–29. [Google Scholar] [CrossRef]
- Łabędzki, L. Foreseen climate changes and irrigation development in Poland. Infrastruct. Ecol. Rural Areas 2009, 3, 7–18. [Google Scholar]
- IPCC. AR4 Climate Change 2007. Fourth Assessment Report. Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/assessment-report/ar4/ (accessed on 17 May 2022).
- Djaków, P. Zmiana Klimatu w Polsce na Mapkach [Climate Change in Poland on Maps]. Available online: https://naukaoklimacie.pl/aktualnosci/zmiana-klimatu-w-polsce-na-mapkach-468/ (accessed on 16 May 2022).
- Miętus, M. Charakterystyka Wybranych Elementów Klimatu w Polsce w Sierpniu 2021. Podsumowanie Sezonu Letniego [Characteristics of Selected Elements of the Climate in Poland in August 2021. Summary of the Summer Season]. Available online: https://www.imgw.pl/index.php/wydarzenia/charakterystyka-wybranych-elementow-klimatu-w-polsce-w-sierpniu-2021-podsumowanie-sezonu (accessed on 16 May 2022).
- Bąk, B.; Łabędzki, L. Thermal conditions in Bydgoszcz region in growing seasons 2011–2050 in view of expected climate change. J. Water Land Dev. 2014, 23, 21–29. [Google Scholar] [CrossRef][Green Version]
- Bąk, B.; Łabędzki, L. Prediction of precipitation deficit and excess in Bydgoszcz region in view of predicted climate change. J. Water Land Dev. 2014, 23, 11–19. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Duchêne, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Duchêne, É.; Pieri, F.H.P. Grapevine and climate change: What adaptations of plant material and training systems should we anticipate? Spécial Laccave J. Int. Sci. Vigne Vin 2014, 3, 61–69. [Google Scholar]
- Lisek, J. Climatic factors affecting development and yielding of grapevine in Central Poland. J. Fruit Ornam. Plant Res. 2008, 16, 286–293. [Google Scholar]
- Neumann, P.A.; Matzarakis, A. Viticulture in southwest Germany under climate change conditions. Clim. Res. 2011, 47, 161–169. [Google Scholar] [CrossRef]
- Eccel, E.; Zollo, A.L.; Mercogliano, P.; Zorer, R. Simulations of quantitative shift in bio-climatic indices in the viticultural areas of Trentino (Italian Alps) by an open source R package. Comput. Electron. Agric. 2016, 127, 92–100. [Google Scholar] [CrossRef]
- Bonfante, A.; Monaco, E.; Langella, G.; Mercogliano, P.; Bucchignani, E.; Manna, P.; Terribile, F. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Sci. Total Environ. 2018, 624, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Serra, I.; Strever, A.; Myburgh, P.; Deloire, A. Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res. 2014, 20, 1–14. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Rosca, B. Climate change impact on suitability for wine production in Romania. Theor. Appl. Climatol. 2018, 133, 1–14. [Google Scholar] [CrossRef]
- Piña-Rey, A.; González-Fernández, E.; Fernández-González, M.; Lorenzo, M.N.; Rodríguez-Rajo, F.J. Climate change impacts assessment on wine-growing bioclimatic transition areas. Agriculture 2020, 10, 605. [Google Scholar] [CrossRef]
- Jagosz, B.; Rolbiecki, S.; Stachowski, P.; Ptach, W.; Łangowski, A.; Kasperska-Wołowicz, W.; Sadan, H.A.; Rolbiecki, R.; Prus, P.; Kazula, M.J. Assessment of water needs of grapevines in western Poland from the perspective of climate change. Agriculture 2020, 10, 477. [Google Scholar] [CrossRef]
- Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Łangowski, A.; Sadan, H.A.; Ptach, W.; Stachowski, P.; Kasperska-Wołowicz, W.; Pal-Fam, F.; Liberacki, D. The water needs of grapevines in Central Poland. Agronomy 2021, 11, 416. [Google Scholar] [CrossRef]
- Yunusa, I.A.M.; Walker, R.R.; Loveys, B.R.; Blackmore, D.H. Determination of transpiration in irrigated grapevines: Comparison of the heat-pulse technique with gravimetric and micrometeorological methods. Irrig. Sci. 2000, 20, 1–8. [Google Scholar] [CrossRef]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Phyisological tools for irrigation scheduling in grapevine (Vitis vinifera L.): An open gate to improve water-use efficiency? Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Burg, P. The influence of drip irrigation on the quality of vine grapes. Acta Univ. Agric. Silvic. Mendel Brun. 2008, 56, 31–36. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Effects of irrigation on the performance of grapevine cv. Tempranillo in Requena, Spain. Am. J. Enol. Viticult. 2008, 59, 30–38. [Google Scholar]
- Acevedo-Opazo, C.; Ortega-Farias, S.; Fuentes, S. Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agric. Water Manag. 2010, 97, 956–964. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef]
- Nolz, R.; Loiskandl, W.; Kammerer, G.; Himmelbauer, M.L. Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control. Soil Water Res. 2016, 11, 250–258. [Google Scholar] [CrossRef]
- Nolz, R.; Loiskandl, W. Evaluating soil water content data monitored at different locations in a vineyard with regard to irrigation control. Soil Water Res. 2017, 12, 152–160. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Pérez, D.; Risco, D.; Yeves, A.; Castel, J.R. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrig. Sci. 2012, 30, 339–349. [Google Scholar] [CrossRef]
- Cancela, J.J.; Trigo-Córdoba, E.; Martínez, E.M.; Rey, B.J.; Bouzas-Cid, Y.; Fandiño, M.; Mirás-Avalos, J.M. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agric. Water Manag. 2016, 170, 99–109. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Intrigliolo, D.S. Grape composition under abiotic constrains: Water stress and salinity. Front. Plant Sci. 2017, 8, 851. [Google Scholar] [CrossRef]
- Rzekanowski, C.; Rolbiecki, S. The influence of drip irrigation on yields of some cultivars of apple trees in central Poland under different rainfall conditions during the vegetation season. Acta Hortic. 2000, 537, 929–936. [Google Scholar] [CrossRef]
- Rzekanowski, C.; Rolbiecki, S. The influence of drip irrigation on yields of some cultivars of stone fruit-bearing trees in central Poland under different rainfall conditions during the vegetation season. Acta Hortic. 2000, 537, 937–942. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C. Effect of micro-irrigation on the growth and yield of raspberry (Rubus idaeus L.) cv. ‘Polana’ grown in very light soil. Acta Hortic. 2002, 585, 653–657. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C. Response of black currant (Ribes nigrum L.) cv. ‘Titania’ to micro-irrigation under loose sandy soil conditions. Acta Hortic. 2002, 585, 649–652. [Google Scholar] [CrossRef]
- Stachowski, P.; Markiewicz, J. The need of irrigation in central Poland on the example of Kutno county. Annu. Set Environ. Prot. 2011, 13, 1453–1472. [Google Scholar]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Rolbiecki, R.; Rolbiecki, S. Forecasting effects of plants irrigation based on selected meteorological and agricultural drought indices. Annu. Set Environ. Prot. 2013, 15, 2185–2203. [Google Scholar]
- Statistics Poland. Environment; Spatial and Environmental Surveys Department: Warszawa, Poland, 2020.
- Myśliwiec, R. Winorośl i Wina [Vines and Wines]; PWRiL: Warszawa, Poland, 2006; p. 22. [Google Scholar]
- Kryza, M.; Szymanowski, M.; Błaś, M.; Migała, K.; Werner, M.; Sobik, M. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Czech Republic transboundary region for wine grapes cultivation. Theor. Appl. Climatol. 2015, 122, 207–218. [Google Scholar] [CrossRef]
- Grabowski, J.; Kopytowski, J. Czas aktywnego wzrostu roślin w Polsce północno-wschodniej, a warunki uprawy winorośli [The time of active plant growth in north-eastern Poland and the conditions of viticulture]. Zesz. Probl. Postep. Nauk Roln. 2009, 536, 87–94. [Google Scholar]
- Łabędzki, L.; Szajda, J.; Szuniewicz, J. Ewapotranspiracja upraw rolniczych—Terminologia, definicje, metody obliczania. Przegląd stanu wiedzy [Evapotranspiration of agricultural crops—Terminology, definitions, calculation methods. Review]. IMUZ Falenty 1996, 33, 1–15. [Google Scholar]
- Łabędzki, L.; Kanecka-Geszke, E.; Bąk, B.; Słowińska, S. Estimation of reference evapotranspiration using the FAO Penman–Monteith method for climatic conditions of Poland. In Evapotranspiration; Łabędzki, L., Ed.; InTech: Rijeka, Croatia, 2011; pp. 275–294. [Google Scholar]
- Żakowicz, S. Podstawy Technologii Nawadniania Rekultywowanych Składowisk Odpadów Komunalnych [Fundamentals of Irrigation Technology for Reclaimed Municipal Waste Dumas]; SGGW: Warszawa, Poland, 2010. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for predicting crop water requirements. FAO Irrig. Drain. Pap. 1977, 24, 176. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Heydari, M.M.; Tajamoli, A.; Ghoreishi, S.H. Evaluation and calibration of Blaney–Criddle equation for estimating reference evapotranspiration in semiarid and arid regions. Environ. Earth Sci. 2015, 74, 4053–4063. [Google Scholar] [CrossRef]
- Xiong, Y.; Luo, Y.; Wang, Y.; Traore, S.; Xu, J.; Jiao, X.; Fipps, G. Forecasting daily reference evapotranspiration using the Blaney–Criddle model and temperature forecasts. Arch. Agron. Soil Sci. 2016, 62, 790–805. [Google Scholar] [CrossRef]
- Hafeez, M.; Khan, A.A. Assessment of Hargreaves and Blaney–Criddle Methods to Estimate Reference Evapotranspiration Under Coastal Conditions. Am. J. Sci. Eng. Technol. 2018, 3, 65–72. [Google Scholar]
- Łabędzki, L. Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji [Agricultural droughts. Outline of the issues and methods of monitoring and classification]. Woda. Środowisko. Obsz. Wiejskie. Rozpr. Nauk. Monogr. 2006, 17, 1–107. [Google Scholar]
- Doorenbos, J.; Kassam, A. Yield Response to Water; FAO Irrigation and Drainage Paper 33; Food and Agriculture Organization: Rome, Italy, 1979. [Google Scholar]
- Mendez-Costabel, M.; Morgan, A.; Dokoozlian, N.; Thoreson, B.; Clark, B. Remote sensing of irrigation requirements in wine grapes; validation of an energy balance model and potential application of vegetation indices. Acta Hortic. 2014, 1038, 249–254. [Google Scholar] [CrossRef]
- Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Crop Water Requirements and Irrigation Schedules for Some Major Crops in Southern Iraq. Water 2019, 11, 756. [Google Scholar] [CrossRef]
- Durodola, O.S.; Mourad, K.A. Modelling Maize Yield and Water Requirements under Different Climate Change Scenarios. Climate 2020, 8, 127. [Google Scholar] [CrossRef]
- Garnier, B.J. Podstawy Klimatologii [Fundamentals of Climatology]; IMGW: Warszawa, Poland, 1996; pp. 97–114. [Google Scholar]
- Kossowska-Cezak, U.; Martyn, D.; Olszewski, K.; Kopacz-Lembowicz, M. Meteorologia i Klimatologia. Pomiary, Obserwacje, Opracowania [Meteorology and Climatology. Measurements, Observations, Studies.]; PWN: Warszawa-Łódź, Poland, 2000; pp. 88–108. [Google Scholar]
- Łabędzki, L.; Bąk, B.; Liszewska, M. Wpływ przewidywanej zmiany klimatu na zapotrzebowanie ziemniaka późnego na wodę [Impact of climate change on water demand of late potato]. Infrastruct. Ecol. Rural Areas 2013, 2, 155–165. [Google Scholar]
- Platt, C. Problemy Rachunku Prawdopodobieństwa i Statystyki Matematycznej [Probability Theory and Mathematical Statistics]; PWN: Warszawa, Poland, 1978. [Google Scholar]
- Rolbiecki, S.; Piszczek, P. Effect of the forecast climate change on the grapevine water requirements in the Bydgoszcz region. Infrastruct. Ecol. Rural Areas 2016, IV, 1847–1856. [Google Scholar]
- Słowik, K. Deszczowanie Roślin Sadowniczych [Sprinkling of Fruit Plants]; PWRiL: Warszawa, Poland, 1973. [Google Scholar]
- Dzieżyc, J. Rolnictwo w Warunkach Nawadniania [Agriculture under Irrigation Conditions]; PWN: Warszawa, Poland, 1988. [Google Scholar]
- Treder, W.; Pacholak, E. Nawadnianie roślin sadowniczych [Irrigation of fruit plants]. In Nawadnianie Roślin [Plant Irrigation]; Karczmarczyk, S., Nowak, L., Eds.; PWRiL: Poznań, Poland, 2006; pp. 333–365. [Google Scholar]
- Rolbiecki, S. O szacowaniu potrzeb wodnych drzew owocowych w Polsce na podstawie temperatury powietrza [On the estimation of the water needs of fruit trees in Poland based on air temperature]. Infrastruct. Ecol. Rural Areas 2018, II, 393–406. [Google Scholar]
- Stachowski, P.; Jagosz, B.; Rolbiecki, S.; Rolbiecki, R. Predictive capacity of rainfall data to estimate the water needs of fruit plants in water deficit areas. Atmosphere 2021, 12, 55. [Google Scholar] [CrossRef]
- Hardie, W.J.; Martin, S.R. Shoot growth on de-fruited grapevines: A physiological indicator for irrigation scheduling. Aust. J. Grape Wine Res. 2000, 6, 52–58. [Google Scholar] [CrossRef]
- Hardie, W.J.; Considine, J.A. Response of grapes to water-deficit stress in particular stages of development. Am. J. Enol. Vitic. 1976, 27, 55–61. [Google Scholar]
- During, H. ABA and water stress in grapevines. Acta Hortic. 1986, 179, 413–420. [Google Scholar] [CrossRef]
- Savoi, S.; Wong, D.C.; Arapitsas, P.; Miculan, M.; Bucchetti, B.; Peterlunger, E.; Fait, A.; Mattivi, F.; Castellarin, S.D. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol. 2016, 16, 67. [Google Scholar] [CrossRef]
- Vilanova, M.; Fandino, M.; Frutos-Puerto, S.; Cancela, J.J. Assessment fertigation effects on chemical composition of Vitis vinifera L. cv. Albarino. Food Chem. 2019, 278, 636–643. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Sauer, T.; Havlík, P.; Schneider, U.A.; Schmid, E.; Kindermann, G.; Obersteiner, M. Agriculture and resource availability in a changing world: The role of irrigation. Water Resour. Res. 2010, 46, 1–12. [Google Scholar] [CrossRef]
- Flexas, J.; Galmes, J.; Galle, A.; Gulias, J.; Pou, A.; Ribas-Carbo, M.; Tomas, M.; Medrano, H. Improving water use efficiency in grapevines: Potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res. 2010, 16, 106–121. [Google Scholar] [CrossRef]
- Montoro, A.; Fereres, E.; Lopez-Urrea, R.; Manas, F.; Lopez-Fuster, P. Sensitivity of trunk diameter fluctuations in Vitis vinifera L. Tempranillo and Cabernet Sauvignon cultivars. Am. J. Enol. Vitic. 2012, 63, 85–93. [Google Scholar] [CrossRef]
- Blanco-Cipollone, F.; Lourenco, S.; Silvestre, J.; Conceicao, N.; Monino, M.J.; Vivas, A.; Ferreira, M.I. Plant water status indicators for irrigation scheduling associated with iso- and anisohydric behavior: Vine and plum trees. Horticulturae 2017, 3, 47. [Google Scholar] [CrossRef]
- Fernandez, J.E. Plant-based methods for irrigation scheduling of woody crops. Horticulturae 2017, 3, 35. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. Water 2018, 10, 1771. [Google Scholar] [CrossRef]
- Harmanny, K.S.; Malek, Z. Adaptations in irrigated agriculture in the Mediterranean region: An overview and spatial analysis of implemented strategies. Reg. Environ. Chang. 2019, 19, 1401–1416. [Google Scholar] [CrossRef]
Characteristic | Months of Grapevine Growing Season | ||||
---|---|---|---|---|---|
May | June | July | August | September | |
Crop coefficient | 0.45 | 0.70 | 0.85 | 0.90 | 0.85 |
Indicator | Months | Irrigation Period | Growing Season | ||||
---|---|---|---|---|---|---|---|
May | June | July | August | September | |||
1981–2010 | |||||||
Mean (mm) | 47.8 | 87.4 | 115.5 | 104.0 | 59.6 | 354.7 | 414.3 |
Minimum (mm) | 39.0 | 80.2 | 102.6 | 91.3 | 50.5 | 328.0 | 385.8 |
Maximum (mm) | 54.7 | 96.3 | 132.6 | 114.6 | 69.9 | 381.0 | 440.2 |
Median (mm) | 48.4 | 88.2 | 115.9 | 104.4 | 59.8 | 356.6 | 414.4 |
Standard Deviation | 3.4 | 4.1 | 7.4 | 5.3 | 4.5 | 12.3 | 14.6 |
Coefficient of Variation (%) | 6.9 | 4.7 | 6.4 | 5.0 | 7.6 | 3.5 | 3.5 |
2021–2050 | |||||||
Mean (mm) | 45.3 | 88.4 | 120.6 | 113.6 | 68.6 | 367.9 | 436.6 |
Minimum (mm) | 35.5 | 74.8 | 104.2 | 96.9 | 60.0 | 327.7 | 396.3 |
Maximum (mm) | 58.3 | 102.3 | 133.6 | 128.3 | 76.2 | 403.6 | 479.8 |
Median (mm) | 44.7 | 88.4 | 120.6 | 113.6 | 68.0 | 370.0 | 437.6 |
Standard Deviation | 5.6 | 7.2 | 7.1 | 7.0 | 4.5 | 19.8 | 22.2 |
Coefficient of Variation (%) | 12.4 | 8.2 | 5.9 | 6.2 | 6.5 | 5.4 | 5.1 |
Month/Period | Reference Years | Forecast Years |
---|---|---|
Linear correlation coefficient (r) | ||
May | 0.116 ns | 0.151 ns |
June | 0.230 ns | 0.207 ns |
July | 0.237 ns | 0.047 ns |
August | 0.174 ns | 0.392 * |
September | 0.123 ns | 0.100 ns |
May–September | 0.263 ns | 0.224 ns |
May–August | 0.261 ns | 0.274 ns |
June–August | 0.299 ns | 0.287 ns |
July–August | 0.259 ns | 0.251 ns |
Tendency of water needs (mm decade−1) | ||
May | 0.45 | 0.98 |
June | 1.09 | 1.73 |
July | 2.02 | 0.39 |
August | 1.06 | 3.17 |
September | 0.65 | –0.52 |
May–September | 4.37 | 5.70 |
May–August | 3.72 | 6.27 |
June–August | 4.17 | 5.29 |
July–August | 3.08 | 3.56 |
Years | Period | ||
---|---|---|---|
May–September | June–August | August | |
1981–2010 | 414 | 306 | 104 |
2021–2050 | 437 | 323 | 114 |
(2021–2050)–(1981–2010) | +23 | +17 | +10 |
Change (%) | +6 | +6 | +10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Ptach, W.; Sadan, H.A.; Kasperska-Wołowicz, W.; Pal-Fam, F.; Atilgan, A. Effect of the Forecast Air Temperature Change on the Water Needs of Vines in the Region of Bydgoszcz, Northern Poland. Agronomy 2022, 12, 1561. https://doi.org/10.3390/agronomy12071561
Jagosz B, Rolbiecki S, Rolbiecki R, Ptach W, Sadan HA, Kasperska-Wołowicz W, Pal-Fam F, Atilgan A. Effect of the Forecast Air Temperature Change on the Water Needs of Vines in the Region of Bydgoszcz, Northern Poland. Agronomy. 2022; 12(7):1561. https://doi.org/10.3390/agronomy12071561
Chicago/Turabian StyleJagosz, Barbara, Stanisław Rolbiecki, Roman Rolbiecki, Wiesław Ptach, Hicran A. Sadan, Wiesława Kasperska-Wołowicz, Ferenc Pal-Fam, and Atilgan Atilgan. 2022. "Effect of the Forecast Air Temperature Change on the Water Needs of Vines in the Region of Bydgoszcz, Northern Poland" Agronomy 12, no. 7: 1561. https://doi.org/10.3390/agronomy12071561
APA StyleJagosz, B., Rolbiecki, S., Rolbiecki, R., Ptach, W., Sadan, H. A., Kasperska-Wołowicz, W., Pal-Fam, F., & Atilgan, A. (2022). Effect of the Forecast Air Temperature Change on the Water Needs of Vines in the Region of Bydgoszcz, Northern Poland. Agronomy, 12(7), 1561. https://doi.org/10.3390/agronomy12071561