Production and Multimodal Characterization of Decellularized Extracellular Matrix from Porcine Prepubertal Tunica Albuginea as Additive to Polymeric Scaffolds for Testicular Organoid Growth
Abstract
1. Introduction
2. Materials and Methods
2.1. Decellularization of Pig Testicular Tissue
2.2. Porcine Prepubertal SCs Isolation
2.3. Powder Preparation Protocol
2.4. Alginate/Chitosan Scaffold Preparation
2.5. Cell Viability Assessment
2.6. Spectroscopic Characterization and Data Analysis
2.7. SEM Analysis
3. Results
3.1. Chemo-Mechanical Characterization of Native ECM in the Porcine Pre-Pubertal Tunica Albuginea in Hydrated and Dried Conditions
3.2. Chemo-Mechanical Characterization, Histology, and DNA/RNA Content Evaluation of the dECM Produced via ST and STD Protocols
3.3. Production and Characterization of Alginate/Chitosan Scaffold
3.4. Cell Vitality Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vogt, C.; Malhotra, N.R. Male Prepubertal Fertility Preservation: A Review. Fertil. Steril. 2025, 124, 426–433. [Google Scholar] [CrossRef]
- Duffin, K.; Neuhaus, N.; Andersen, C.Y.; Barraud-Lange, V.; Feraille, A.; Braye, A.; Eguizabal, C.; Ginsberg, J.P.; Gook, D.; Goossens, E.; et al. A 20-Year Overview of Fertility Preservation in Boys: New Insights Gained through a Comprehensive International Survey. Hum. Reprod. Open 2024, 2024, hoae010. [Google Scholar] [CrossRef]
- Kanbar, M.; Vermeulen, M.; Wyns, C. Organoids as Tools to Investigate the Molecular Mechanisms of Male Infertility and Its Treatments. Reproduction 2021, 161, R103–R112. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Han, M.-G.; Jeon, Y.; Maeng, H.; Choi, Y.; Hong, K.; Do, J.T.; Song, H. Effect of Extracellular Matrix Derived from Porcine Tissue on Stemness of Porcine Spermatogonial Stem Cells. Int. J. Mol. Sci. 2025, 26, 9937. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.H.; Kang, D.; Seo, S.J.; Jin, Y. Engineering the Extracellular Matrix for Organoid Culture. Int. J. Stem Cells 2022, 15, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, M.; Del Vento, F.; Kanbar, M.; Ruys, S.P.D.; Vertommen, D.; Poels, J.; Wyns, C. Generation of Organized Porcine Testicular Organoids in Solubilized Hydrogels from Decellularized Extracellular Matrix. Int. J. Mol. Sci. 2019, 20, 5476. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Domkam, N.; Kabir, H.; Mansour, A.; Tsukamoto, S.; Yerima, G.; Adachi, T.; Mofrad, M.R.K. Emerging Mechanomedicines Informed by Mechanotransduction along the Integrin-Cytoskeleton-Nucleus Axis. APL Bioeng. 2025, 9, 021503. [Google Scholar] [CrossRef]
- Arenas, M.I.; Bethencourt, F.R.; Fraile, B.; Paniagua, R. Immunocytochemical and Quantitative Study of the Tunica Albuginea Testis in Young and Ageing Men. Histochem. Cell Biol. 1997, 107, 469–477. [Google Scholar] [CrossRef]
- Palombo, F.; Fioretto, D. Brillouin Light Scattering: Applications in Biomedical Sciences. Chem. Rev. 2019, 119, 7833–7847. [Google Scholar] [CrossRef]
- Bouvet, P.; Bevilacqua, C.; Ambekar, Y.; Antonacci, G.; Au, J.; Caponi, S.; Chagnon-Lessard, S.; Czarske, J.; Dehoux, T.; Fioretto, D.; et al. Consensus Statement on Brillouin Light Scattering Microscopy of Biological Materials. Nat. Photonics 2025, 19, 681–691. [Google Scholar] [CrossRef]
- Antonacci, G.; Beck, T.; Bilenca, A.; Czarske, J.; Elsayad, K.; Guck, J.; Kim, K.; Krug, B.; Palombo, F.; Prevedel, R.; et al. Recent Progress and Current Opinions in Brillouin Microscopy for Life Science Applications. Biophys. Rev. 2020, 12, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Kerdegari, S.; Passeri, A.A.; Morena, F.; Ciccone, G.; Bazzurro, V.; Canepa, P.; Lagomarsino, A.; Martino, S.; Mattarelli, M.; Vassalli, M.; et al. Contact-Free Characterization of Nuclear Mechanics Using Correlative Brillouin-Raman Micro-Spectroscopy in Living Cells. Acta Biomater. 2025, 198, 291–301. [Google Scholar] [CrossRef]
- Caponi, S.; Mattana, S.; Mattarelli, M.; Alunni Cardinali, M.; Urbanelli, L.; Sagini, K.; Emiliani, C.; Fioretto, D. Correlative Brillouin and Raman Spectroscopy Data Acquired on Single Cells. Data Brief 2020, 29, 105223. [Google Scholar] [CrossRef] [PubMed]
- Prevedel, R.; Diz-Muñoz, A.; Ruocco, G.; Antonacci, G. Brillouin Microscopy: An Emerging Tool for Mechanobiology. Nat. Methods 2019, 16, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.; Alunni-Cardinali, M.; Correa, N.; Caponi, S.; Holsgrove, T.; Barr, H.; Stone, N.; Winlove, C.P.; Fioretto, D.; Palombo, F. Viscoelastic Properties of Biopolymer Hydrogels Determined by Brillouin Spectroscopy: A Probe of Tissue Micromechanics. Sci. Adv. 2020, 6, eabc1937. [Google Scholar] [CrossRef]
- Nikolić, M.; Conrad, C.; Zhang, J.; Scarcelli, G. Noninvasive Imaging: Brillouin Confocal Microscopy. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2018; Volume 1092, pp. 351–364. [Google Scholar]
- Chan, C.J.; Bevilacqua, C.; Prevedel, R. Mechanical Mapping of Mammalian Follicle Development Using Brillouin Microscopy. Commun. Biol. 2021, 4, 1133. [Google Scholar] [CrossRef]
- Cardinali, M.A.; Govoni, M.; Dallari, D.; Caponi, S.; Fioretto, D.; Morresi, A. Mechano-Chemistry of Human Femoral Diaphysis Revealed by Correlative Brillouin–Raman Microspectroscopy. Sci. Rep. 2020, 10, 17341. [Google Scholar] [CrossRef]
- Pioppi, L.; Parvan, R.; Samrend, A.; Silva, G.J.J.; Paolantoni, M.; Sassi, P.; Cataliotti, A. Vibrational Spectroscopy Identifies Myocardial Chemical Modifications in Heart Failure with Preserved Ejection Fraction. J. Transl. Med. 2023, 21, 617. [Google Scholar] [CrossRef]
- Tiernan, H.; Byrne, B.; Kazarian, S.G. ATR-FTIR Spectroscopy and Spectroscopic Imaging for the Analysis of Biopharmaceuticals. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 241, 118636. [Google Scholar] [CrossRef]
- Andrew Chan, K.L.; Kazarian, S.G. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) Imaging of Tissues and Live Cells. Chem. Soc. Rev. 2016, 45, 1850–1864. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, N.L.; Lavy, C.B.; Kiltie, A.E.; Hamdy, F.C.; Czernuszka, J. Three-Dimensional Scaffolds: An in Vitro Strategy for the Biomimetic Modelling of in Vivo Tumour Biology. J. Mater. Sci. 2014, 49, 5809–5820. [Google Scholar] [CrossRef]
- Upadhyay, U.; Kolla, S.; Maredupaka, S.; Priya, S.; Srinivasulu, K.; Chelluri, L.K. Development of an Alginate–Chitosan Biopolymer Composite with DECM Bioink Additive for Organ-on-a-Chip Articular Cartilage. Sci. Rep. 2024, 14, 11765. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shang, W.; Huang, Y.; Ge, J.; Ye, J.; Qu, X.; Guo, Q.; Wang, C.; Hu, P.; Liu, Y. Sodium Alginate/Chitosan Composite Scaffold Reinforced with Biodegradable Polyesters/Gelatin Nanofibers for Cartilage Tissue Engineering. Int. J. Biol. Macromol. 2025, 285, 138054. [Google Scholar] [CrossRef]
- Bidaki, A.; Rezaei, N.; Kazemi, S.; Ali, S.N.; Ziaei, S.; Moeinzadeh, A.; Hosseini, F.; Noorbazargan, H.; Farmani, A.R.; Ren, Q. 3D Printed Bioengineered Scaffold Containing Chitosan, Alginate, and Barijeh-Loaded Niosomes Enabled Efficient Antibiofilm Activity and Wound Healing. Int. J. Biol. Macromol. 2025, 311, 143743. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wei, L.; Huang, J.; Luo, J.; Weng, Y.; Chen, J. Chitosan/Alginate-Based Hydrogel Loaded With VE-Cadherin/FGF as Scaffolds for Wound Repair in Different Degrees of Skin Burns. J. Biomed. Mater. Res. B Appl. Biomater. 2025, 113, e35533. [Google Scholar] [CrossRef]
- Sadeghianmaryan, A.; Naghieh, S.; Yazdanpanah, Z.; Alizadeh Sardroud, H.; Sharma, N.K.; Wilson, L.D.; Chen, X. Fabrication of Chitosan/Alginate/Hydroxyapatite Hybrid Scaffolds Using 3D Printing and Impregnating Techniques for Potential Cartilage Regeneration. Int. J. Biol. Macromol. 2022, 204, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.; Khadivi, F.; Javanbakht, P.; Mojaverrostami, S.; Abbasi, M.; Feizollahi, N.; Abbasi, Y.; Heidarian, E.; Rezaei Yazdi, F. Advances of Three-Dimensional (3D) Culture Systems for in Vitro Spermatogenesis. Stem Cell Res. Ther. 2023, 14, 262. [Google Scholar] [CrossRef]
- Vermeulen, M.; del Vento, F.; de Michele, F.; Poels, J.; Wyns, C. Development of a Cytocompatible Scaffold from Pig Immature Testicular Tissue Allowing Human Sertoli Cell Attachment, Proliferation and Functionality. Int. J. Mol. Sci. 2018, 19, 227. [Google Scholar] [CrossRef]
- Cannarella, R.; Mancuso, F.; Condorelli, R.A.; Arato, I.; Mongioì, L.M.; Giacone, F.; Lilli, C.; Bellucci, C.; La Vignera, S.; Calafiore, R.; et al. Effects of GH and IGF1 on Basal and FSH-Modulated Porcine Sertoli Cells In-Vitro. J. Clin. Med. 2019, 8, 811. [Google Scholar] [CrossRef]
- Bashiri, Z.; Amiri, I.; Gholipourmalekabadi, M.; Falak, R.; Asgari, H.; Maki, C.B.; Moghaddaszadeh, A.; Koruji, M. Artificial Testis: A Testicular Tissue Extracellular Matrix as a Potential Bio-Ink for 3D Printing. Biomater. Sci. 2021, 9, 3465–3484. [Google Scholar] [CrossRef]
- Mancuso, F.; Arato, I.; Di Michele, A.; Antognelli, C.; Angelini, L.; Bellucci, C.; Lilli, C.; Boncompagni, S.; Fusella, A.; Bartolini, D.; et al. Effects of Titanium Dioxide Nanoparticles on Porcine Prepubertal Sertoli Cells: An “In Vitro” Study. Front. Endocrinol. 2022, 12, 751915. [Google Scholar] [CrossRef]
- Scarponi, F.; Mattana, S.; Corezzi, S.; Caponi, S.; Comez, L.; Sassi, P.; Morresi, A.; Paolantoni, M.; Urbanelli, L.; Emiliani, C.; et al. High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy. Phys. Rev. X 2017, 7, 31015. [Google Scholar] [CrossRef]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef] [PubMed]
- Libera, V.; Malaspina, R.; Bittolo Bon, S.; Cardinali, M.A.; Chiesa, I.; De Maria, C.; Paciaroni, A.; Petrillo, C.; Comez, L.; Sassi, P.; et al. Conformational Transitions in Redissolved Silk Fibroin Films and Application for Printable Self-Powered Multistate Resistive Memory Biomaterials. RSC Adv. 2024, 14, 22393–22402. [Google Scholar] [CrossRef] [PubMed]
- Kazarian, S.G.; Chan, K.L.A. ATR-FTIR Spectroscopic Imaging: Recent Advances and Applications to Biological Systems. Analyst 2013, 138, 1940–1951. [Google Scholar] [CrossRef] [PubMed]
- Stefani, S.; Govoni, M.; Tombolesi, N.; Vivarelli, L.; Dallari, D.; Paolantoni, M.; Sassi, P.; Morresi, A. Extracorporeal Membrane Oxygenation and Effects on Tendon Tissue: A Vibrational Spectroscopy Study. J. Biophotonics 2023, 16, e202300163. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2015, 50, 46–111. [Google Scholar] [CrossRef]
- Okada, M.; Smith, N.I.; Flotildes Palonpon, A.; Endo, H.; Kawata, S.; Sodeoka, M.; Fujita, K.; Riken, D. Label-Free Raman Observation of Cytochrome c Dynamics during Apoptosis. Proc. Natl. Acad. Sci. USA 2012, 109, 28–32. [Google Scholar] [CrossRef]
- Benevides, J.M.; Overman, S.A.; Thomas, G.J. Raman, Polarized Raman and Ultraviolet Resonance Raman Spectroscopy of Nucleic Acids and Their Complexes. J. Raman Spectrosc. 2005, 36, 279–299. [Google Scholar] [CrossRef]
- Heath, S.; Han, Y.; Hua, R.; Roy, A.; Jiang, J.; Nyman, J.S.; Wang, X. Assessment of Glycosaminoglycan Content in Bone Using Raman Spectroscopy. Bone 2023, 171, 116751. [Google Scholar] [CrossRef]
- Fahelelbom, K.M.; Saleh, A.; Al-Tabakha, M.M.A.; Ashames, A.A. Recent Applications of Quantitative Analytical FTIR Spectroscopy in Pharmaceutical, Biomedical, and Clinical Fields: A Brief Review. Rev. Anal. Chem. 2022, 41, 21–33. [Google Scholar] [CrossRef]
- Tintor, Đ.; Ninković, K.; Milošević, J.; Polović, N. Gaining Insight into Protein Structure via ATR-FTIR Spectroscopy. Vib. Spectrosc. 2024, 134, 103726. [Google Scholar] [CrossRef]
- Kim, I.Y.; Seo, S.J.; Moon, H.S.; Yoo, M.K.; Park, I.Y.; Kim, B.C.; Cho, C.S. Chitosan and Its Derivatives for Tissue Engineering Applications. Biotechnol. Adv. 2008, 26, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, B.; Mashayekhan, S. Fabrication of Porous Scaffolds with Decellularized Cartilage Matrix for Tissue Engineering Application. Biologicals 2017, 48, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, Q.; Xu, S.; Zheng, Q.; Cao, X. Preparation and Properties of 3D Printed Alginate-Chitosan Polyion Complex Hydrogels for Tissue Engineering. Polymers 2018, 10, 664. [Google Scholar] [CrossRef] [PubMed]






| Formulations | A (%wt/v) | C (%wt/v) | dECM (%wt/wt) |
|---|---|---|---|
| A/C 40/C60 | 4 | 6 | - |
| A/C 60/C40 | 6 | 4 | - |
| A/C/dECM 40/60/5 | 4 | 6 | 5 |
| A/C/dECM 60/40/5 | 6 | 4 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alunni Cardinali, M.; Arato, I.; Luzi, F.; Rallini, M.; Lilli, C.; Bellucci, C.; Sassi, P.; Fioretto, D.; Luca, G.; Puglia, D.; et al. Production and Multimodal Characterization of Decellularized Extracellular Matrix from Porcine Prepubertal Tunica Albuginea as Additive to Polymeric Scaffolds for Testicular Organoid Growth. Polymers 2026, 18, 194. https://doi.org/10.3390/polym18020194
Alunni Cardinali M, Arato I, Luzi F, Rallini M, Lilli C, Bellucci C, Sassi P, Fioretto D, Luca G, Puglia D, et al. Production and Multimodal Characterization of Decellularized Extracellular Matrix from Porcine Prepubertal Tunica Albuginea as Additive to Polymeric Scaffolds for Testicular Organoid Growth. Polymers. 2026; 18(2):194. https://doi.org/10.3390/polym18020194
Chicago/Turabian StyleAlunni Cardinali, Martina, Iva Arato, Francesca Luzi, Marco Rallini, Cinzia Lilli, Catia Bellucci, Paola Sassi, Daniele Fioretto, Giovanni Luca, Debora Puglia, and et al. 2026. "Production and Multimodal Characterization of Decellularized Extracellular Matrix from Porcine Prepubertal Tunica Albuginea as Additive to Polymeric Scaffolds for Testicular Organoid Growth" Polymers 18, no. 2: 194. https://doi.org/10.3390/polym18020194
APA StyleAlunni Cardinali, M., Arato, I., Luzi, F., Rallini, M., Lilli, C., Bellucci, C., Sassi, P., Fioretto, D., Luca, G., Puglia, D., & Mancuso, F. (2026). Production and Multimodal Characterization of Decellularized Extracellular Matrix from Porcine Prepubertal Tunica Albuginea as Additive to Polymeric Scaffolds for Testicular Organoid Growth. Polymers, 18(2), 194. https://doi.org/10.3390/polym18020194

