Diamine-Crosslinked and Blended Polyimide Membranes: An Emerging Strategy in Enhancing H2/CO2 Separation
Abstract
:1. Introduction
1.1. Potential Applications of H2
1.2. H2 Purification Technologies
1.3. Membrane Technology
Membrane Materials Section
1.4. Polymer Membranes for H2/CO2 Separation
1.5. PI Membranes for H2/CO2 Separation
2. Membrane Modification Strategy
2.1. Advantages and Disadvantages of Diamine Crosslinking Modification
2.2. Polymer Blending for PI Membranes
3. Diamine-Crosslinked PI Membranes for H2 Purification
3.1. Crosslinking Strategy
3.2. Diamine-Crosslinked PI Membranes
3.3. Impact of Crosslinking Parameters on Membrane Properties and Performance
3.3.1. Effect of Crosslinking Time Correlated with Molecular Structures
3.3.2. Effect of Crosslinker Types
3.3.3. Effect of Crosslinker Concentration
3.3.4. Effect of Crosslinking Modification Method
3.3.5. Effect of Crosslinker Solution
4. Blended PI Membranes for H2 Purification
4.1. Blended PI Membranes
Description | T/P (°C/atm) | H2 Permeability (Barrer) | CO2 Permeability (Barrer) | H2/CO2 Permselectivity | Ref. |
---|---|---|---|---|---|
P84 | na/1 | 233 | 76 | 3.1 | [61] |
P84/PSf | na/1 | 348 | 86 | 4.4 | |
PSf | na/1 | 139 | 39 | 3.6 | |
PES/P84 (25:75) | na | 39.66 | 12.70 | 3.12 | [53] |
PES/P84 (50:50) | na | 42.86 | 12.46 | 3.44 | |
PES/P84 (75/25) | na | 187.30 | 53.70 | 3.49 | |
Matrimid | 35/na | 27.16 | 7.00 | 3.8 | |
Matrimid/PBI (75:25) | 35/na | 19.72 | 4.19 | 4.0 | [103] |
Matrimid/PBI (50:50) | 35/na | 13.06 | 2.16 | 6.0 | |
Matrimid/PBI (25:75) | 35/na | 5.47 | 0.58 | 9.4 | |
Torlon | 35/na | 4.44 | 0.83 | 5.3 | [107] |
PBI/Torlon (50:50) | 35/na | 3.75 | 0.62 | 6.0 | |
P84 | 35/na | 9.09 | 1.37 | 6.6 | |
PBI/P84 (50:50) | 35/na | 6.88 | 1.60 | 4.3 | |
Matrimid | 35/na | 27.16 | 7.00 | 3.8 | |
PBI/Matrimid (50:50) | 35/na | 13.06 | 2.16 | 6.0 | |
PBI | 35/3 | 1.37 | 0.05 | 27.4 | [66] |
6FDA-DAM | 35/3 | 1020 | 9.43 | 1.1 | |
PBI/6FDA-DAM | 35/3 | 6.76 | 0.45 | 15.2 | |
PSf/P84 (1:0.025) | 30/2 | 3.0 | na | 6.25 | [63] |
PSf/P84 (1:0.05) | 30/2 | 16.66 | na | 3.61 | |
PSf/P84 (1:0.10) | 30/2 | 4.25 | na | 3.05 | |
PSf/P84 (1:0.20) | 30/2 | 126.86 | na | 5.38 |
4.2. Key Parameter in Blending Modification: Compatability
4.2.1. Blending Material Selection
4.2.2. Polymer Blending Ratio
5. Synergizing Polymer Blending and Crosslinking Modification for H2 Purification
6. Conclusions and Future Outlooks
- Enhancing Gas Separation Performance—The optimal blending ratio of the polymer pairs is critical for blended PI membranes as it significantly affects the membrane properties. A higher content of polymer that has higher CO2 plasticization in the blended membranes enhances the membrane to suppress CO2 plasticization when compared with a neat PI membrane. This is crucial to mitigate the challenge that neat PI suffers as it easily swells due to CO2 plasticization, reducing the membrane performance in purifying H2 gases. High-stability membranes prevent plasticization caused by CO2 gases and maintain their separation in the long run to ensure consistent permeation rates and selectivity, as well as reduce replacement costs and maintenance. In addition, for crosslinked PI membranes, it is significantly proved that the modified membrane can improve the H2 selectivity and surpass the upper bound curve in the Robeson plot, even slightly decreasing the H2 permeability. Optimizing the crosslinking parameters ensures that the developed modified PI membranes achieve at least high H2 selectivity while at least maintaining the H2 permeability to achieve a more efficient separation process. It is important to understand that selectivity indicates “quality,” whereas permeability refers to “quantity”. Therefore, the right balance of crosslinker concentration and reaction time is important to ensure the optimal chain packing of the polymer chain that sufficiently allows only H2 to permeate. Nevertheless, the right choice of crosslinker types that enable the crosslinker to diffuse into the polymer chain effectively is the most important parameter for a complete crosslinking reaction. A diamine crosslinker type that offers stronger interactions with polymer chains and better control over chain packing and FFV is preferable for optimizing the membrane performance. In addition, exploring crosslinker solution types may be significantly important to study the effectiveness of crosslinking reactions.
- Advancing fundamental studies on crosslinking reaction in modified PI membranes—For crosslinking modification, studying the kinetics of diamine crosslinking helps to determine how crosslinking occurs at the molecular level, including their reaction pathway and activation energy. Studying the interaction of the crosslinker and the polymer chain provides insight into how it influences the bonding strength between the crosslinker and the polymer chain. Therefore, the synergy between fundamental studies and optimization of crosslinking parameters ensures a data-driven approach to refine the crosslinking strategy, leading to a developed membrane with superior performance and desired properties.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AC | acetate cellulose |
BuDA | 1,4-diaminobutane |
CF3 | trifluoromethyl |
CHP | combined-heat power |
CO | carbon monoxide |
CO2 | carbon dioxide |
DAB | diaminobutane |
DAMP | 1,5-diamino-2-methylpentane |
DAP | 1,5-pentadiamine |
DMAc | N-N-dimethylacetamide |
DMF | dimethylformamide |
DMSO | dimethyl sulfoxide |
EDA | ethylenediamine |
FFV | fractional free volume |
GHG | greenhouse gas |
HFC | hydrogen fuel cell |
HFCV | hydrogen fuel cell vehicle |
H2 | hydrogen |
H2O | water |
H2S | hydrogen sulphide |
NG | natural gas |
NMP | N-methyl pyrrolidinone |
PBI | poly[2,20-(1,3-phenylene)-5,50-bibenzimidazole |
PC | polycarbonate |
PDA | 1,3-diaminopropane |
Pd | palladium |
PI | polyimide |
PSf | polysulfone |
P2G | Power-to-Gas |
THF | tetrahydrofuran |
Tg | glass transition temperature |
References
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; Rios-Escalante, P.R.D.l.; Farooqi, Z.-U.-R.; Ali, L.; Shafiq, M. Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. J. King Saud Univ.-Sci. 2023, 35, 102693. [Google Scholar] [CrossRef]
- Nunes, L.J.R. The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Pramuanjaroenkij, A.; Kakaç, S. The fuel cell electric vehicles: The highlight review. Int. J. Hydrogen Energy 2023, 48, 9401–9425. [Google Scholar] [CrossRef]
- Rahim Malik, F.; Yuan, H.-B.; Moran, J.C.; Tippayawong, N. Overview of hydrogen production technologies for fuel cell utilization. Eng. Sci. Technol. Int. J. 2023, 43, 101452. [Google Scholar] [CrossRef]
- Navarro, R.M.; Sanchez-Sanchez, M.C.; Alvarez-Galvan, M.C.; Fierro, J.L.G.; Al-Zaharani, S.M. Hydrogen Production from Renewables. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Wiley Online Library: Hoboken, NJ, USA, 2011. [Google Scholar]
- Sharma, S.; Ghoshal, S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015, 43, 1151–1158. [Google Scholar] [CrossRef]
- Statista Research Department. Global Hydrogen Demand Forecast by Region 2030–2050. Available online: https://www.statista.com/statistics/1309215/global-hydrogen-demand-forecast-by-region/ (accessed on 25 January 2025).
- Economy, M.o. Advancing Sustainability. Available online: https://rmke12.ekonomi.gov.my/ksp/storage/fileUpload/2023/09/2023091125_9_chapter_8.pdf (accessed on 31 December 2024).
- Ahmad, M.S.; Ali, M.S.; Rahim, N.A. Hydrogen energy vision 2060: Hydrogen as energy Carrier in Malaysian primary energy mix—Developing P2G case. Energy Strategy Rev. 2021, 35, 100632. [Google Scholar] [CrossRef]
- Shahlan, S.; Kidam, K.; Tuan Abdullah, T.A.; Ali, m.w.; Pejic, L.; Kamarden, H. Hydrogen Gas Production from Gasification of Oil Palm Empty Fruit Bunch (EFB) in a Fluidized Bed Reactor. J. Energy Saf. Technol. (JEST) 2019, 2, 27–38. [Google Scholar] [CrossRef]
- Sulaiman, S.A.; Balamohan, S.; Moni, M.N.Z.; Atnaw, S.M.; Mohamed, A.O. Feasibility study of gasification of oil palm fronds. J. Mech. Eng. Sci. 2015, 9, 1744–1757. [Google Scholar] [CrossRef]
- Yong, Y.S.; Abdul Rasid, R. Process simulation of hydrogen production through biomass gasification: Introduction of torrefaction pre-treatment. Int. J. Hydrogen Energy 2022, 47, 42040–42050. [Google Scholar] [CrossRef]
- Azaman, F.; Juahir, H.; Mohamed, M.; Azid, A.; Yunus, K.; Rahman, A.F.; Ranizang, W.N.A.A.; Sanin, F.A.; Amran, M.; Abidin, M.Z.A.; et al. Hydrogen gas production from glycerol via steam reforming using nickel loaded zeolite catalyst. Malays. J. Anal. Sci. 2015, 19, 1043–1055. [Google Scholar]
- Saeed Baamran, K.; Tahir, M. Thermodynamic investigation and experimental analysis on phenol steam reforming towards enhanced H2 production over structured Ni/ZnTiO3 nanocatalyst. Energy Convers. Manag. 2019, 180, 796–810. [Google Scholar] [CrossRef]
- Abd Ghani, N.A.; Azapour, A.; Syed Muhammad, A.F.a.; Abdullah, B. Dry reforming of methane for hydrogen production over NiCo catalysts: Effect of NbZr promoters. Int. J. Hydrogen Energy 2019, 44, 20881–20888. [Google Scholar] [CrossRef]
- Al-Doghachi, F.J.; Zainal, Z.; Saiman, M.I.; Embong, Z.; Taufiq-Yap, Y.H. Hydrogen Production from Dry-Reforming of Biogas over Pt/Mg1-xNixO Catalysts. Energy Procedia 2015, 79, 18–25. [Google Scholar] [CrossRef]
- Akhbari, A.; Onn, C.C.; Ibrahim, S. Analysis of biohydrogen production from palm oil mill effluent using a pilot-scale up-flow anaerobic sludge blanket fixed-film reactor in life cycle perspective. Int. J. Hydrogen Energy 2021, 46, 34059–34072. [Google Scholar] [CrossRef]
- Mishra, P.; Thakur, S.; Singh, L.; Ab Wahid, Z.; Sakinah, M. Enhanced hydrogen production from palm oil mill effluent using two stage sequential dark and photo fermentation. Int. J. Hydrogen Energy 2016, 41, 18431–18440. [Google Scholar] [CrossRef]
- Ayoub, L.S. Biohydrogen Generation by Dark Fermentation of Starch Using Bacteria Isolated from Tapioca Wastewater. Master’s Thesis, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, 2018. [Google Scholar]
- Moridon, S.N.F.; Anggraini, D.; Arifin, K.; Minggu, L.J.; Kassim, M.B. Photocatalytic hydrogen generation from water by TiO2/Co3O4 composite photocatalysis. Malays. J. Anal. Sci. 2022, 26, 581–588. [Google Scholar]
- Agustina, M.; Moridon, S.; Linggawati, A.; Arifin, K.; Jeffery Minggu, L.; Kassim, M. Hydrogen Production from Water Splitting using TiO2/CoS Composite Photocatalyst. Sains Malays. 2022, 51, 3251–3259. [Google Scholar] [CrossRef]
- Jafary, T.; Daud, W.R.W.; Ghasemi, M.; Kim, B.H.; Carmona-Martínez, A.A.; Bakar, M.H.A.; Jahim, J.M.; Ismail, M. A comprehensive study on development of a biocathode for cleaner production of hydrogen in a microbial electrolysis cell. J. Clean. Prod. 2017, 164, 1135–1144. [Google Scholar] [CrossRef]
- Salehmin, M.N.I.; Hil Me, M.F.; Daud, W.R.W.; Mohd Yasin, N.H.; Abu Bakar, M.H.; Sulong, A.B.; Lim, S.S. Construction of microbial electrodialysis cells equipped with internal proton migration pathways: Enhancement of wastewater treatment, desalination, and hydrogen production. Sci. Total Environ. 2023, 855, 158527. [Google Scholar] [CrossRef]
- Zakaria, Z.; Kamarudin, S.K.; Ikhmal Salehmin, M.N.; Rosyadah Ahmad, N.N.; Aminuddin, M.A.; Hanapi, I.H.; Osman, S.H.; Mohamad, A.A. Energy scenario in Malaysia: Embarking on the potential use of hydrogen energy. Int. J. Hydrogen Energy 2023, 48, 35685–35707. [Google Scholar] [CrossRef]
- Zhang, K.; He, L.; Jiang, L.; Jiang, S.; Yu, R.; Lau, H.C.; Xie, C.; Chen, Z. The role of hydrogen in the energy transition of the oil and gas industry. Energy Rev. 2024, 3, 100090. [Google Scholar] [CrossRef]
- Mah, A.X.Y.; Ho, W.S.; Bong, C.P.C.; Hassim, M.H.; Liew, P.Y.; Asli, U.A.; Kamaruddin, M.J.; Chemmangattuvalappil, N.G. Review of hydrogen economy in Malaysia and its way forward. Int. J. Hydrogen Energy 2019, 44, 5661–5675. [Google Scholar] [CrossRef]
- Yan, F.; Xu, L.; Wang, Y. Application of hydrogen enriched natural gas in spark ignition IC engines: From fundamental fuel properties to engine performances and emissions. Renew. Sustain. Energy Rev. 2018, 82, 1457–1488. [Google Scholar] [CrossRef]
- Tutak, W.; Jamrozik, A.; Grab-Rogaliński, K. Effect of natural gas enrichment with hydrogen on combustion process and emission characteristic of a dual fuel diesel engine. Int. J. Hydrogen Energy 2020, 45, 9088–9097. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Deng, L.; Chen, Z.; Ye, Y.; Bui, X.T.; Hoang, N.B. Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. Bioresour. Technol. 2022, 351, 127045. [Google Scholar] [CrossRef]
- Rohani, R.; Yusoff, I.I.; Manimaran, V. Polyvinylidene Difluoride-co-Polyethylene Glycol Membrane for Biohydrogen Purification from Palm Oil Mill Effluent Fermentation. J. Membr. Sci. Res. 2021, 7, 166–172. [Google Scholar]
- Chung, Y.T.R.R.; Mohamad, I.N.; Mastar, M.S.; Takriff, M.S. Biohydrogen purification from palm oil mill effluent fermentation for fuel cell application. Malays. J. Anal. Sci. 2019, 23, 80–89. [Google Scholar]
- Król, A.; Gajec, M.; Holewa-Rataj, J.; Kukulska-Zając, E.; Rataj, M. Hydrogen Purification Technologies in the Context of Its Utilization. Energies 2024, 17, 3794. [Google Scholar] [CrossRef]
- Aasadnia, M.; Mehrpooya, M.; Ghorbani, B. A novel integrated structure for hydrogen purification using the cryogenic method. J. Clean. Prod. 2021, 278, 123872. [Google Scholar] [CrossRef]
- Luberti, M.; Ahn, H. Review of Polybed pressure swing adsorption for hydrogen purification. Int. J. Hydrogen Energy 2022, 47, 10911–10933. [Google Scholar] [CrossRef]
- Aminullah, M.; Ho, W.S.; Idris, A.M.; Haslenda, H.; Lim, J.S.; Liew, P.Y.; Gabriel, L.H.T.; Ho, C.S. Palm oil mill effluent (pome) biogas techno-economic analysis for utilisation as bio compressed natural gas. Chem. Eng. Trans. 2018, 63, 265–270. [Google Scholar]
- Bhalani, D.V.; Lim, B. Hydrogen Separation Membranes: A Material Perspective. Molecules 2024, 29, 4676. [Google Scholar] [CrossRef] [PubMed]
- Sazali, N.; Mohamed, M.A.; Salleh, W.N.W. Membranes for hydrogen separation: A significant review. Int. J. Adv. Manuf. Technol. 2020, 107, 1859–1881. [Google Scholar] [CrossRef]
- Bernardo, G.; Araújo, T.; da Silva Lopes, T.; Sousa, J.; Mendes, A. Recent advances in membrane technologies for hydrogen purification. Int. J. Hydrogen Energy 2020, 45, 7313–7338. [Google Scholar] [CrossRef]
- Lu, H.T.; Li, W.; Miandoab, E.S.; Kanehashi, S.; Hu, G. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: A review. Front. Chem. Sci. Eng. 2021, 15, 464–482. [Google Scholar] [CrossRef]
- Sazali, N.; Salleh, W.N.W.; Ismail, A.F. Synthetic polymer-based membranes for hydrogen separation. In Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability; Elsevier: Amsterdam, The Netherlands, 2020; pp. 273–292. [Google Scholar]
- Ismail, A.F.; Kusworo, T.D.; Mustafa, A.; Hasbulla, H. Understanding the solution-diffusion mechanism in gas separation membrane for engineering students. In Proceedings of the Regional Conference on Engineering Education RCEE, Johor Bahru, Malaysia, 12–13 December 2005. [Google Scholar]
- Hu, L.; Pal, S.; Nguyen, H.; Bui, V.; Lin, H. Molecularly engineering polymeric membranes for H/CO separation at 100–300 °C. J. Polym. Sci. 2020, 58, 2467–2481. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.; Qiao, Z.; Liu, Y.; Cao, X.; Li, W.; Wang, J.; Wang, S. Recent developments in membranes for efficient hydrogen purification. J. Membr. Sci. 2015, 495, 130–168. [Google Scholar] [CrossRef]
- Chung, T.-S.; Shao, L.; Tin, P.S. Surface Modification of Polyimide Membranes by Diamines for H2 and CO2 Separation. Macromol. Rapid Commun. 2006, 27, 998–1003. [Google Scholar] [CrossRef]
- Rahimpour, M.R.; Samimi, F.; Babapoor, A.; Tohidian, T.; Mohebi, S. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review. Chem. Eng. Process. Process Intensif. 2017, 121, 24–49. [Google Scholar] [CrossRef]
- Anastasiadis, C. Development of Novel Alloys for Use as Hydrogen Purification Membranes. Master’s Thesis, University of Birmingham, Birmingham, UK, 2012. [Google Scholar]
- Sazali, N.; Ghazali, M.F.; Ibrahim, H.; Paiman, S.H.; Moslan, M.S. A Review on Hydrogen Separation through Inorganic Membranes. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 63, 238–248. [Google Scholar]
- Ockwig, N.W.; Nenoff, T.M. Membranes for Hydrogen Separation. Chem. Rev. 2007, 107, 4078–4110. [Google Scholar] [CrossRef] [PubMed]
- Robeson, L.M.; Liu, Q.; Freeman, B.D.; Paul, D.R. Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship. J. Membr. Sci. 2015, 476, 421–431. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Li, X.; Xiao, W.; Dai, Y.; Ma, C.; He, G. Recent developments of anti-plasticized membranes for aggressive CO2 separation. Green Chem. Eng. 2023, 4, 1–16. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Teplyakov, V. Polymeric membranes for hydrogen separation/purification. In Current Trends and Future Developments on (Bio-)Membranes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 281–304. [Google Scholar]
- Abdul Nasir, N.A.; Ahmed Alshaghdari, A.G.; Junaidi, M.U.M.; Hashim, N.A.; Rabuni, M.F.; Rohani, R. Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation. J. Polym. Eng. 2021, 41, 607–614. [Google Scholar] [CrossRef]
- Freeman, B.D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules 1999, 32, 375–380. [Google Scholar] [CrossRef]
- Hu, C.-P.; Lim, J.S.K.; Ping, K.-H.; Hung, W.-S.; Liang, Y.N.; Hu, X.M. Understanding hydrogen solubility and free volume characteristics in charge-transfer phthalonitrile prepolymer and polyimide blend membranes. J. Membr. Sci. 2023, 687, 122058. [Google Scholar] [CrossRef]
- Stern, S.A.; Mi, Y.; Yamamoto, H.; Clair, A.K.S. Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures. J. Polym. Sci. Part B Polym. Phys. 1989, 27, 1887–1909. [Google Scholar] [CrossRef]
- Yáñez, M.; Ortiz, A.; Gorri, D.; Ortiz, I. Comparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streams. Int. J. Hydrogen Energy 2021, 46, 17507–17521. [Google Scholar] [CrossRef]
- Ma, X.-H.; Yang, S.-Y. Polyimide Gas Separation Membranes. In Advanced Polyimide Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 257–322. [Google Scholar]
- Bos, A.; Pünt, I.G.M.; Wessling, M.; Strathmann, H. Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations. Sep. Purif. Technol. 1998, 14, 27–39. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, L.; Xiang, D.; Cao, B.; Hosseini, S.S.; Li, P. Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes 2019, 7, 51. [Google Scholar] [CrossRef]
- Hamid, M.A.A.; Chung, Y.T.; Rohani, R.; Mohd; Junaidi, M.U. Miscible-blend polysulfone/polyimide membrane for hydrogen purification from palm oil mill effluent fermentation. Sep. Purif. Technol. 2019, 209, 598–607. [Google Scholar] [CrossRef]
- Visser, T.; Masetto, N.; Wessling, M. Materials dependence of mixed gas plasticization behavior in asymmetric membranes. J. Membr. Sci. 2007, 306, 16–28. [Google Scholar] [CrossRef]
- Kayadoe, V.; Widiastuti, N.; Gunawan, T.; Salleh, W.N.W.; Fansuri, H.; Romadiansyah, T.Q.; Pratama, A.W. Fabrication of PSf/P84-blended membranes with low P84 content: Characteristics and gas separation performance. Case Stud. Chem. Environ. Eng. 2024, 10, 100835. [Google Scholar] [CrossRef]
- Abdul Nasir, N.A.; Ling, J.H.; Junaidi, M.U.M.; Hashim, N.A.; Hizzaddin, H.F.; Rabuni, M.F.; Zainal Abidin, M.I.I.; Rohani, R. 1,3-Propane Diamine/1,4-Butane Diamine Cross-linking Modification of Polyimide Membrane for Hydrogen Selective Separation: Effect of Diamine Mixture Ratio. Asia-Pac. J. Chem. Eng. 2020, 15, e2411. [Google Scholar] [CrossRef]
- Nasir, A.; Junaidi, M.U.M.; Hashim, N.A.; Zuki, F.M.; Rohani, R. Diamine Modified Polysulfone and P-84 Symmetric Membranes for Hydrogen/Carbon Dioxide Separation. Int. J. Appl. Eng. Res. 2019, 14, 2883–2889. [Google Scholar]
- Huang, Y. Immiscible Polymer Blend Membranes for High Pressure, High Temperature H2/CO2 Separation. Ph.D. Thesis, The University of Texas, Dallas, TX, USA, 2016. [Google Scholar]
- Koros, W.J.; Mahajan, R. Pushing the limits on possibilities for large scale gas separation: Which strategies? J. Membr. Sci. 2000, 175, 181–196. [Google Scholar] [CrossRef]
- Zhang, Y.; Xin, J.; Huo, G.; Zhang, Z.; Zhou, X.; Bi, J.; Kang, S.; Dai, Z.; Li, N. Cross-linked PI membranes with simultaneously improved CO2 permeability and plasticization resistance via tunning polymer precursor orientation degree. J. Membr. Sci. 2023, 687, 121994. [Google Scholar] [CrossRef]
- Powell, C.E.; Duthie, X.J.; Kentish, S.E.; Qiao, G.G.; Stevens, G.W. Reversible diamine cross-linking of polyimide membranes. J. Membr. Sci. 2007, 291, 199–209. [Google Scholar] [CrossRef]
- Vanherck, K.; Koeckelberghs, G.; Vankelecom, I.F.J. Crosslinking polyimides for membrane applications: A review. Prog. Polym. Sci. 2013, 38, 874–896. [Google Scholar] [CrossRef]
- Zhou, C.; Chung, T.-S.; Wang, R.; Liu, Y.; Goh, S.H. The accelerated CO2 plasticization of ultra-thin polyimide films and the effect of surface chemical cross-linking on plasticization and physical aging. J. Membr. Sci. 2003, 225, 125–134. [Google Scholar] [CrossRef]
- Han, J.; Lee, W.; Choi, J.M.; Patel, R.; Min, B.-R. Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: Precipitation kinetics, morphology and gas separation. J. Membr. Sci. 2010, 351, 141–148. [Google Scholar] [CrossRef]
- Yong, W.F.; Zhang, H. Recent advances in polymer blend membranes for gas separation and pervaporation. Prog. Mater. Sci. 2021, 116, 100713. [Google Scholar] [CrossRef]
- Kapantaidakis, G.C.; Kaldis, S.P.; Dabou, X.S.; Sakellaropoulos, G.P. Gas permeation through PSF-PI miscible blend membranes. J. Membr. Sci. 1996, 110, 239–247. [Google Scholar] [CrossRef]
- Lin, H.; Yavari, M. Upper bound of polymeric membranes for mixed-gas CO2/CH4 separations. J. Membr. Sci. 2015, 475, 101–109. [Google Scholar] [CrossRef]
- Kapantaidakis, G.; Koops, G.; Wessling, M.; Kaldis, S.; Sakellaropoulos, G. CO2 Plasticization of polyethersulfone/polyimide gas-separation membranes. AIChE J. 2003, 49, 1702–1711. [Google Scholar] [CrossRef]
- Fakirov, S. Is compatibility critical in polymer engineering? Adv. Ind. Eng. Polym. Res. 2024, 7, 355–362. [Google Scholar] [CrossRef]
- Wu, S.; Liang, J.; Shi, Y.; Huang, M.; Bi, X.; Wang, Z.; Jin, J. Design of interchain hydrogen bond in polyimide membrane for improved gas selectivity and membrane stability. J. Membr. Sci. 2021, 618, 118659. [Google Scholar] [CrossRef]
- Balçık, M.; Velioğlu, S.; Tantekin-Ersolmaz, S.B.; Ahunbay, M.G. Can crosslinking improve both CO2 permeability and plasticization resistance in 6FDA–pBAPS/DABA copolyimides? Polymer 2020, 205, 122789. [Google Scholar] [CrossRef]
- Houben, M.; Kloos, J.; van Essen, M.; Nijmeijer, K.; Borneman, Z. Systematic investigation of methods to suppress membrane plasticization during CO2 permeation at supercritical conditions. J. Membr. Sci. 2022, 647, 120292. [Google Scholar] [CrossRef]
- Wind, J.D.; Staudt-Bickel, C.; Paul, D.R.; Koros, W.J. The Effects of Crosslinking Chemistry on CO2 Plasticization of Polyimide Gas Separation Membranes. Ind. Eng. Chem. Res. 2002, 41, 6139–6148. [Google Scholar] [CrossRef]
- Tillet, G.; Boutevin, B.; Ameduri, B. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog. Polym. Sci. 2011, 36, 191–217. [Google Scholar] [CrossRef]
- Hayes, R.A. Amine-Modified Polyimide Membranes. U.S. Patent US4981497A, 1 January 1991. [Google Scholar]
- Low, B.T.; Xiao, Y.; Chung, T.S.; Liu, Y. Simultaneous Occurrence of Chemical Grafting, Cross-Linking, and Etching on the Surface of Polyimide Membranes and Their Impact on H2/CO2 Separation. Macromolecules 2008, 41, 1297–1309. [Google Scholar] [CrossRef]
- Shao, L.; Lau, C.-H.; Chung, T.-S. A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification. Int. J. Hydrogen Energy 2009, 34, 8716–8722. [Google Scholar] [CrossRef]
- Shao, L.; Chung, T.; Goh, S.; Pramoda, K. Transport properties of cross-linked polyimide membranes induced by different generations of diaminobutane (DAB) dendrimers. J. Membr. Sci. 2004, 238, 153–163. [Google Scholar] [CrossRef]
- Choi, S.-H.; Jansen, J.C.; Tasselli, F.; Barbieri, G.; Drioli, E. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation. Sep. Purif. Technol. 2010, 76, 132–139. [Google Scholar] [CrossRef]
- López-Badillo, M.; Galicia-Aguilar, J.A.; Ortiz-Muñoz, E.; Hernández-Rodríguez, G.; Del Valle-Soto, F.H. Chemical Cross-Linking of 6FDA-6FPA Polyimides for Gas Permeation Membranes. Int. J. Chem. React. Eng. 2019, 17, 20170252. [Google Scholar] [CrossRef]
- Omidvar, M. Fundamental Study of Free Volume Characteristics on Membrane H2/CO2 Separation. Ph.D. Thesis, The State University of New York, Buffalo, NY, USA, 2019. [Google Scholar]
- Tin, P. Effects of cross-linking modification on gas separation performance of Matrimid membranes. J. Membr. Sci. 2003, 225, 77–90. [Google Scholar] [CrossRef]
- Qiao, X.; Chung, T.S. Diamine modification of P84 polyimide membranes for pervaporation dehydration of isopropanol. AIChE J. 2006, 52, 3462–3472. [Google Scholar] [CrossRef]
- Aberg, C.M.; Ozcam, A.E.; Majikes, J.M.; Seyam, M.A.; Spontak, R.J. Extended Chemical CrossLinking of a Thermoplastic Polyimide: Macroscopic and Microscopic Property Development. Macromol. Rapid Commun. 2008, 29, 1461–1466. [Google Scholar] [CrossRef]
- Mangindaan, D. Amine-based vapor-phase crosslinking processes of polyimide-based membranes for energy efficient separations. IOP Conf. Ser. Earth Environ. Sci. 2021, 794, 012105. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Chung, T.-S. Chemical cross-linking modification of polyimide membranes for gas separation. J. Membr. Sci. 2001, 189, 231–239. [Google Scholar] [CrossRef]
- Kim, S.J.; Ahn, Y.; Kim, J.F.; Nam, S.E.; Park, H.; Cho, Y.H.; Baek, K.y.; Park, Y.I. Comparison of liquid-phase and methanol-swelling crosslinking processes of polyimide dense membrane for CO2/CH4 separation. J. Appl. Polym. Sci. 2020, 138, e49860. [Google Scholar] [CrossRef]
- Wang, H.; Paul, D.R.; Chung, T.-S. Surface modification of polyimide membranes by diethylenetriamine (DETA) vapor for H2 purification and moisture effect on gas permeation. J. Membr. Sci. 2013, 430, 223–233. [Google Scholar] [CrossRef]
- Gargallo, L.; Radic, D. Physicochemical Behavior and Supramolecular Organization of Polymers; Springer Science & Business Media: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Shao, L.; Chung, T.-S.; Goh, S.H.; Pramoda, K.P. Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance. J. Membr. Sci. 2005, 256, 46–56. [Google Scholar] [CrossRef]
- Mannan, H.A.; Mukhtar, H.; Murugesan, T.; Nasir, R.; Mohshim, D.F.; Mushtaq, A. Recent Applications of Polymer Blends in Gas Separation Membranes. Chem. Eng. Technol. 2013, 36, 1838–1846. [Google Scholar] [CrossRef]
- Khan, I.; Mansha, M.; Jafar Mazumder, M.A. Polymer Blends. In Functional Polymers; Polymers and Polymeric Composites: A Reference Series; Springer Nature: Cham, Switzerland, 2019; pp. 513–549. [Google Scholar]
- Jami’An, W.N.R.; Hasbullah, H.; Mohamed, F.; Salleh, W.N.W.; Ibrahim, N.; Ali, R.R. Biodegradable gas separation membrane preparation by manipulation of casting parameters. Chem. Eng. Trans. 2015, 43, 1105–1110. [Google Scholar]
- Liu, G.; Labreche, Y.; Li, N.; Liu, Y.; Zhang, C.; Miller, S.J.; Babu, V.P.; Bhuwania, N.; Koros, W.J. Simultaneously tuning dense skin and porous substrate of asymmetric hollow fiber membranes for efficient purification of aggressive natural gas. AIChE J. 2019, 65, 1269–1280. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Teoh, M.M.; Chung, T.S. Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 2008, 49, 1594–1603. [Google Scholar] [CrossRef]
- Chung, T.-S.; Guo, W.; Liu, Y. Enhanced Matrimid membranes for pervaporation by homogenous blends with polybenzimidazole (PBI). J. Membr. Sci. 2006, 271, 221–231. [Google Scholar] [CrossRef]
- Guerra, G.; Choe, S.; Williams, D.J.; Karasz, F.E.; MacKnight, W.J. Fourier transform infrared spectroscopy of some miscible polybenzimidazole/polyimide blends. Macromolecules 1988, 21, 231–234. [Google Scholar] [CrossRef]
- Földes, E.; Fekete, E.; Karasz, F.E.; Pukanszky, B. Interaction, miscibility and phase inversion in PBI/PI blends. Polymer 2000, 41, 975–983. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Chung, T.S. Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J. Membr. Sci. 2009, 328, 174–185. [Google Scholar] [CrossRef]
- Pesiri, D.; Jorgensen, B.; Dye, R. Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J. Membr. Sci. 2003, 218, 11–18. [Google Scholar] [CrossRef]
- Berchtold, K.; Singh, R.; Young, J.; Dudeck, K. Polybenzimidazole composite membranes for high temperature synthesis gas separations. J. Membr. Sci. 2012, 415–416, 265–270. [Google Scholar] [CrossRef]
Technology | Principles | Advantages | Disadvantages |
---|---|---|---|
Cryogenic distillation | Separate H2 from mixed gases under high-pressure and low-temperature conditions | Suitable for applications that need H2 purity up to 95% No chemical usage | Use high energy consumption Use larger and more complicated equipment (compressor and cooling system) Complicated operation due to heat exchangers’ sensitivity Need to remove contaminant gases before purifying H2 gas High risk of equipment blockage if there is the presence of contaminant gases High capital and operational cost |
Pressure swing adsorption | Use solid adsorbents to adsorb contaminant gases and produce high purity of H2 under high pressure | Produce high purity of H2 up to 99.999% Operated at ambient temperature | High capital and operational cost Complicated operation |
Membrane separation | Use a selective barrier that allows H2 to permeate from the mixed gases | Flexible and simple operation Suitable for low-temperature applications Low carbon footprints Compact equipment Low energy usage Easy for installation and integration with industrial processes | Only suitable for small-scale application Low H2 purity due to trade-off limit between permeability and selectivity Low durability, which causes a short lifespan High capital and operational cost |
Chemical absorption | Use chemical absorbent to absorb impurities and allow H2 to pass through in the gas phase from the absorbent | Operated at low pressure Use low energy H2 purity in the range of 95–97% | Use a high volume of solvent Some of the solvents are corrosive |
Polymer Material Types | H2/CO2 Selectivity |
---|---|
Cellulose acetate (Separex) | 2.4 |
Polysulfone (Permea) | 2.5 |
Polyimide (Ube) | 3.8 |
Tetrabomopolycarbonate (MG) | 3.5 |
Silicone rubber (Silar) | 0.2 |
Descriptions | T/P (°C/atm) | H2 Permeability (Barrer) | CO2 Permeability (Barrer) | H2/CO2 Selectivity | Ref. |
---|---|---|---|---|---|
6FDA-durene | 35/3.5 | na | na | na | [86] |
DAB-AM-4-modified 6-FDA-durene (60 min) | 35/3.5 | na | na | 3.7 | |
DAB-AM-8-modified 6-FDA-durene (60 min) | 35/3.5 | na | na | na | |
DAB-AM-16-modified 6-FDA-durene (60 min) | 35/3.5 | na | na | na | |
P84 | na-/3 | 132.5 | 25.8 | 5.11 | [65] |
P84 | na/4 | 151.6 | 28.1 | 5.40 | |
P84 | na/5 | 191.2 | 35.0 | 5.31 | |
BuDA-modified P84 (10 min) | na/3 | 778.1 | 193.0 | 4.03 | |
BuDA-modified P84 (10 min) | na/4 | 804.1 | 175.6 | 4.58 | |
BuDA-modified P84 (10 min) | na/5 | 804.1 | 206.8 | 3.90 | |
BuDA-modified P84 (30 min) | na/3 | 594.8 | 101.0 | 5.88 | |
BuDA-modified P84 (30 min) | na/4 | 602.7 | 103.5 | 5.82 | |
BuDA-modified P84 (30 min) | na/5 | 654.3 | 107.3 | 6.09 | |
6FDA-durene | 35/7 | ~600 | na | ~1 | [44] |
PDA-modified 6FDA-durene (1 min) | 35/7 | ~250 | na | ~4 | |
PDA-modified 6FDA-durene (5 min) | 35/7 | ~20 | na | ~40 | |
PDA-modified 6FDA-durene (10 min) | 35/7 | ~15 | na | 101 | |
BuDA-modified 6FDA-durene (5 min) | 35/7 | ~18 | na | ~38 | |
EDA-modified 6FDA-durene (5 min) | 35/7 | ~150 | na | ~5 | |
P84 | 25/1 | 18.4 | 3.84 | 4.78 | [87] |
5 wt. % DAMP-modified P84 | 25/1 | 1.84 | 0.205 | 9.00 | |
10 wt. % DAMP-modified P84 | 25/1 | 1.10 | 0.087 | 12.64 | |
6FDA-durene | na/3.5 | 600 | 581 | 1.03 | [85] |
EDA-modified 6FDA-durene (5 min) | na/3.5 | 73.4 | 1.97 | 37.3 | |
EDA-modified 6FDA-durene (10 min) | na/3.5 | 32.6 | 0.32 | 102 | |
P84 | na/3 | na | na | 4.3 | [64] |
(1:0) PDA:BUDA-modified 15 wt. % P84 (5 min) | na/3 | na | na | 7.3 | |
(0.8:0.2) PDA:BUDA-modified 15 wt. % P84 (5 min) | na/3 | na | na | 7.84 | |
(0.6:0.4) PDA:BUDA-modified 15 wt. % P84 (5 min) | na/3 | na | na | 4.6 | |
(0.4:0.6) PDA:BUDA-modified 15 wt. % P84 (5 min) | na/3 | na | na | 4.5 | |
(0.2:0.8) PDA:BUDA-modified 15 wt. % P84 (5 min) | na/3 | na | na | 1.86 | |
(0:1) PDA:BUDA-modified 15 wt. % P84 (5 min) | na/3 | na | na | 0.72 | |
6FDA-ODA/NDA | 35/3.5 | 69.78 | 29.01 | 2.3 | [84] |
EDA-modified 6FDA-ODA/NDA (15 min) | 35/3.5 | 51.50 | 9.47 | 5.4 | |
EDA-modified 6FDA-ODA/NDA (30 min) | 35/3.5 | 36.84 | 2.08 | 17.7 | |
EDA-modified 6FDA-ODA/NDA (60 min) | 35/3.5 | 26.72 | 0.98 | 27.1 | |
EDA-modified 6FDA-ODA/NDA (90 min) | 35/3.5 | 22.70 | 0.76 | 29.7 | |
EDA-modified 6FDA-ODA/NDA (120 min) | 35/3.5 | 16.55 | 0.71 | 23.4 | |
PDA-modified 6FDA-ODA/NDA (15 min) | 35/3.5 | 60.14 | 9.06 | 6.6 | |
PDA-modified 6FDA-ODA/NDA (30 min) | 35/3.5 | 36.55 | 1.58 | 23.2 | |
PDA-modified 6FDA-ODA/NDA (60 min) | 35/3.5 | 23.34 | 0.60 | 39.2 | |
PDA-modified 6FDA-ODA/NDA (90 min) | 35/3.5 | 16.48 | 0.26 | 64.1 | |
PDA-modified 6FDA-ODA/NDA (120 min) | 35/3.5 | 13.90 | 0.23 | 60.0 | |
BuDA-modified 6FDA-ODA/NDA (15 min) | 35/3.5 | 70.74 | 14.18 | 5.0 | |
BuDA-modified 6FDA-ODA/NDA (30 min) | 35/3.5 | 63.04 | 13.33 | 4.7 | |
BuDA-modified 6FDA-ODA/NDA (60 min) | 35/3.5 | 55.11 | 6.24 | 8.8 | |
BuDA-modified 6FDA-ODA/NDA (90 min) | 35/3.5 | 45.82 | 3.98 | 11.5 | |
BuDA-modified 6FDA-ODA/NDA (120 min) | 35/3.5 | 38.55 | 1.84 | 20.9 | |
DAP-modified 6FDA-6FPA | 35/1 | 8.264 | 2.873 | 2.88 | [88] |
17% v/v DAP-modified 6FDA-6FPA (65 min) | 35/1 | 29.318 | 6.602 | 4.44 | |
10% v/v DAP-modified 6FDA-6FPA (10 min) | 35/1 | 9.953 | 3.479 | 2.86 | |
3% v/v DAP-modified 6FDA-6FPA (120 min) | 35/1 | 7.354 | 0.988 | 7.44 |
Diamine Crosslinker Types | Nucleophilicity | Molecular Dimension | Effectiveness for Crosslinking Reaction | Findings |
---|---|---|---|---|
EDA | Most nucleophilic | 5.5 Å (Smallest) | Less effective | Highly severe chemical etching and significant chemical grafting were unable to hinder the chain-to-chain movement. Main-chain scissions are the most severe. |
PDA | Moderate nucleophilic | 6.7 Å (Moderate) | Most effective | Highest degree of crosslinking reaction promotes chain rigidity |
BuDA | Least nucleophilic | 8.0 Å (Largest) | Less effective | Presence of chemical grafting and severe chemical etching Chain is still able to mobile as the molecule backbone is more flexible than EDA and PDA. |
Modification Method | Descriptions | Advantages | Limitation | Ref. |
---|---|---|---|---|
Post-synthesis | Membrane is immersed in the crosslinker solution after it has solidified. | Room temperature conditions Simple and easy method | Uneven membrane thickness of the top layer Use a large volume of solvent for the immersion method Difficulty in controlling pore size of membrane surface Membrane swelling Lower gas permeability and selectivity than the vapor phase method Deteriorate mechanical properties of membrane | [86] |
Vapor phase | Modify the outer layer of the membrane without modifying the internal membrane structure | Improve tensile properties Environmental-friendly Higher permeability and selectivity of gas separation than the solution-modified method Use less chemical Minimal swelling process Reduce cost Suitable more for hollow fiber membrane | Sensitive to humidity Complicated method Difficulty in controlling temperature for the modification Use high temperature and energy usage | [85,93] |
PI/PSf (% w/w) | CO2 Plasticization Pressure (atm) |
---|---|
0/100 | >50 |
20/80 | >35 |
50/50 | ~30 |
80/20 | 18 |
100/0 | 15 |
Descriptions | T/P (°C/atm) | H2 Permeability (Barrer) | CO2 Permeability (Barrer) | H2/CO2 Selectivity | Ref. |
---|---|---|---|---|---|
P84 | na | 187.3 | 53.7 | 3.49 | [53] |
PDA-modified PES/P84 (75:25) (5 min) | na | 288.48 | 76.12 | 3.79 | |
PDA-modified PES/P84 (75:25) (10 min) | na | 310.78 | 70.16 | 4.43 | |
PDA-modified PES/P84 (75:25) (15 min) | na | 105.60 | 15.36 | 6.87 | |
PDA-modified PES/P84 (75:25) (30 min) | na | 122.43 | 30.90 | 3.96 | |
Matrimid | 35/3.5 | 27.16 | 7.00 | 3.88 | [103] |
Matrimid/PBI (25:75) | 35/3.5 | 5.47 | 0.580 | 9.43 | |
p-xylenediamine-modified Matrimid/PBI (25:75) (5 days) | 35/3.5 | 4.09 | 0.209 | 19.56 | |
p-xylenediamine-modified Matrimid/PBI (25:75) (10 days) | 35/3.5 | 3.60 | 0.138 | 26.09 | |
p-xylene chloride-modified Matrimid/PBI (25:75) (5 days) | 35/3.5 | 5.34 | 0.453 | 11.79 | |
p-xylene chloride-modified Matrimid/PBI (25:75) (10 days) | 35/3.5 | 4.04 | 0.306 | 13.02 |
Parameters | Changes After Modifications |
---|---|
Crosslinking time | Reduce membrane pore size with increasing time Tighten interstitial d-spacing of membrane Increase the degree of crosslinking until optimal crosslinking time |
Crosslinker types | Molecular dimension and nucleophilicity of molecules affect the crosslinking reaction Weaker nucleophile crosslinker difficult to diffuse in the polymer chain network Large molecular dimension of crosslinker incomplete crosslink with polymer chain |
Crosslinker concentration | Increasing crosslinker concentration leading to decrease the H2 permeability and increasing H2 selectivity Optimal crosslinker concentration for sufficient crosslinking reaction |
Crosslinking modification method | Depends on the shape of fabricated membrane Vapor phase method more suitable for hollow fiber membrane but use complicated method Post-synthesis method well-known to be used for flat sheet membrane |
Crosslinker solution types | Methanol is well-known to swell the membrane, facilitating the crosslinking reaction to occur |
Polymer blending compositions | High content of high resistance polymer is preferable to increase CO2 plasticization resistance |
Polymer materials selection | PI is preferable to blend with polymers that have higher CO2 plasticization resistance |
Ratios of crosslinker to the blended polymers | Need to adjust as too high crosslinker concentration will decrease H2 selectivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Amin, N.H.; Junaidi, M.U.M.; Amir, Z.; Hashim, N.A.; Hizaddin, H.F.; Ahmad, A.L.; Zainal Abidin, M.I.I.; Rabuni, M.F.; Syed Nor, S.N. Diamine-Crosslinked and Blended Polyimide Membranes: An Emerging Strategy in Enhancing H2/CO2 Separation. Polymers 2025, 17, 615. https://doi.org/10.3390/polym17050615
Mohd Amin NH, Junaidi MUM, Amir Z, Hashim NA, Hizaddin HF, Ahmad AL, Zainal Abidin MII, Rabuni MF, Syed Nor SN. Diamine-Crosslinked and Blended Polyimide Membranes: An Emerging Strategy in Enhancing H2/CO2 Separation. Polymers. 2025; 17(5):615. https://doi.org/10.3390/polym17050615
Chicago/Turabian StyleMohd Amin, Noor Hafizah, Mohd Usman Mohd Junaidi, Zulhelmi Amir, Nur Awanis Hashim, Hanee Farzana Hizaddin, Abdul Latif Ahmad, Mohd Izzudin Izzat Zainal Abidin, Mohamad Fairus Rabuni, and Sharifah Norsyahindah Syed Nor. 2025. "Diamine-Crosslinked and Blended Polyimide Membranes: An Emerging Strategy in Enhancing H2/CO2 Separation" Polymers 17, no. 5: 615. https://doi.org/10.3390/polym17050615
APA StyleMohd Amin, N. H., Junaidi, M. U. M., Amir, Z., Hashim, N. A., Hizaddin, H. F., Ahmad, A. L., Zainal Abidin, M. I. I., Rabuni, M. F., & Syed Nor, S. N. (2025). Diamine-Crosslinked and Blended Polyimide Membranes: An Emerging Strategy in Enhancing H2/CO2 Separation. Polymers, 17(5), 615. https://doi.org/10.3390/polym17050615