Polymer-Based Flame-Retardant Asphalt: A Comprehensive Review of Materials, Performance, and Evaluation Methods
Abstract
1. Introduction
2. Background
3. Materials
3.1. Matrix
3.2. Additives
- Expandable Graphite
- Ammonium Polyphosphate
- Aluminium Hydroxide
- Magnesium Hydroxide
- Calcium Hydroxide
- Polymer Modifiers
- Bio-Based Additives
- Fibres and Nanoparticles Reinforcement
3.3. FR Mechanism
3.4. Asphalt Properties and Their Role in Flame Retardancy
3.4.1. Mechanical Performance and Flame-Retardant Effects
3.4.2. Rheological Behaviour in Modified Asphalt Systems
3.4.3. Thermal Characteristics and Combustion Resistance
4. Application of Asphalt
4.1. Overview
- Building and Protective Applications
- Recycling and Sustainability
- Industrial Applications
4.2. Circular Economy Contributions
5. Evaluation Methodology
5.1. Fire-Performance Assessment Techniques
5.2. Fabrication
5.2.1. Dry Process (DP)
5.2.2. Wet Process (WP)
5.2.3. Semi-Wet Process (SWP)
5.3. Characterisation
5.3.1. Tensile and Compressive Testing
- σ = horizontal tensile strength (GPa);
- P = applied load at failure (kN);
- d = specimen diameter (mm);
- t = specimen thickness (mm).
5.3.2. Fatigue Testing
- The rate of stiffness reduction decelerates.
- Stiffness decreases in a nearly linear fashion.
- Stiffness reduction accelerates rapidly.
5.3.3. Wheel-Tracking Test (Pavement Evaluation)
5.3.4. Combustion Behaviour
5.3.5. Thermal Behaviour
5.3.6. Microstructure
5.4. Computational Analysis
5.4.1. Fire Dynamic Simulator
5.4.2. ANSYS Modelling
5.4.3. Molecular Dynamic
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ARP | Activated Rubber Pellets |
| ATH | Aluminium Hydroxide |
| APP | Ammonium Polyphosphate |
| AR | Asphalt Rubber |
| BA | Base Asphalt |
| CO2 | Carbon Dioxide |
| CO | Carbon Monoxide |
| CNTs | Carbon Nanotubes |
| CFD | Computational Fluid Dynamics |
| CRM | Crumb Rubber Modifier |
| DTG | Derivative Thermogravimetric |
| DP | Dey Process |
| DSC | Differential Scanning Calorimetry |
| DSR | Dynamic Shear Rheometry |
| EDS | Energy Dispersive X-ray Spectroscopy |
| EGA | Evolved Gas Analysis |
| EG | Expandable Graphite |
| FRPCs | Fibre-Reinforced Polymer Composites |
| FEA | Finite Element Analysis |
| FDS | Fire Dynamics Simulator |
| FR | Fire Retardant |
| FTIR | Fourier Transform Infrared |
| HRR | Heat Release Rates |
| HMA | Hot Mix Asphalt |
| IFS | Indirect Tensile Strength |
| IFRs | Intumescent Flame Retardants |
| LDH | Layered Double Hydroxides |
| LCA | Life Cycle Assessment |
| MH | Magnesium Hydroxide |
| MCC | Micro-scale Combustion Calorimeter |
| MD | Molecular Dynamics |
| MPD | Mean Profile Depth |
| PAH | Polycyclic Aromatic Hydrocarbons |
| PAV | Pressure Aging Vessel |
| PMA | Polymer-Modified Asphalt |
| PWI | Pavement Wear Index |
| RAP | Reclaimed Asphalt Pavement |
| SARA | Saturates, Aromatics, Resins, and Asphaltenes |
| SEM | Scanning Electron Microscopy |
| SWP | Semi-Wet Process |
| SBS | Styrene–Butadiene–Styrene |
| TGA | Thermogravimetric Analysis |
| THR | Total Heat Release |
| UTW | Ultra-Thin White |
| VOCs | Volatile Organic Compounds |
| WMA | Warm-Mix Asphalt |
| WP | Wet Process |
| WT | Wheel-Tracking |
References
- Jiang, X.; Zhu, H.; Yan, Z.; Zhang, F.; Huang, X.; Leng, Z.; Yan, C.; Hua, N.; Lu, D.; Zhang, X.; et al. Fire-retarding asphalt pavement for urban road tunnels: A state-of-the-art review and beyond. Fire Technol. 2025, 61, 2737–2777. [Google Scholar] [CrossRef]
- He, L.; Cao, Y.; Qu, H.-M.; Zhang, Y.-K.; Bi, Q.-Q.; Wang, D.-Y. Advances in flame retardancy of asphalt pavement: A review. Adv. Ind. Eng. Polym. Res. 2024, 7, 273–294. [Google Scholar] [CrossRef]
- Li, M.; Pang, L.; Chen, M.; Xie, J.; Liu, Q. Effects of aluminum hydroxide and layered double hydroxide on asphalt fire resistance. Materials 2018, 11, 1939. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Z.; Wang, Z.; Sun, J.; Wei, Y.; Zhang, D. Preparation and properties of flame-retardant asphalt containing polyurethane and eco-friendly flame retardants. Constr. Build. Mater. 2023, 375, 130996. [Google Scholar] [CrossRef]
- Tan, Y.; Xie, J.; Wang, Z.; Li, X.; He, Z. Preparation, properties, and mechanism of warm mix flame retardant modified asphalt based on surface activity principle. J. Build. Eng. 2023, 76, 107117. [Google Scholar] [CrossRef]
- Xu, G.; Chen, X.; Zhu, S.; Kong, L.; Huang, X.; Zhao, J.; Ma, T. Evaluation of asphalt with different combinations of fire retardants. Materials 2019, 12, 1283. [Google Scholar] [CrossRef]
- Wei, H.; Lu, R.; Li, J.; Yao, Z.; Zheng, J. Investigation on synergistic flame retardancy of modified asphalt using tungsten mine tailings and aluminum trihydrate. Constr. Build. Mater. 2024, 451, 138891. [Google Scholar] [CrossRef]
- Sheng, Y.; Wu, Y.; Yan, Y.; Jia, H.; Qiao, Y.; Underwood, B.S.; Niu, D.; Kim, Y.R. Development of environmentally friendly flame retardant to achieve low flammability for asphalt binder used in tunnel pavements. J. Clean. Prod. 2020, 257, 120487. [Google Scholar] [CrossRef]
- Luo, D.; Guo, M.; Tan, Y. Molecular simulation of minerals-asphalt interfacial interaction. Minerals 2018, 8, 176. [Google Scholar] [CrossRef]
- Xing, C.; Xiong, Z.; Lu, T.; Li, H.; Zhou, W.; Li, C. Performance of Asphalt Materials Based on Molecular Dynamics Simulation: A Review. Polymers 2025, 17, 2051. [Google Scholar] [CrossRef]
- Kamilaris, A.; Filippi, J.; Padubidri, C.; Koole, R.; Karatsiolis, S. Examining the potential of mobile applications to assist people to escape wildfires in real-time. Fire Saf. J. 2023, 136, 103747. [Google Scholar] [CrossRef]
- Cardil, A.; Monedero, S.; Schag, G.; de-Miguel, S.; Tapia, M.; Stoof, C.R.; Silva, C.A.; Mohan, M.; Cardil, A.; Ramirez, J. Fire behavior modeling for operational decision-making. Curr. Opin. Environ. Sci. Health 2021, 23, 100291. [Google Scholar] [CrossRef]
- Wang, B.; Peng, W.; Zhong, W.; Liang, T. Investigation on smoke propagation behavior and smoke back-layering length of fires in an inclined tunnel under natural ventilation. Tunn. Undergr. Space Technol. 2024, 150, 105823. [Google Scholar] [CrossRef]
- Weng, M.C.; Yu, L.X.; Liu, F.; Nielsen, P.V. Full-scale experiment and CFD simulation on smoke movement and smoke control in a metro tunnel with one opening portal. Tunn. Undergr. Space Technol. 2014, 42, 96–104. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, Z. Study on Fire Smoke Movement Characteristics and Their Impact on Personal Evacuation in Curved Highway Tunnels. Appl. Sci. 2024, 14, 6339. [Google Scholar] [CrossRef]
- Mejias Tuni, J.A. Multiscale Approach Applied to Fires in Tunnels, Model Optimization and Development. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2022. [Google Scholar]
- Galuppi, M.; Berardi, D.; Lombardi, M. The contribution from asphalt pavement to road tunnel fire risk. Case Stud. Constr. Mater. 2025, 23, e05029. [Google Scholar] [CrossRef]
- Li, W.; Zheng, M.; Zhang, L.; Peng, P.; Yang, J. Development and performance evaluation of composite flame retardant based on the thermodynamic properties of asphalt components. Constr. Build. Mater. 2024, 455, 139152. [Google Scholar] [CrossRef]
- Shi, H.; Xu, T.; Zhou, P.; Jiang, R. Combustion properties of saturates, aromatics, resins, and asphaltenes in asphalt binder. Constr. Build. Mater. 2017, 136, 515–523. [Google Scholar] [CrossRef]
- Puente, E.; Lázaro, D.; Alvear, D. Study of tunnel pavements behaviour in fire by using coupled cone calorimeter–FTIR analysis. Fire Saf. J. 2016, 81, 1–7. [Google Scholar] [CrossRef]
- Chang, X.; Xiao, Y.; Long, Y.; Wang, F.; You, Z. Temperature dependency of VOCs release characteristics of asphalt materials under varying test conditions. J. Traffic Transp. Eng. (Engl. Ed.) 2022, 9, 280–292. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Xia, W.; Hu, Z. Effects of flame retardants on thermal decomposition of SARA fractions separated from asphalt binder. Constr. Build. Mater. 2018, 173, 209–219. [Google Scholar] [CrossRef]
- Campbell-Allen, D.; Desai, P. The influence of aggregate on the behaviour of concrete at elevated temperatures. Nucl. Eng. Des. 1967, 6, 65–77. [Google Scholar] [CrossRef]
- Cuadri, A.; Partal, P.; Ahmad, N.; Grenfell, J.; Airey, G. Chemically modified bitumens with enhanced rheology and adhesion properties to siliceous aggregates. Constr. Build. Mater. 2015, 93, 766–774. [Google Scholar] [CrossRef]
- EN 13501-1; Fire Classification of Construction Products and Building Elements—Part 1: Classification Using Data from Reaction-to-Fire Tests. European Committee for Standardization: Brussels, Belgium, 2018.
- ASTM E1354; Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter. ASTM International: West Conshohocken, PA, USA, 2022.
- Bonati, A.; Rainieri, S.; Bochicchio, G.; Tessadri, B.; Giuliani, F. Characterization of thermal properties and combustion behaviour of asphalt mixtures in the cone calorimeter. Fire Saf. J. 2015, 74, 25–31. [Google Scholar] [CrossRef]
- Wang, W.; Shen, A.; Wang, L.; Liu, H. Measurements, emission characteristics, and control methods of fire effluents generated from tunnel asphalt pavement during fire: A review. Environ. Sci. Pollut. Res. 2022, 29, 64267–64297. [Google Scholar] [CrossRef]
- Elkashef, M.; Williams, R.C.; Cochran, E. Thermal stability and evolved gas analysis of rejuvenated reclaimed asphalt pavement (RAP) bitumen using thermogravimetric analysis–Fourier transform infrared (TG–FTIR). J. Therm. Anal. Calorim. 2018, 131, 865–871. [Google Scholar] [CrossRef]
- Materazzi, S.; Vecchio, S. Recent applications of evolved gas analysis by infrared spectroscopy (IR-EGA). Appl. Spectrosc. Rev. 2013, 48, 654–689. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, D.X.; Qiao, Y.; Giustozzi, F. Modelling the hydraulic performance of open graded asphalt using the discrete element method and computational fluid dynamics. J. Hydrol. 2023, 621, 129612. [Google Scholar] [CrossRef]
- Caliendo, C.; Russo, I. CFD simulation to assess the effects of asphalt pavement combustion on user safety in the event of a fire in road tunnels. Fire 2024, 7, 195. [Google Scholar] [CrossRef]
- Lannon, C.M.; Stoliarov, S.I.; Lord, J.M.; Leventon, I.T. A methodology for predicting and comparing the full-scale fire performance of similar materials based on small-scale testing. Fire Mater. 2018, 42, 710–724. [Google Scholar] [CrossRef]
- Yang, K.; Li, R. Characterization of bonding property in asphalt pavement interlayer: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 374–387./. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, H.; Wang, S.; Xu, T. Thermal-oxidative aging mechanism of asphalt binder based on isothermal thermal analysis at the SARA level. Constr. Build. Mater. 2020, 255, 119349. [Google Scholar] [CrossRef]
- Firoozifar, S.H.; Foroutan, S.; Foroutan, S. The effect of asphaltene on thermal properties of bitumen. Chem. Eng. Res. Des. 2011, 89, 2044–2048. [Google Scholar] [CrossRef]
- Gao, Y.; Geng, D.; Huang, X.; Li, G. Degradation evaluation index of asphalt pavement based on mechanical performance of asphalt mixture. Constr. Build. Mater. 2017, 140, 75–81. [Google Scholar] [CrossRef]
- Assogba, O.C.; Tan, Y.; Sun, Z.; Lushinga, N.; Bin, Z. Effect of vehicle speed and overload on dynamic response of semi-rigid base asphalt pavement. Road Mater. Pavement Des. 2021, 22, 572–602. [Google Scholar]
- Jiang, J.; Guo, X.; Hao, P.; Guo, X.; Huang, S.; Chen, K. Effects of SARA fractions on the rheological properties and microscopic behavior of hard asphalt. Constr. Build. Mater. 2024, 438, 137055. [Google Scholar] [CrossRef]
- Rajib, A.I.; Pahlavan, F.; Fini, E.H. Investigating molecular-level factors that affect the durability of restored aged asphalt binder. J. Clean. Prod. 2020, 270, 122501. [Google Scholar] [CrossRef]
- Abouelsaad, A.; White, G.; Jamshidi, A. State of the art review of ageing of bituminous binders and asphalt mixtures: Ageing simulation techniques, ageing inhibitors and the relationship between simulated ageing and field ageing. Infrastructures 2024, 9, 8. [Google Scholar] [CrossRef]
- Bruneau, L.; Tisse, S.; Michon, L.; Cardinael, P. Evaluation of asphalt aging using multivariate analysis applied to saturates, aromatics, resins, and asphaltene determinator data. ACS Omega 2023, 8, 24773–24785. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Ban, X.; Liu, X.; Guo, Y.; Sun, J.; Liu, Y.; Zhang, S.; Lei, J. Thermosetting resin modified asphalt: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 1001–1036. [Google Scholar]
- Li, Y.; Lv, C.; Cheng, P.; Chen, Y.; Zhang, Z. Application of bio-resin in road materials: Rheological and chemical properties of asphalt binder modified by lignin-phenolic resin. Case Stud. Constr. Mater. 2023, 18, e01989. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, K.; Li, F.; Gao, Q.; Lai, K.W.C. Asphaltenes in asphalt: Direct observation and evaluation of their impacts on asphalt properties. Constr. Build. Mater. 2021, 271, 121862. [Google Scholar] [CrossRef]
- Ghasemirad, A.; Bala, N.; Hashemian, L. High-temperature performance evaluation of asphaltenes-modified asphalt binders. Molecules 2020, 25, 3326. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, J.; Wang, S. Using mineral fibers to improve asphalt and asphalt mixture behavior. In Traffic and Transportation Studies 2010; American Society of Civil Engineers: Reston, VA, USA, 2010; pp. 1352–1360. [Google Scholar]
- Vigroux, M.; Sciarretta, F.; Eslami, J.; Beaucour, A.-L.; Bourgès, A.; Noumowé, A. High temperature effects on the properties of limestones: Post-fire diagnostics and material’s durability. Mater. Struct. 2022, 55, 253. [Google Scholar] [CrossRef]
- Hasita, S.; Suddeepong, A.; Horpibulsuk, S.; Samingthong, W.; Arulrajah, A.; Chinkulkijniwat, A. Properties of asphalt concrete using aggregates composed of limestone and steel slag blends. J. Mater. Civ. Eng. 2020, 32, 06020007. [Google Scholar] [CrossRef]
- Airey, G.D. Fundamental binder and practical mixture evaluation of polymer modified bituminous materials. Int. J. Pavement Eng. 2004, 5, 137–151. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Z.; Zhou, J.; Wang, J.; Zhang, X.; Zhao, R.; Tong, J. Thermal degradation characteristics of styrene-butadiene-styrene copolymer asphalt binder filled with an inorganic flame-retarding agent. Polymers 2022, 14, 3761. [Google Scholar] [CrossRef]
- Bansal, S.; Gupta, V.; Chopra, T.; Mehta, R. Styrene-Butadiene-Styrene polymer modified bitumen: A review on compatibility and physico-chemical properties. Phys. Scr. 2024, 99, 122001. [Google Scholar] [CrossRef]
- Khan, A.A.R.; Tabassum, N. Enhancing Pavement Performance and Economy through Crumb Rubber Modified Bitumen: A Sustainable Engineering Approach. Smart Green Mater. 2025, 2, 47–61. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Z.-J.; Tan, Y.-Q.; Liu, Z.-Y. Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations. Energy Fuels 2015, 29, 112–121. [Google Scholar] [CrossRef]
- Aske, N.; Kallevik, H.; Sjöblom, J. Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy. Energy Fuels 2001, 15, 1304–1312. [Google Scholar] [CrossRef]
- Xiu, M.; Wang, X.; Morawska, L.; Pass, D.; Beecroft, A.; Mueller, J.F.; Thai, P. Emissions of particulate matters, volatile organic compounds and polycyclic aromatic hydrocarbons from warm and hot asphalt mixes. J. Clean. Prod. 2020, 275, 123094. [Google Scholar] [CrossRef]
- Brandt, H.; De Groot, P. Aqueous leaching of polycyclic aromatic hydrocarbons from bitumen and asphalt. Water Res. 2001, 35, 4200–4207. [Google Scholar] [CrossRef] [PubMed]
- Cong, P.; Tian, Y.; Liu, N.; Xu, P. Investigation of epoxy-resin-modified asphalt binder. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Mazalan, N.A.A.; Satar, M.K.I.M.; Mohamed, A.; Warid, M.N.M. Rheological properties of asphaltene-modified asphalt binder and mastic. Phys. Chem. Earth Parts A/B/C 2023, 131, 103422. [Google Scholar] [CrossRef]
- Hull, T.R.; Witkowski, A.; Hollingbery, L. Fire retardant action of mineral fillers. Polym. Degrad. Stab. 2011, 96, 1462–1469. [Google Scholar] [CrossRef]
- Busang, S. Optimisation of Microstructural Properties and Mechanical Performance of Asphalt Mixtures. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2021. [Google Scholar]
- Li, J.; Qin, Y.; Zhang, X.; Shan, B.; Liu, C. Emission characteristics, environmental impacts, and health risks of volatile organic compounds from asphalt materials: A state-of-the-art review. Energy Fuels 2024, 38, 4787–4802. [Google Scholar] [CrossRef]
- Li, Y.; Hao, P.; Zhang, M. Fabrication, characterization and assessment of the capsules containing rejuvenator for improving the self-healing performance of asphalt materials: A review. J. Clean. Prod. 2021, 287, 125079. [Google Scholar] [CrossRef]
- Hasan, J.N.; Alzeebaree, R.; Hussein, N.A. Using polymers to improve asphalt pavement performance: A review. AIP Conf. Proc. 2024, 2944, 020021. [Google Scholar] [CrossRef]
- Cavalli, M.C.; Wu, W.; Poulikakos, L. Bio-based rejuvenators in asphalt pavements: A comprehensive review and analytical study. J. Road Eng. 2024, 4, 282–291. [Google Scholar] [CrossRef]
- Korniejenko, K.; Nykiel, M.; Choinska, M.; Jexembayeva, A.; Konkanov, M.; Aruova, L. An overview of micro-and nano-dispersion additives for asphalt and bitumen for road construction. Buildings 2023, 13, 2948. [Google Scholar] [CrossRef]
- Qadir, F.; Hafeez, I. Effect of impregnated organophilic (hydrophobic) nano clay on asphalt binder properties and performance. Constr. Build. Mater. 2024, 419, 135577. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, R.; Liu, Y.; Xi, Z.; Cai, J.; Zhang, J.; Wang, Q.; Xie, H. Development of eco-friendly fire-retarded warm-mix epoxy asphalt binders using reactive polymeric flame retardants for road tunnel pavements. Constr. Build. Mater. 2021, 284, 122752. [Google Scholar] [CrossRef]
- Xia, W.; Fan, S.; Xu, T. Inhibitory action of halogen-free fire retardants on combustion and volatile emission of bituminous components. Sci. Prog. 2021. [Google Scholar] [CrossRef]
- He, C.; Ji, Y.; Gao, M.; Wang, W.; Pei, D.; Chen, C.; Qu, M.; Sun, G. Synergistic flame retardant effect of ammonium polyphosphate/melamine cyanurate/aluminum hypophosphite in natural rubber. J. Therm. Anal. Calorim. 2025, 150, 9121–9131. [Google Scholar] [CrossRef]
- Albayati, A.H.; Latief, R.H.; Al-Mosawe, H.; Wang, Y. Nano-additives in asphalt binder: Bridging the gap between traditional materials and modern requirements. Appl. Sci. 2024, 14, 3998. [Google Scholar] [CrossRef]
- Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. Developments of nano materials and technologies on asphalt materials—A review. Constr. Build. Mater. 2017, 143, 633–648. [Google Scholar]
- Kabir, I.I.; Carlos Baena, J.; Wang, W.; Wang, C.; Oliver, S.; Nazir, M.T.; Khalid, A.; Fu, Y.; Yuen, A.C.Y.; Yeoh, G.H. Optimisation of additives to maximise performance of expandable graphite-based intumescent-flame-retardant polyurethane composites. Molecules 2023, 28, 5100. [Google Scholar] [CrossRef]
- Huang, G.; He, Z.; Huang, Y.; Zhou, C.; Yuan, X. Mechanism of fume suppression and performance on asphalt of expanded graphite for pavement under high temperature condition. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2014, 29, 1229–1236. [Google Scholar]
- Zhang, J.; Yeoh, G.H.; Kabir, I.I. Polyurethane materials for fire retardancy: Synthesis, structure, properties, and applications. Fire 2025, 8, 64. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, M.; Chen, Z.; Li, P.; Shao, Z.; Liu, X.; Liu, P. Hydrogen-bonded PEG/functionalized expanded graphite composite phase change material (PEG/FEG CPCM) for pavement thermal regulation: Fabrication and performance. Constr. Build. Mater. 2025, 491, 142695. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, F.; Al-Sehemi, A.G.; Assiri, M.A.; Raza, M.R.; Irfan, A. Effect of expandable graphite and ammonium polyphosphate on the thermal degradation and weathering of intumescent fire-retardant coating. J. Appl. Polym. Sci. 2021, 138, 50310. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, M.; Wu, S.; Riara, M.; Wan, J.; Li, Y. Thermal and rheological performance of asphalt binders modified with expanded graphite/polyethylene glycol composite phase change material (EP-CPCM). Constr. Build. Mater. 2019, 194, 83–91. [Google Scholar] [CrossRef]
- Lim, K.-S.; Bee, S.-T.; Sin, L.T.; Tee, T.-T.; Ratnam, C.; Hui, D.; Rahmat, A. A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Compos. Part B Eng. 2016, 84, 155–174. [Google Scholar] [CrossRef]
- Liang, X.; Wang, X.; Li, G.; Xiang, Q.; Zhou, C.; Chen, A.; Li, X.; Zhang, S.; Cao, Y.; Han, M.; et al. Unlocking the side reaction mechanism of phosphorus anode with binder and the development of a multifunctional binder for enhancing the performance. J. Power Sources 2022, 541, 231686. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Lei, C.; Qiu, H.; Jiang, W.; Sun, X.; Zhang, Y.; He, W. Ammonium polyphosphate assisted thermal polymerization of pre-oxidized asphalt to prepare N/P double-doped hard carbon for improved sodium ion storage. J. Energy Storage 2024, 85, 111045. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Liang, M.; Yuan, T.; Rong, H. Effect of aluminum hydroxide (ATH) on flame retardancy and smoke suppression properties of SBS-modified asphalt. Road Mater. Pavement Des. 2023, 24, 173–190. [Google Scholar] [CrossRef]
- Zhu, K.; Yang, Y.; Lin, C.; Wang, Q.; Ye, D.; Jiang, H.; Wu, K. Effect of compounded aluminum hydroxide flame retardants on the flammability and smoke suppression performance of asphalt binders. ACS Omega 2024, 9, 2803–2814. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, T.; Zhu, K.; Tang, D.; Wu, K. Effect of various metal hydroxide flame retardants on the rheological properties of asphalt binder. Mater. Sci. 2019, 25, 348–355. [Google Scholar] [CrossRef]
- Bonati, A.; Merusi, F.; Bochicchio, G.; Tessadri, B.; Polacco, G.; Filippi, S.; Giuliani, F. Effect of nanoclay and conventional flame retardants on asphalt mixtures fire reaction. Constr. Build. Mater. 2013, 47, 990–1000. [Google Scholar] [CrossRef]
- Iskender, E. Evaluation of mechanical properties of nano-clay modified asphalt mixtures. Measurement 2016, 93, 359–371. [Google Scholar] [CrossRef]
- Xu, T.; Huang, X.; Zhao, Y. Investigation into the properties of asphalt mixtures containing magnesium hydroxide flame retardant. Fire Saf. J. 2011, 46, 330–334. [Google Scholar] [CrossRef]
- Xu, T.; Huang, X. A TG-FTIR investigation into smoke suppression mechanism of magnesium hydroxide in asphalt combustion process. J. Anal. Appl. Pyrolysis 2010, 87, 217–223. [Google Scholar] [CrossRef]
- Çalışıcı, M.; Gürü, M.; Çubuk, M.K. Improving Asphalt Binder and Hot Mix Asphalt Aging Properties by Adding Synthetic Polyboron and Organic Magnesium Oxide. Arab. J. Sci. Eng. 2023, 48, 4711–4718. [Google Scholar] [CrossRef]
- Tang, N.; Yu, H.; Ren, B.; Li, R.; Yi, X.; Zhu, H. Effect of lanthanum oxide and magnesium hydroxide on flame retardancy, rheological properties, and aging resistance of SBS modified asphalt. Constr. Build. Mater. 2025, 490, 142544. [Google Scholar] [CrossRef]
- Knight, C.C.; Ip, F.; Zeng, C.; Zhang, C.; Wang, B. A highly efficient fire-retardant nanomaterial based on carbon nanotubes and magnesium hydroxide. Fire Mater. 2013, 37, 91–99. [Google Scholar] [CrossRef]
- Danny, G.; Nasus, K.; Napitupulu, J.P.; Makmur, A. The Influence of Limestone and Calcium Hydroxide Addition in Asphalt Concrete Mixture. ComTech Comput. Math. Eng. Appl. 2016, 7, 83–90. [Google Scholar] [CrossRef]
- Grajales, J.A.; Perez, L.M.; Schwab, A.P.; Little, D.N. Quantum chemical modeling of the effects of hydrated lime (calcium hydroxide) as a filler in bituminous materials. ACS Omega 2021, 6, 3130–3139. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, W.; Falchetto, A.C.; Yuan, D.; Xiao, J.; Wang, D. Prediction of rheological properties of high polymer-modified asphalt binders based on BAS-BP neural network and functional groups. Fuel 2025, 379, 132989. [Google Scholar] [CrossRef]
- Hong, Z.; Yan, K.; Ge, D.; Wang, M.; Li, G.; Li, H. Effect of styrene-butadiene-styrene (SBS) on laboratory properties of low-density polyethylene (LDPE)/ethylene-vinyl acetate (EVA) compound modified asphalt. J. Clean. Prod. 2022, 338, 130677. [Google Scholar] [CrossRef]
- Liu, S.; Tan, Y. Mechanical properties and water resistance study of basic magnesium sulfate cement-emulsified asphalt composite materials. Constr. Build. Mater. 2024, 426, 136196. [Google Scholar] [CrossRef]
- Shimpi, N.G.; Sonawane, H.A.; Mali, A.D.; Mishra, S. Effect of Mg(OH)2 nanoparticles on thermal, mechanical and morphological properties of millable polyurethane elastomer. J. Reinf. Plast. Compos. 2013, 32, 935–946. [Google Scholar] [CrossRef]
- Barczewski, M.; Hejna, A.; Sałasińska, K.; Aniśko, J.; Piasecki, A.; Skórczewska, K.; Andrzejewski, J. Thermomechanical and fire properties of polyethylene-composite-filled ammonium polyphosphate and inorganic fillers: An evaluation of their modification efficiency. Polymers 2022, 14, 2501. [Google Scholar] [CrossRef]
- Yang, Y.; Haurie, L.; Wang, D.-Y. Bio-based materials for fire-retardant application in construction products: A review. J. Therm. Anal. Calorim. 2022, 147, 6563–6582. [Google Scholar]
- Dong, M.; Xia, W.; Xu, T. Development of a sustainable biobased flame-retardant microcapsule and its flame-retarding mechanism on asphalt combustion. Langmuir 2024, 40, 1425–1438. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, C.E. Recent advances in bio-based flame retardant additives for synthetic polymeric materials. Polymers 2019, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Bi, Q.-Q.; Ma, Y.; Wang, D.-Y. Effects of flame-retardant nanocomposite combined with warm mix asphalt techniques on molecular conversion and fire safety. React. Funct. Polym. 2025, 215, 106353. [Google Scholar] [CrossRef]
- Leng, C.; Lu, G.; Gao, J.; Liu, P.; Xie, X.; Wang, D. Sustainable green pavement using bio-based polyurethane binder in tunnel. Materials 2019, 12, 1990. [Google Scholar] [CrossRef]
- Zhong, Q.; Wang, C.; Ye, G.; Guo, Z.; Sai, T.; Hong, M.; Song, P.; Wang, H.; Huo, S.; Liu, Z. Bio-based, selenium/Schiff base-containing co-curing agent enables flame-retardant, smoke-suppressive and mechanically-strong epoxy resins. Chem. Eng. J. 2025, 523, 168756. [Google Scholar] [CrossRef]
- Kolya, H.; Kang, C.-W. Eco-friendly polymer nanocomposite coatings for next-generation fire retardants for building materials. Polymers 2024, 16, 2045. [Google Scholar]
- Sharma, S.; Narnaure, T.K. Behavior of Asphalt Using Lignin-Modified Binder—A Review. In International Conference on Transportation System Engineering and Management; Springer Nature: Singapore, 2024; pp. 143–161. [Google Scholar]
- Kabir, I.I.; Sorrell, C.C.; Mofarah, S.S.; Yang, W.; Yuen, A.C.Y.; Nazir, M.T.; Yeoh, G.H. Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure, Properties, and Applications. Polym. Rev. 2020, 61, 357–414. [Google Scholar] [CrossRef]
- Arab, M.G.; Mousa, R.; Gabr, A.; Azam, A.; El-Badawy, S.; Hassan, A. Resilient behavior of sodium alginate–treated cohesive soils for pavement applications. J. Mater. Civ. Eng. 2019, 31, 04018361. [Google Scholar] [CrossRef]
- Caputo, P.; Oliviero Rossi, C.; Calandra, P.; Policastro, D.; Giorno, E.; Godbert, N.; Aiello, I. Improving bitumen properties with chitosan: A sustainable approach to road construction. Molecules 2025, 30, 1170. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Hao, Q.; Xu, S.; Han, X.; Yi, J.; Sun, G. Preparation and performance evaluation of bio–based polyurethane modified asphalt binders: Towards greener and more sustainable asphalt modifier. Constr. Build. Mater. 2025, 476, 141209. [Google Scholar] [CrossRef]
- Quan, X.; Liu, X.; Chen, C.; Ma, T.; Wang, X.; Zhang, Y. Improving thermal cracking and fatigue cracking performance of hard asphalt binders with bio-renewable additives. Constr. Build. Mater. 2024, 456, 139305. [Google Scholar] [CrossRef]
- Ni, H.; Ma, J.; Sun, D.; Xu, L.; Ling, S.; Hu, M. Application of differential scanning calorimetry as advanced asphalt testing technology: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2025, 12, 1174–1209. [Google Scholar] [CrossRef]
- Calandra, P.; Caputo, P.; De Santo, M.P.; Todaro, L.; Liveri, V.T.; Rossi, C.O. Effect of additives on the structural organization of asphaltene aggregates in bitumen. Constr. Build. Mater. 2019, 199, 288–297. [Google Scholar] [CrossRef]
- Shafabakhsh, G.; Jafari Ani, O.; Mirabdolazimi, S.M. Rehabilitation of asphalt pavement to improvement the mechanical and environmental properties of asphalt concrete by using of nano particles. J. Rehabil. Civ. Eng. 2021, 9, 1–20. [Google Scholar]
- Wu, S.; Haji, A.; Adkins, I. State of art review on the incorporation of fibres in asphalt pavements. Road Mater. Pavement Des. 2023, 24, 1559–1594. [Google Scholar] [CrossRef]
- Adepu, R.; Ramayya, V.V.; Mamatha, A.; Ram, V.V. Fracture studies on basalt fiber reinforced asphalt mixtures with reclaimed asphalt pavement derived aggregates and warm mix additives. Constr. Build. Mater. 2023, 386, 131548. [Google Scholar] [CrossRef]
- Hui, Y.; Men, G.; Xiao, P.; Tang, Q.; Han, F.; Kang, A.; Wu, Z. Recent advances in basalt fiber reinforced asphalt mixture for pavement applications. Materials 2022, 15, 6826. [Google Scholar] [CrossRef] [PubMed]
- Geckil, T.; Ahmedzade, P. Effects of carbon fibre on performance properties of asphalt mixtures. Balt. J. Road Bridge Eng. 2020, 15, 49–65. [Google Scholar] [CrossRef]
- Li, N.; Zhan, H.; Yu, X.; Tang, W.; Xue, Q. Investigation of the aging behavior of cellulose fiber in reclaimed asphalt pavement. Constr. Build. Mater. 2021, 271, 121559. [Google Scholar] [CrossRef]
- Mashaan, N.; Karim, M.; Khodary, F.; Saboo, N.; Milad, A. Bituminous pavement reinforcement with fiber: A Review. CivilEng 2021, 2, 599–611. [Google Scholar] [CrossRef]
- Zhang, W.; Hao, X.; Fan, C.; Zhang, S.; Ma, D.; Yu, X.; Fu, Z.; Feng, G. Effect of polypropylene grafted maleic anhydride (PP-G-MAH) on the properties of asphalt and its mixture modified with recycled polyethylene/recycled polypropylene (RPE/RPP) blends. Front. Mater. 2022, 9, 814551. [Google Scholar] [CrossRef]
- Rosli, M.S.B. Multiple Response Taguchi Optimisation for Injected Moulded Polypropylene Nanoclay Gigantochloa scortechinii Processing and Fibre Content, for Building Appliances. Doctoral Dissertation, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Malaysia, 2023. [Google Scholar]
- Sundarakannan, R.; Balamurugan, K.; Jyothi, Y.; Arumugaprabu, V.; Sathish, T.; Mahmoud, Z.; Yousef, E.S.; Basheer, D.; Shaik, S. Importance of Fiber-/Nanofiller-Based Polymer Composites in Mechanical and Erosion Performance: A Review. J. Nanomater. 2023, 2023, 3528977. [Google Scholar] [CrossRef]
- Long, Z.; You, L.; Tang, X.; Ma, W.; Ding, Y.; Xu, F. Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using molecular dynamics simulation. Constr. Build. Mater. 2020, 255, 119354. [Google Scholar] [CrossRef]
- Faramarzi, M.; Arabani, M.; Haghi, A.; Mottaghitalab, V. Carbon nanotubes-modified asphalt binder: Preparation and characterization. Int. J. Pavement Res. Technol. 2015, 8, 29–37. [Google Scholar]
- Tan, Y.; Xie, J.; Wu, Y.; Wang, Z.; He, Z. Performance and microstructure characterizations of halloysite nanotubes composite flame retardant–modified asphalt. J. Mater. Civ. Eng. 2023, 35, 04022448. [Google Scholar] [CrossRef]
- Ren, D.; Fan, S.; Liu, Y.; Mao, C.; Zhao, Z.; Pei, R.; Li, J. Improving flame retardancy, fume suppression and mechanical properties of SBS modified binder using nano-porous fibers prepared by electrospinning. Constr. Build. Mater. 2023, 404, 133326. [Google Scholar] [CrossRef]
- Tan, Y.; He, Z.; Li, X.; Jiang, B.; Li, J.; Zhang, Y. Research on the flame retardancy properties and mechanism of modified asphalt with halloysite nanotubes and conventional flame retardant. Materials 2020, 13, 4509. [Google Scholar] [CrossRef]
- Martinho, F.C.; Farinha, J.P.S. An overview of the use of nanoclay modified bitumen in asphalt mixtures for enhanced flexible pavement performances. Road Mater. Pavement Des. 2019, 20, 671–701. [Google Scholar] [CrossRef]
- Xiang, D.; Shui, T.; Qiao, H.; Tan, W.; Harkin-Jones, E.; Zhang, J.; Ji, P.; Wang, P.; Wang, B.; Zhao, C.; et al. Enhanced interfacial interaction, mechanical properties and thermal stability of basalt fiber/epoxy composites with multi-scale reinforcements. Compos. Interfaces 2023, 30, 1387–1409. [Google Scholar] [CrossRef]
- Xia, W.; Wang, S.; Xu, T.; Jin, G. Flame retarding and smoke suppressing mechanisms of nano composite flame retardants on bitumen and bituminous mixture. Constr. Build. Mater. 2021, 266, 121203. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, M.; Wu, S.; Liu, P. Effect of expanded graphite/polyethylene glycol composite phase change material (EP-CPCM) on thermal and pavement performance of asphalt mixture. Constr. Build. Mater. 2021, 277, 122270. [Google Scholar] [CrossRef]
- Shi, L.; Chen, Y.; Gong, X.; Yu, X. Synthesis and characterization of quaternary ammonium salt tertiary amide type sodium hydroxypropyl phosphate asphalt emulsifier. Res. Chem. Intermed. 2019, 45, 5183–5201. [Google Scholar] [CrossRef]
- Barros, A.D.; Lucena, L.C.d.F.L.; Costa, D.B. Rheological properties of hydroxide and calcium oxide nanoparticles in asphalt binder. Pet. Sci. Technol. 2017, 35, 738–745. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, H.; Wang, T.; Li, Y.; Xu, S.; Que, Y.; Chen, Y. Synthesis of organic layered double hydroxide from waste bischofite and its application on ageing resistance of asphalt. Fuel 2024, 359, 130395. [Google Scholar] [CrossRef]
- Zhou, L.-h.; Zhu, K.; Sun, Y.-h.; Wang, Q.; Lin, H.-d.; Ye, D.; Wu, K. Application of layered double hydroxides in asphalt. J. Mater. Sci. 2025, 60, 15462–15491. [Google Scholar] [CrossRef]
- Xu, S.; Liu, L.; Jia, X.; Tighe, S.; Zhang, C.; Ma, H.; Zhou, X. Investigation of aging resistance of organic layered double hydroxide/antioxidant composite-modified asphalt. ACS Sustain. Chem. Eng. 2022, 11, 267–277. [Google Scholar] [CrossRef]
- Yao, H.; Wang, Y.; Liu, J.; Xu, M.; Ma, P.; Ji, J.; You, Z. Review on applications of lignin in pavement engineering: A recent survey. Front. Mater. 2022, 8, 803524. [Google Scholar] [CrossRef]
- Fini, E.H.; Ayat, S.; Pahlavan, F. Phenolic Compounds in the Built Environment. In Phenolic Compounds: Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications; IntechOpen Limited: London, UK, 2022; pp. 163–184. [Google Scholar]
- Chen, M.; Geng, J.; Xia, C.; He, L.; Liu, Z. A review of phase structure of SBS modified asphalt: Affecting factors, analytical methods, phase models and improvements. Constr. Build. Mater. 2021, 294, 123610. [Google Scholar] [CrossRef]
- Yan, K.; Chen, J.; You, L.; Tian, S. Characteristics of compound asphalt modified by waste tire rubber (WTR) and ethylene vinyl acetate (EVA): Conventional, rheological, and microstructural properties. J. Clean. Prod. 2020, 258, 120732. [Google Scholar] [CrossRef]
- Yan, K.; Tian, S.; Chen, J.; Liu, J. High temperature rheological properties of APAO and EVA compound modified asphalt. Constr. Build. Mater. 2020, 233, 117246. [Google Scholar] [CrossRef]
- Wu, B.; Pei, Z.; Luo, C.; Xia, J.; Chen, C.; Kang, A. Effect of different basalt fibers on the rheological behavior of asphalt mastic. Constr. Build. Mater. 2022, 318, 125718. [Google Scholar] [CrossRef]
- Arabani, M. Effect of glass cullet on the improvement of the dynamic behaviour of asphalt concrete. Constr. Build. Mater. 2011, 25, 1181–1185. [Google Scholar] [CrossRef]
- Luo, D.; Khater, A.; Yue, Y.; Abdelsalam, M.; Zhang, Z.; Li, Y.; Li, J.; Iseley, D.T. The performance of asphalt mixtures modified with lignin fiber and glass fiber: A review. Constr. Build. Mater. 2019, 209, 377–387. [Google Scholar] [CrossRef]
- Kazim, H.A.; Naser, A.F.; Jawad, Z.F.; Al-Hadbi, A. Development of new mixtures asphalt by using additive materials: Review study. AIP Conf. Proc. 2024, 3092, 090008. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, L.; Hu, G. Performance of halogen-free flame retardant EVA/MH/LDH composites with nano-LDHs and MH. Chin. Sci. Bull. 2011, 56, 3878–3883. [Google Scholar] [CrossRef]
- Habib, A.; Houri, A.A.; Al-Toubat, S.; Junaid, M.T. Experimental Techniques for Testing the Properties of Construction Materials. Preprints 2024. [Google Scholar] [CrossRef]
- Mathias, L. Material Characterization with Digital Image Correlation: Understanding the properties and behavior of materials through various testing methods, such as tensile, hardness, and impact testing, to determine their mechanical, thermal, and chemical characteristics. Multidiscip. J. Instr. 2023, 5, 39–63. [Google Scholar]
- Junaid, M.; Irfan, M.; Ahmed, S.; Ali, Y. Effect of binder grade on performance parameters of asphaltic concrete paving mixtures. Int. J. Pavement Res. Technol. 2018, 11, 435–444. [Google Scholar] [CrossRef]
- Dissanayaka, T.K. Evaluation of Novel Asphalt Binder Modifiers and Additives to Improve Extreme Temperature Rheological Properties for Enhanced Pavement Performance. Doctoral Dissertation, Texas Tech University, Lubbock, TX, USA, 2019. [Google Scholar]
- Kong, P.; Xu, G.; Chen, X.; Shi, X.; Zhou, J. Effect of different high viscosity modifiers on rheological properties of high viscosity asphalt. Front. Struct. Civ. Eng. 2021, 15, 1390–1399. [Google Scholar] [CrossRef]
- Kim, M.; Buttlar, W.G. Stiffening mechanisms of asphalt–aggregate mixtures: From binder to mixture. Transp. Res. Rec. 2010, 2181, 98–108. [Google Scholar] [CrossRef]
- Carvajal-Muñoz, J.S.; Airey, G. A micromechanics-rheological approach to study the stiffening mechanism of hydrated lime in asphalt mastics. Road Mater. Pavement Des. 2025, 1–32. [Google Scholar] [CrossRef]
- Luo, R.; Liu, H.; Zhang, Y. Characterization of linear viscoelastic, nonlinear viscoelastic and damage stages of asphalt mixtures. Constr. Build. Mater. 2016, 125, 72–80. [Google Scholar] [CrossRef]
- Li, P.; Jiang, X.; Guo, K.; Xue, Y.; Dong, H. Analysis of viscoelastic response and creep deformation mechanism of asphalt mixture. Constr. Build. Mater. 2018, 171, 22–32. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Wang, R.; Bahia, H.; Huang, W.; Wang, D.; Cai, W. Prediction of the fundamental viscoelasticity of asphalt mixtures using ML algorithms. Constr. Build. Mater. 2024, 442, 137573. [Google Scholar] [CrossRef]
- Mendes, M.T.; Dos Santos, A.O.; Perez, R.F.; Karnitz Junior, O.; Mansur, C.R. Assessment of Asphaltene and Maltene Interfacial Interactions with Antifoam Additives: A Rheological Approach. ACS Omega 2025, 10, 20515–20523. [Google Scholar] [CrossRef]
- Idumah, C.I.; Ogbu, J.E. Flame retardant mechanisms of Montmorillonites, layered double hydroxides and molybdenum disulfide polymeric nanoarchitectures for safety in extreme environments. Polym.-Plast. Technol. Mater. 2024, 63, 639–666. [Google Scholar] [CrossRef]
- Xia, W.; Wang, S.; Wang, H.; Xu, T. Thermal effects of asphalt SARA fractions, kinetic parameter calculation using isoconversional method and distribution models. J. Therm. Anal. Calorim. 2021, 146, 1577–1592. [Google Scholar] [CrossRef]
- Wang, J.; Wang, T.; Hou, X.; Xiao, F. Modelling of rheological and chemical properties of asphalt binder considering SARA fraction. Fuel 2019, 238, 320–330. [Google Scholar] [CrossRef]
- Pan, F.; Fan, Z.; Rochlani, M.; Falla, G.C.; Leischner, S.; Oeser, M.; Yu, H.; Liu, P. Evaluation of Adhesive Properties of Different Mineral Compositions in Asphalt Mixtures with Experimental and Molecular Dynamics Analyses. Buildings 2023, 13, 1207. [Google Scholar] [CrossRef]
- Xia, W.; Xu, T.; Wang, H. Thermal behaviors and harmful volatile constituents released from asphalt components at high temperature. J. Hazard. Mater. 2019, 373, 741–752. [Google Scholar] [CrossRef]
- Zheng, Q.; He, P.; Zhang, D.; Weng, Y.; Lu, J.; Wang, T. A holistic view of asphalt binder aging under ultraviolet conditions: Chemical, structural, and rheological characterization. Buildings 2024, 14, 3276. [Google Scholar] [CrossRef]
- Robertson, R.E.; Branthaver, J.F.; Harnsberger, P.M.; Peterson, J.C.; Dorrence, S.M.; McKay, J.F.; Turner, F.; Pauli, T.; Huang, S.-C.; Huh, J.-D.; et al. Fundamental Properties of Asphalts and Modified Asphalts, Volume 1; Interpretive Report; No. FHWA-RD-99-212; Federal Highway Administration: Washington, DC, USA, 2001.
- Goodrich, J.; Goodrich, J.; Kari, W. Asphalt composition tests: Their application and relation to field performance. Transp. Res. Rec. 1986, 146–167. [Google Scholar]
- Milad, A.; Babalghaith, A.M.; Al-Sabaeei, A.M.; Dulaimi, A.; Ali, A.; Reddy, S.S.; Bilema, M.; Yusoff, N.I.M. A comparative review of hot and warm mix asphalt technologies from environmental and economic perspectives: Towards a sustainable asphalt pavement. Int. J. Environ. Res. Public Health 2022, 19, 14863. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, Y.; Wang, Y.; Li, W.; Yu, G. Material optimization and optimum asphalt content design of asphalt mixture in salty and humid environment. Constr. Build. Mater. 2019, 196, 703–713. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, A.; Anupam, K.; Premarathna, W. Analysis of nonlinear responses of asphalt pavements under overloading and tropical climate temperature conditions. Case Stud. Constr. Mater. 2025, 22, e04760. [Google Scholar] [CrossRef]
- Wess, J.; Olsen, L.D.; Sweeney, M.H. Asphalt (Bitumen); World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Pasetto, M.; Haider, S.; Pasquini, E. Circular economy for transport infrastructure: An overview of the sustainable use of recycled asphalt shingles in asphalt mixtures. Appl. Sci. 2024, 14, 10145. [Google Scholar] [CrossRef]
- Mariyappan, R.; Palammal, J.S.; Balu, S. Sustainable use of reclaimed asphalt pavement (RAP) in pavement applications—A review. Environ. Sci. Pollut. Res. 2023, 30, 45587–45606. [Google Scholar] [CrossRef] [PubMed]
- Bressi, S.; Santos, J.; Orešković, M.; Losa, M. A comparative environmental impact analysis of asphalt mixtures containing crumb rubber and reclaimed asphalt pavement using life cycle assessment. Int. J. Pavement Eng. 2021, 22, 524–538. [Google Scholar]
- Rahman, M.T.; Mohajerani, A.; Giustozzi, F. Recycling of waste materials for asphalt concrete and bitumen: A review. Materials 2020, 13, 1495. [Google Scholar] [CrossRef] [PubMed]
- Abuaddous, M.; Dahim, M.; Ismail, R.; Taamneh, M.; Alomari, A.H.; Darwish, W.; Al-Mattarneh, H. Sustainable asphalt concrete for road construction and building material. IOP Conf. Ser. Earth Environ. Sci. 2021, 801, 012023. [Google Scholar]
- Alizadeh, M.; Hajikarimi, P.; Nejad, F.M. Advancing asphalt mixture sustainability: A review of WMA-RAP integration. Results Eng. 2025, 25, 103678. [Google Scholar]
- Boaventura, A.C.C.; Almeida, M.S.d.S.; Costa, W.G.S.; Pereira, Í.M.M.; São Mateus, M.d.S.C.; Brito, J.A.; Fiuza, R.A., Jr. The influence of residual asphalt material in the mechanical behaviour of soil-RAP mixtures for use in paving. Int. J. Pavement Eng. 2024, 25, 2407901. [Google Scholar] [CrossRef]
- Jadidi, K.; Esmaeili, M.; Kalantari, M.; Khalili, M.; Karakouzian, M. A review of different aspects of applying asphalt and bituminous mixes under a railway track. Materials 2020, 14, 169. [Google Scholar] [CrossRef]
- Setiawan, D.M. Advancing asphaltic rail tracks: Bridging knowledge gaps and challenges for sustainable railway infrastructure. J. Mech. Behav. Mater. 2025, 34, 20250043. [Google Scholar] [CrossRef]
- Behnood, A.; Gharehveran, M.M. Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 2019, 112, 766–791. [Google Scholar] [CrossRef]
- Habbouche, J.; Hajj, E.Y.; Sebaaly, P.E.; Piratheepan, M. A critical review of high polymer-modified asphalt binders and mixtures. Int. J. Pavement Eng. 2020, 21, 686–702. [Google Scholar]
- Ram, P.V.; Lopez, S.; Stempihar, J.; Smith, K.D.; Golalipour, A. Impact of wildfires on pavement systems. Transp. Res. Rec. 2025, 2679, 686–698. [Google Scholar] [CrossRef]
- Razavi, S.-H.; Kavussi, A. The role of nanomaterials in reducing moisture damage of asphalt mixes. Constr. Build. Mater. 2020, 239, 117827. [Google Scholar] [CrossRef]
- Xin, J.; Frangopol, D.M.; Akiyama, M.; Zhang, L.; Pei, J. Life-cycle performance, design, maintenance, optimization, and decision-making of asphalt pavement under uncertainty: A review. Struct. Infrastruct. Eng. 2025, 1–29. [Google Scholar] [CrossRef]
- Yao, H.; Zeng, J.; Wang, Y.; You, Z. Review of Nanomaterials in Pavement Engineering. ACS Appl. Nano Mater. 2025, 8, 5254–5274. [Google Scholar] [CrossRef]
- Pouranian, M.R.; Shishehbor, M. Sustainability assessment of green asphalt mixtures: A review. Environments 2019, 6, 73. [Google Scholar] [CrossRef]
- Ren, D.; Jiang, H.; Fan, S.; Song, L.; Luo, Y.; Lai, F.; Pei, R.; Yang, Q.; Li, J. Polydopamine-modified black phosphorus/microcapsule composite material used to enhance the solar thermal conversion and self-healing performance of SBS modified asphalt. J. Appl. Polym. Sci. 2025, 142, e56316. [Google Scholar] [CrossRef]
- Musco, A.; Tarsi, G.; Tataranni, P.; Salzano, E.; Sangiorgi, C. Use of bio-based products towards more sustainable road paving binders: A state-of-the-art review. J. Road Eng. 2024, 4, 151–162. [Google Scholar] [CrossRef]
- Quan, X.; Lin, Z.; Chen, C.; Ma, T.; Zhang, Y. A sustainable rapeseed oil-based bio-additive designed for hard asphalt binders: Performance, environmental, and economic assessment. Fuel 2024, 372, 132191. [Google Scholar] [CrossRef]
- Morsy, A.; Kandil, S.; Ewais, H.A.; Abdel-Salam, A.H.; Mohamed, A. Eco-conscious flame retardants for enhanced fire resistance in natural fiber reinforced polymers composite: A review bio-based, and industry implications. Chemosphere 2025, 377, 144360. [Google Scholar] [CrossRef]
- Mbamalu, E.E.; Chioma, U.E.; Epere, A. Applications of fire retardant polymer composites for improved safety in the industry: A review. Proc. Indian Natl. Sci. Acad. 2025, 91, 415–433. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Muhammad, Y.; Zhang, H.; Qiao, Q. Synthesis of Hydroxyapatite-Polydopamine-Rubber powder modifier via in-situ growth strategy for the designing of HAP-PDA-RP/SBS modified asphalt. Constr. Build. Mater. 2022, 345, 128361. [Google Scholar] [CrossRef]
- Jefferson Andrew, J.; Sain, M.; Ramakrishna, S.; Jawaid, M.; Dhakal, H.N. Environmentally friendly fire retardant natural fibre composites: A review. Int. Mater. Rev. 2024, 69, 267–308. [Google Scholar] [CrossRef]
- Mousavi, M.; Akbarzadeh, V.; Kazemi, M.; Deng, S.; Fini, E.H. Perspective on Sustainable Solutions for Mitigating Off-Gassing of Volatile Organic Compounds in Asphalt Composites. J. Compos. Sci. 2025, 9, 353. [Google Scholar] [CrossRef]
- Yang, X.; Shen, A.; Jiang, Y.; Meng, Y.; Wu, H. Properties and mechanism of flame retardance and smoke suppression in asphalt binder containing organic montmorillonite. Constr. Build. Mater. 2021, 302, 124148. [Google Scholar] [CrossRef]
- Wu, Q.; Hou, G. The impact of bio-oil on the structure, rheology, and adhesion properties of lignin-modified asphalt. Mater. Res. Express 2024, 11, 065101. [Google Scholar] [CrossRef]
- Thomas, B.S.; Kumar, S.; Arel, H.S. Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material—A review. Renew. Sustain. Energy Rev. 2017, 80, 550–561. [Google Scholar] [CrossRef]
- Rafiq, W.; Napiah, M.; Habib, N.Z.; Sutanto, M.H.; Alaloul, W.S.; Khan, M.I.; Musarat, M.A.; Memon, A.M. Modeling and design optimization of reclaimed asphalt pavement containing crude palm oil using response surface methodology. Constr. Build. Mater. 2021, 291, 123288. [Google Scholar] [CrossRef]
- Al-Sabaeei, A.M.; Al-Fakih, A.; Noura, S.; Yaghoubi, E.; Alaloul, W.; Al-Mansob, R.A.; Khan, M.I.; Yaro, N.S.A. Utilization of palm oil and its by-products in bio-asphalt and bio-concrete mixtures: A review. Constr. Build. Mater. 2022, 337, 127552. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Sutanto, M.H.; Habib, N.Z.; Napiah, M.; Usman, A.; Jagaba, A.H.; Al-Sabaeei, A.M. Application and circular economy prospects of palm oil waste for eco-friendly asphalt pavement industry: A review. J. Road Eng. 2022, 2, 309–331. [Google Scholar] [CrossRef]
- Samieadel, A.; Schimmel, K.; Fini, E.H. Comparative life cycle assessment (LCA) of bio-modified binder and conventional asphalt binder. Clean Technol. Environ. Policy 2018, 20, 191–200. [Google Scholar] [CrossRef]
- Mashaan, N.S.; Oguntayo, D.O.; Dassanayake, C. Waste By-Products in Asphalt Concrete Pavement Construction: A Review. Materials 2025, 18, 4092. [Google Scholar] [CrossRef] [PubMed]
- Purohit, S.; Panda, M.; Chattaraj, U. Use of reclaimed asphalt pavement and recycled concrete aggregate for bituminous paving mixes: A simple approach. J. Mater. Civ. Eng. 2021, 33, 04020395. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Boom, Y.J.; Giustozzi, F. Sustainable polymers from recycled waste plastics and their virgin counterparts as bitumen modifiers: A comprehensive review. Polymers 2021, 13, 3242. [Google Scholar] [CrossRef] [PubMed]
- Fini, E.H.; Hajikarimi, P. Bio-Based and Bio-Inspired Pavement Construction Materials; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Andrén, S.; Hedin, M. Business Model Innovation for Asphalt with Rubber Content: The Road Towards a Circular Economy and a Sustainable Society. Master’s Thesis, Karlstad University, Karlstad, Sweden, 2018. [Google Scholar]
- Ruiz, A.; Vinke-de Kruijf, J.; Santos, J.; Volker, L.; Dorée, A. Sustainability transitions in infrastructure: Understanding causal dynamics in the Dutch asphalt paving sector. Constr. Manag. Econ. 2025, 43, 794–822. [Google Scholar] [CrossRef]
- Ali, S. Functional and Durability Properties of Open-Graded Asphalt Mixtures: A Review. Al-Rafidain J. Eng. Sci. 2025, 3, 228–242. [Google Scholar]
- Hoegh, K.; Dai, S. Asphalt pavement compaction assessment using ground penetrating radar-arrays. In Congress on Technical Advancement 2017; American Society of Civil Engineers: Reston, VA, USA, 2017; pp. 118–126. [Google Scholar]
- Wang, J.; Zhang, R.; Zhou, H.; Huang, W.; Feng, D.; Li, X. Optimization of asphalt mix design considering mixture performance, environmental impact, and life cycle cost. J. Clean. Prod. 2025, 512, 145618. [Google Scholar] [CrossRef]
- Roy, A.; Chen, J.; Braham, A.; Casillas, S. Characterising Asphalt emulsion: A study of thermal and chemical properties via Thermogravimetric Analysis (TGA) and Fourier Transform Infrared (FTIR) spectroscopy. Int. J. Pavement Eng. 2025, 26, 2538778. [Google Scholar] [CrossRef]
- Marut, K.; Bieliński, D.M.; Rybiński, P.; Dębski, D. Cone calorimetry and smoke chamber in the assessment of fire properties of selected systems based on anionic bitumen emulsion. Mater. Bud. 2025, 7, 175–184. [Google Scholar]
- Ogundipe, O.M. Marshall stability and flow of lime-modified asphalt concrete. Transp. Res. Procedia 2016, 14, 685–693. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Vanderlei, R.; Fangueiro, R. Mechanical and micro-structural investigation of multi-scale cementitious composites developed using sisal fibres and microcrystalline cellulose. Ind. Crops Prod. 2020, 158, 112912. [Google Scholar]
- Zhu, K.; Qin, X.; Wang, Y.; Lin, C.; Wang, Q.; Wu, K. Effect of the oxygen concentration on the combustion of asphalt binder. J. Anal. Appl. Pyrolysis 2021, 160, 105370. [Google Scholar] [CrossRef]
- Zeiada, W.; Liu, H.; Alani, M.W.; Ezzat, H.; Al-Khateeb, G.G. An efficient and robust method for evaluating the low-temperature performance of asphalt binder based on DSR testing. Constr. Build. Mater. 2024, 448, 138196. [Google Scholar] [CrossRef]
- Li, D.; Shen, M.; Chen, Z.; Zhang, S.; Yin, B.; Leng, Z. Feasibility and performance of recycling reclaimed asphalt pavement using activated rubber pellets through semi-wet process. Constr. Build. Mater. 2025, 467, 140367. [Google Scholar] [CrossRef]
- da Silva, L.; Benta, A.; Picado-Santos, L. Asphalt rubber concrete fabricated by the dry process: Laboratory assessment of resistance against reflection cracking. Constr. Build. Mater. 2018, 160, 539–550. [Google Scholar] [CrossRef]
- Way, G.B.; Kaloush, K.; Biligiri, K.P. Asphalt-rubber standard practice guide–An overview. Proc. Asph. Rubber 2012, 23–40. [Google Scholar]
- Chavez, F.; Marcobal, J.; Gallego, J. Laboratory evaluation of the mechanical properties of asphalt mixtures with rubber incorporated by the wet, dry, and semi-wet process. Constr. Build. Mater. 2019, 205, 164–174. [Google Scholar] [CrossRef]
- Forough, S.A.; Moghadas Nejad, F.; Khodaii, A. Comparison of tensile and compressive relaxation modulus of asphalt mixes under various testing conditions. Mater. Struct. 2016, 49, 207–223. [Google Scholar] [CrossRef]
- Chen, H.; Alamnie, M.M.; Barbieri, D.M.; Zhang, X.; Liu, G.; Hoff, I. Comparative study of indirect tensile test and uniaxial compression test on asphalt mixtures: Dynamic modulus and stress-strain state. Constr. Build. Mater. 2023, 366, 130187. [Google Scholar] [CrossRef]
- Gu, X.; Dong, Q.; Yuan, Q. Development of an innovative uniaxial compression test to evaluate permanent deformation of asphalt mixtures. J. Mater. Civ. Eng. 2015, 27, 04014104. [Google Scholar] [CrossRef]
- Li, D.; Leng, Z.; Tan, Z.; Yang, B.; Chen, Z.; Wang, H.; Lu, G. Investigation of rejuvenation mechanisms of reclaimed asphalt rubber pavement through mortar tests. Int. J. Pavement Eng. 2023, 24, 2235631. [Google Scholar] [CrossRef]
- Al-Taher, M.G.; Sawan, A.M.; Solyman, M.E.-S.A.; El-Sharkawi Attia, M.I.; Ibrahim, M.F. Evaluating the durability of asphalt mixtures for flexible pavement using different techniques: A review. Int. J. Pavement Res. Technol. 2024, 1–27. [Google Scholar] [CrossRef]
- Meqtoof, F.H.; Aodah, H.H.; Naser, I.H.; Ali, A.H. Evaluation of Compressive Strength of Asphalt Mixture from Marshall Stability and Indirect Tensile Strength. Math. Model. Eng. Probl. 2024, 11, 1473–1480. [Google Scholar] [CrossRef]
- Loprencipe, G.; Moretti, L.; Saltaren Daniel, M. Fatigue Resistance of RAP-Modified Asphalt Mixes Versus Conventional Mixes Using the Indirect Tensile Test: A Systematic Review. Designs 2025, 9, 104. [Google Scholar] [CrossRef]
- Peng, Y.; Gao, H. Comparative modelling of indirect tensile strength of asphalt mixtures with and without considering air void characteristics. Int. J. Pavement Eng. 2021, 22, 1601–1610. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Höeg, K.; Zhu, Y. Investigation of the use of strip-prone aggregates in hydraulic asphalt concrete. Constr. Build. Mater. 2010, 24, 2157–2163. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, H.; Song, W.; Yin, J.; Zhan, Y.; Yu, J.; Wada, S.A. Thermal fatigue and cracking behaviors of asphalt mixtures under different temperature variations. Constr. Build. Mater. 2023, 369, 130623. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, X.; Qiao, Y.; Shu, J. Thermal cracking and fatigue analysis of recycled asphalt mixture using DCT test and S-VECD model. In Proceedings of the GeoShanghai 2018 International Conference, Shanghai, China, 27–30 May 2018. [Google Scholar]
- Kong, F.; Li, Y.; Wang, R.; Hu, X.; Yu, M.; Jin, D. Road Performance Evaluation of Preventive Maintenance Techniques for Asphalt Pavements. Lubricants 2025, 13, 410. [Google Scholar] [CrossRef]
- ISO 5660-1; Reaction-to-Fire Tests, Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- Zhu, K.; Wang, Y.; Tang, D.; Wang, Q.; Li, H.; Huang, Y.; Huang, Z.; Wu, K. Flame-Retardant Mechanism of Layered Double Hydroxides in Asphalt Binder. Materials 2019, 12, 801. [Google Scholar] [CrossRef]
- Iwata, Y.; Koseki, H. Combustion characteristics of asphalt and sodium compounds. J. Loss Prev. Process Ind. 2001, 14, 539–545. [Google Scholar] [CrossRef]
- Li, X.; Shen, J.; Ling, T.; Mei, Q. Pyrolysis combustion characteristics of epoxy asphalt based on TG-MS and cone calorimeter test. Materials 2022, 15, 4973. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, S.; Zhou, H.; Hu, W.; Polaczyk, P.; Huang, B. Recycled polyethylene and crumb rubber composites modified asphalt with improved aging resistance and thermal stability. J. Clean. Prod. 2022, 334, 130102. [Google Scholar] [CrossRef]
- Colwell, S.; Rock, C. Reaction to fire behaviour of pavement surfaces. In Proceedings of the 2007 11th International Fire Science & Engineering Conference, London, UK, 3–5 September 2017. [Google Scholar]
- Mazumder, M.; Ahmed, R.; Wajahat Ali, A.; Lee, S.-J. SEM and ESEM techniques used for analysis of asphalt binder and mixture: A state of the art review. Constr. Build. Mater. 2018, 186, 313–329. [Google Scholar] [CrossRef]
- Jing, H.; Monticelli, R.; Graiff, C.; Bergamonti, L.; Romeo, E.; Tebaldi, G. Evaluation of Workability and Crack Resistance of Recycled Plastic Asphalt Mixtures. Polymers 2025, 17, 2840. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.S.V.d. Influence of Moisture Damage on Fatigue Cracking of Asphalt Binders, Aggregate-Binder Interface, and Mixtures. Master’s Thesis, Universidade Federal do Ceará, Fortaleza, Brazil, 2023. [Google Scholar]
- Hu, K.; Fan, C.; Chen, Y.; Li, J.; Lv, Y.; Qiao, P.; Zhang, T. Moisture-induced interfacial weakening in asphalt mixtures with recycled concrete aggregate: Coupled experimental and molecular insights. Compos. Interfaces 2025, 1–19. [Google Scholar] [CrossRef]
- Krishna, U.S.R.; Ch, N.S.K. Analytical modelling of ultra-thin white topping cement concrete overlay on bituminous concrete pavement using ANSYS. World J. Eng. 2022, 20, 690–703. [Google Scholar] [CrossRef]
- Aghcheghloo, P.D.; Larkin, T.; Wilson, D.; Kim, S.; Amirpour, M.; Wijaya, W.; Allen, T.; Covic, G. Thermal and structural evaluation of an asphalt pavement with an embedded inductive power transfer pad for stationary charging of EVs. Constr. Build. Mater. 2024, 438, 137014. [Google Scholar] [CrossRef]
- Chen, Z.; Pei, J.; Li, R.; Xiao, F. Performance characteristics of asphalt materials based on molecular dynamics simulation—A review. Constr. Build. Mater. 2018, 189, 695–710. [Google Scholar] [CrossRef]
- Ameri, M.; Mansourian, A.; Heidary Khavas, M.; Aliha, M.R.M.; Ayatollahi, M.R. Cracked asphalt pavement under traffic loading—A 3D finite element analysis. Eng. Fract. Mech. 2011, 78, 1817–1826. [Google Scholar] [CrossRef]
- Colin, O.; Benkenida, A. The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion. Oil Gas Sci. Technol. 2004, 59, 593–609. [Google Scholar] [CrossRef]
- Jurić, F.; Stipić, M.; Samec, N.; Hriberšek, M.; Honus, S.; Vujanović, M. Numerical investigation of multiphase reactive processes using flamelet generated manifold approach and extended coherent flame combustion model. Energy Convers. Manag. 2021, 240, 114261. [Google Scholar] [CrossRef]
- da Fonseca, A.M.; Caluaco, B.J.; Madureira, J.M.C.; Cabongo, S.Q.; Gaieta, E.M.; Djata, F.; Colares, R.P.; Neto, M.M.; Fernandes, C.F.C.; Marinho, G.S.; et al. Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-bond, SASA and MMGBSA. Mol. Biotechnol. 2024, 66, 1919–1933. [Google Scholar] [CrossRef]
- You, L.; Spyriouni, T.; Dai, Q.; You, Z.; Khanal, A. Experimental and molecular dynamics simulation study on thermal, transport, and rheological properties of asphalt. Constr. Build. Mater. 2020, 265, 120358. [Google Scholar] [CrossRef]
- Luo, L.; Liu, P.; Oeser, M. A molecular dynamics simulation study on enhancement of thermal conductivity of bitumen by introduction of carbon nanotubes. Constr. Build. Mater. 2022, 353, 129166. [Google Scholar] [CrossRef]
- Guo, M.; Chen, J.; Yao, H.; Wang, Y.; Zeng, J.; Han, J. Thermal transport and mechanical performance of composite phase change materials’ modified asphalt using the molecular dynamics method. Mol. Simul. 2025, 51, 716–734. [Google Scholar] [CrossRef]
- Hu, X.; Huang, X.; Zhou, Y.; Zhang, J.; Lu, H. Viscosity of asphalt binder through equilibrium and non-equilibrium molecular dynamics simulations. Buildings 2024, 14, 2827. [Google Scholar] [CrossRef]
- Hu, D.; Gu, X.; Cui, B.; Pei, J.; Zhang, Q. Modeling the oxidative aging kinetics and pathways of asphalt: A ReaxFF molecular dynamics study. Energy Fuels 2020, 34, 3601–3613. [Google Scholar] [CrossRef]
- Yao, H.; Zeng, J.; Liu, J.; Wang, Y.; Li, X.; Dai, Q.; You, Z. Perspectives on the application of waste materials in asphalt based on molecular dynamics simulations: A review. Energy Fuels 2024, 38, 14839–14865. [Google Scholar] [CrossRef]
















| Matrix Component | Role in Asphalt Matrix | Impact on Mechanical Properties | Impact on Fire Performance | Ref. |
|---|---|---|---|---|
| Bituminous Binder | Continuous phase binding aggregates | Provides cohesion, flexibility, viscoelastic behaviour | Thermal stability influenced by SARA fractions; char formation | [19,41] |
| Saturates | Part of maltene fraction; governs binder flow | Affects viscosity and low-temperature flexibility | Volatile and combustible; contribute to ignition | [19,54,55] |
| Aromatics | Maltene component; adhesion and flow properties | Improves binder ductility and adhesion | Volatile; affects smoke and emissions | [42,56,57] |
| Resins | Intermediate polarity; stabilize asphaltenes | Enhances binder adhesion and stiffness | Influence char and residue formation | [42,43,44,58] |
| Asphaltenes | Dispersed phase providing stiffness | Increases binder stiffness and high-temperature performance | Promote char formation; improve fire resistance | [19,45,47,59] |
| Mineral Aggregates | Load-bearing skeleton | Provides strength and stability | Certain aggregates (e.g., limestone) release water vapor via endothermic decomposition, aiding fire retardancy | [47,60] |
| Limestone | Specific aggregate type | Enhances mechanical stability | Releases water vapor; cools and dilutes combustible gases | [48,49] |
| Polymer Modifiers | Improve mechanical and thermal properties | Enhances elasticity, fatigue resistance, and rutting resistance | Increase thermal stability; may delay ignition but can increase VOC emissions | [50] |
| SBS | Styrene–butadiene–styrene block copolymer | Improves elasticity and resistance to deformation | Enhances thermal stability; potential VOC emission | [51,52] |
| Crumb Rubber | Recycled rubber particles | Increases flexibility and fatigue life | Improves fire resistance; potential environmental concerns | [53] |
| Additives | Decomposition Temperature | Mechanism | Fire Benefits | Drawbacks | Ref. |
|---|---|---|---|---|---|
| EG | ~200–300 °C (expansion) | Rapid expansion forming insulating char layer | Forms physical barrier, reduces heat transfer & smoke, stabilizes binder surface | Requires good dispersion, cost considerations | [76,132] |
| APP | ~250–300 °C | Intumescent char formation; acid source for char promotion | Excellent PHRR reduction; promotes insulating, phosphorus-rich char | Moisture sensitivity, binder compatibility issues | [81,98,133] |
| ATH | 200–300 °C | Endothermic decomposition, water release | Reduces PHRR, delays ignition, lowers smoke/toxicity | High loading reduces flexibility and toughness | [3,82] |
| MH | ~340 °C | Endothermic decomposition, water vapor release, MgO residue | Effective heat absorption; smoke suppression; stable ceramic-like barrier | Brittleness at high loading, dispersion challenges | [87,88,90] |
| Calcium Hydroxide | ~400 °C | Water release cooling; neutralizes acidic degradation products | Enhances fire retardancy and aging resistance | Limited data on long-term effects | [92,93,134] |
| Layered Double Hydroxides | >300 °C | Water release + acid gas scavenging | Barrier effect; stable char formation | Dispersion difficulties, higher cost | [135,136,137] |
| Bio-based Additives (e.g., lignin, cellulose, tannins) | 200–350 °C | Promote char formation, thermal stability via natural polymers | Improve char yield, reduce flammability and smoke, eco-friendly | Compatibility and dispersion challenges | [65,107,138,139] |
| Polymer Modifiers (e.g., SBS, EVA, EVA-grafted polymers) | >300 °C (polymer dependent) | Modify binder rheology, promote char cohesion, and thermal resistance | Enhance mechanical durability and fire resistance | Potential thermal degradation, cost, processing complexity | [66,140,141,142] |
| Fibres (e.g., basalt, glass) | >400 °C | Physical reinforcement; char layer stabilization | Increases mechanical strength, slows fire spread, enhances char cohesion | Potential dispersion issues, cost | [117,143,144,145] |
| Nanoparticles Reinforcement (CNTs, nano-clays) | >300 °C–400 °C | Barrier formation, radical scavenging, char reinforcement | Significantly reduces HRR, smoke; improves char strength and thermal stability | High cost, dispersion and processing challenges | [66,67,146] |
| MH + Synergy LDH | ~340 °C & >300 °C | Dual endothermic decomposition + barrier effect | Multi-stage heat absorption; enhanced HRR control | Increased stiffness, dispersion complexity | [136,137,147] |
| Property | Standard Test/Measurement | Relevance to Asphalt Performance | Effect of FR Additives | Implications |
|---|---|---|---|---|
| Penetration | Needle penetration at 25 °C | Indicates binder softness and consistency | Can reduce penetration (increasing stiffness) | Improved rutting resistance but risk of brittleness in cold climates |
| Softening Point | Ring & Ball test | Represents temperature where binder softens | Often increased by additives | Higher thermal stability, delayed softening under fire exposure |
| Ductility | Ductility test (elongation before fracture) | Shows flexibility and crack resistance | May decrease due to stiffening effect | Potential loss of flexibility and higher cracking risk |
| Viscoelasticity | Dynamic Shear Rheometer (|G*|, δ) | Balance of elastic vs. viscous behaviour | Nanofillers and IFRS increase elasticity and stiffness | Enhanced rutting resistance, possible reduction in fatigue life |
| Thermal Stability | Thermogravimetric & oxidative aging tests | Determines resistance to thermal degradation and aging | Char-forming additives delay ignition and oxidation | Improved flame resistance and extended service life |
| Method | Measured Parameters | Advantages | Limitations | Ref. |
|---|---|---|---|---|
| Cone Calorimeter Test | Ignition time, PHRR, THR, smoke production | Comprehensive fire behaviour data; standardized benchmark | Limited to bench-scale; may not represent full-scale fire events | [27] |
| TGA | Mass loss vs. temperature, decomposition onset, char yield | High precision; ideal for screening additives; minimal sample size | Does not replicate flaming combustion; pyrolysis only | [211] |
| Smoke Density Chamber Test | Optical density, smoke growth rate, light transmission loss | Assesses smoke toxicity and visibility, vital for tunnels/confined spaces | Lacks heat release data; limited real fire scenario representation | [212] |
| Marshall Stability Test | Flow value, binder stiffness post-exposure | Quick, simple; widely used mechanical screening method | Not a fire test; indirect evaluation of thermal effects | [213] |
| MCC | Heat Release Capacity (HRC), combustion energy per mass unit | Highly sensitive; minimal sample requirement; ideal for research | Not representative of large-scale fire behaviour | [214] |
| FTIR + TGA Coupled Analysis | CO2, CO, H2O, VOCs evolved during decomposition | Enables decomposition pathway mapping; real-time gas tracking | Complex setup; data requires expert analysis | [29,211] |
| Cone Calorimetry + Oxygen Consumption | HRR and oxygen demand integrated with ignition metrics | Combined oxygen and heat data provide enhanced fire risk profiling | Technically complex; requires integrated interpretation | [215] |
| DSR Testing | Complex modulus (G*), phase angle (δ), stiffness recovery post-fire | Assesses rheological performance after fire exposure | Post-event analysis only; not a fire test | [216] |
| Process | Rubber Interaction | Equipment Needed | Mixing Complexity | Performance | Cost |
|---|---|---|---|---|---|
| WP | High (binder is chemically modified) | High-shear mixers | Complex | Excellent | High |
| DP | Low (rubber used as filler) | Standard mixers | Simple | Moderate | Low |
| SWP | Medium (pre-activated rubber) | Basic heating and mixing | Moderate | High | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jokic, M.; Zhang, J.; Kabir, I.I. Polymer-Based Flame-Retardant Asphalt: A Comprehensive Review of Materials, Performance, and Evaluation Methods. Polymers 2025, 17, 3272. https://doi.org/10.3390/polym17243272
Jokic M, Zhang J, Kabir II. Polymer-Based Flame-Retardant Asphalt: A Comprehensive Review of Materials, Performance, and Evaluation Methods. Polymers. 2025; 17(24):3272. https://doi.org/10.3390/polym17243272
Chicago/Turabian StyleJokic, Maja, Jiemin Zhang, and Imrana I. Kabir. 2025. "Polymer-Based Flame-Retardant Asphalt: A Comprehensive Review of Materials, Performance, and Evaluation Methods" Polymers 17, no. 24: 3272. https://doi.org/10.3390/polym17243272
APA StyleJokic, M., Zhang, J., & Kabir, I. I. (2025). Polymer-Based Flame-Retardant Asphalt: A Comprehensive Review of Materials, Performance, and Evaluation Methods. Polymers, 17(24), 3272. https://doi.org/10.3390/polym17243272
