Characterization on Mode-I/II Interlaminar Strength and Fracture Toughness of Co-Cured Fiber–Metal Laminates
Abstract
1. Introduction
2. Materials and Experimental Methods
2.1. Specimen Preparation
2.2. Experimental Methods
2.2.1. Curved Beam Testing Method
2.2.2. Short Beam Test Testing Method
2.2.3. Double Cantilever Beam (DCB) Testing Method
2.2.4. End-Notched Flexure (ENF) Testing Method
3. Results and Discussion
3.1. Curved Beam Test
3.2. Short Beam Test
3.3. Double Cantilever Beam (DCB) Test
3.4. End-Notched Flexure (ENF) Test
4. Conclusions
- (1)
- The interlaminar strength results show limited dispersion among AL–CF, AL–GF, AL–HC, and AL–HG, indicating no pronounced effect of reinforcement type on interlaminar strength in these FMLs. Consistently, the laminate-wise mean ILTS values (MPa, mean ± SD) are AL–CF 31.8258 ± 1.0385, AL–GF 31.8413 ± 0.3357, AL–HC 31.6447 ± 1.1674, AL–HG 31.8005 ± 3.8896; and the mean ILSS values (MPa, mean ± SD) are AL–CF 41.8652 ± 1.6321, AL–GF 41.0742 ± 1.7321, AL–HC 41.6660 ± 0.7408, AL–HG 41.0273 ± 1.7485—in line with the overall bands ILTS = 31.6–31.8 MPa and ILSS = 41.0–41.9 MPa derived from the full dataset.
- (2)
- For fracture toughness, the DCB results show mode-I initiation () and propagation () values (kJ·m−2, mean ± SD) of AL–CF 0.4789 ± 0.1030/0.6031 ± 0.1142, AL–GF 0.4438 ± 0.0597/0.5408 ± 0.0326, AL–HC 0.4765 ± 0.0915/0.6364 ± 0.0892, and AL–HG 0.5623 ± 0.0385/0.6120 ± 0.0395; the ENF results give mode-II toughness () (kJ·m−2, mean ± SD) of AL–CF 0.6877 ± 0.0707, AL–GF 0.6681 ± 0.0394, AL–HC 0.7941 ± 0.0810, AL–HG 0.6493 ± 0.1124. Collectively, , , and values range approximately within 0.44–0.56, 0.54–0.64, and 0.65–0.79, respectively. The mode-I and mode-II toughness values for all four FMLs reside in narrow and overlapping ranges.
- (3)
- Fractographic analysis confirms a consistent relationship between failure mechanisms and loading modes. Under mode-I loading, specimens exhibit river patterns with adhesive fibrillation, bridging, and arrest lines, along with continuous adhesive residue on the aluminum surface. Mode-II failures, in contrast, are characterized by hackle patterns, feathered steps, shear lips, and oriented rubbing marks. In all FMLs, crack propagation remained confined to the metal–adhesive interface, avoiding the adhesive–composite boundary. This consistent interfacial failure explains the insensitivity of interlaminar strength and fracture toughness to the type of composite reinforcement (carbon, glass, or hybrid fabrics).
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Specimens No. | (N) | (MPa) |
|---|---|---|
| AL–CF-1 | 757.4618 | 32.8443 |
| AL–CF-2 | 709.5873 | 30.7684 |
| AL–CF-3 | 734.8694 | 31.8647 |
| Average | 733.9728 ± 23.9498 | 31.8258 ± 1.0385 |
| AL–GF-1 | 726.4545 | 31.4998 |
| AL–GF-2 | 734.6027 | 31.8531 |
| AL–GF-3 | 741.9329 | 32.1709 |
| Average | 734.3301 ± 7.7428 | 31.8413 ± 0.3357 |
| AL–HC-1 | 731.1016 | 31.7013 |
| AL–HC-2 | 702.2451 | 30.4500 |
| AL–HC-3 | 756.0441 | 32.7828 |
| Average | 729.7970 ± 26.9232 | 31.6447 ± 1.1674 |
| AL–HG-1 | 650.9304 | 28.2250 |
| AL–HG-2 | 720.3327 | 31.2343 |
| AL–HG-3 | 828.9044 | 35.9421 |
| Average | 733.3892 ± 89.7025 | 31.8005 ± 3.8896 |
| Specimens No. | (N) | (MPa) |
|---|---|---|
| AL–CF-1 | 1853 | 43.4297 |
| AL–CF-2 | 1713 | 40.1484 |
| AL–CF-3 | 1740 | 40.8047 |
| AL–CF-4 | 1838 | 43.0781 |
| Average | 1786.25 ± 69.8522 | 41.8652 ± 1.6321 |
| AL–GF-1 | 1837 | 43.0547 |
| AL–GF-2 | 1746 | 40.9219 |
| AL–GF-3 | 1658 | 38.8593 |
| AL–GF-4 | 1769 | 41.4609 |
| Average | 1752.5 ± 73.9031 | 41.0742 ± 1.7321 |
| AL–HC-1 | 1804 | 42.2813 |
| AL–HC-2 | 1806 | 42.3281 |
| AL–HC-3 | 1747 | 40.9453 |
| AL–HC-4 | 1754 | 41.1094 |
| Average | 1817.08 ± 31.6056 | 41.6660 ± 0.7408 |
| AL–HG-1 | 1699 | 39.8203 |
| AL–HG-2 | 1859 | 43.5703 |
| AL–HG-3 | 1704 | 39.9375 |
| AL–HG-4 | 1740 | 40.7813 |
| Average | 1750.5 ± 74.6034 | 41.0273 ± 1.7485 |
| Specimens No. | (kJ/m2) | (kJ/m2) |
|---|---|---|
| AL–CF-1 | 0.5629 | 0.7204 |
| AL–CF-2 | 0.5098 | 0.5968 |
| AL–CF-3 | 0.3639 | 0.4922 |
| Average | 0.4789 ± 0.1030 | 0.6031 ± 0.1142 |
| AL–GF-1 | 0.4263 | 0.5175 |
| AL–GF-2 | 0.5102 | 0.5780 |
| AL–GF-3 | 0.3948 | 0.5268 |
| Average | 0.4438 ± 0.0597 | 0.5408 ± 0.0326 |
| AL–HC-1 | 0.5523 | 0.7280 |
| AL–HC-2 | 0.5024 | 0.6314 |
| AL–HC-3 | 0.3748 | 0.5499 |
| Average | 0.4765 ± 0.0915 | 0.6364 ± 0.0892 |
| AL–HG-1 | 0.6031 | 0.6426 |
| AL–HG-2 | 0.5266 | 0.5674 |
| AL–HG-3 | 0.5573 | 0.6259 |
| Average | 0.5623 ± 0.0385 | 0.6120 ± 0.0395 |
| Specimens No. | (kJ/m2) | ||
|---|---|---|---|
| AL–CF-1 | 0.00722 | 1.00 × 10−7 | 0.7514 |
| AL–CF-2 | 0.00738 | 1.06 × 10−7 | 0.6999 |
| AL–CF-3 | 0.00754 | 7.32 × 10−8 | 0.6117 |
| Average | 0.00738 | 9.32 × 10−8 | 0.6877 ± 0.0707 |
| AL–GF-1 | 0.01071 | 8.00 × 10−8 | 0.6239 |
| AL–GF-2 | 0.01044 | 6.63 × 10−8 | 0.6996 |
| AL–GF-3 | 0.01016 | 8.50 × 10−8 | 0.6808 |
| Average | 0.01044 | 7.71 × 10−8 | 0.6681 ± 0.0394 |
| AL–HC-1 | 0.00757 | 9.28 × 10−8 | 0.7618 |
| AL–HC-2 | 0.00625 | 8.21 × 10−8 | 0.8863 |
| AL–HC-3 | 0.00779 | 1.00 × 10−7 | 0.7342 |
| Average | 0.00721 | 9.17 × 10−8 | 0.7941 ± 0.0810 |
| AL–HG-1 | 0.01411 | 9.56 × 10−8 | 0.5679 |
| AL–HG-2 | 0.00981 | 5.55 × 10−8 | 0.6025 |
| AL–HG-3 | 0.00982 | 7.83 × 10−8 | 0.7775 |
| Average | 0.01125 | 7.65 × 10−8 | 0.6493 ± 0.1124 |
References
- Li, M.; Wang, Y.; Niu, Z.; Yang, S. Study on the weld-bonding process optimization and mechanical performance of aluminum alloy joints. Automot. Inno. 2020, 3, 221–230. [Google Scholar] [CrossRef]
- Liu, Q.; Ou, Z.; Mo, Z.; Li, Q.; Qu, D. Experimental investigation into dynamic axial impact responses of double hat shaped CFRP tubes. Compos. Part B Eng. 2015, 79, 494–504. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, X.; Li, Q.; Sun, G. On crashworthiness design of hybrid metal-composite structures. Int. J. Mech. Sci. 2020, 171, 105380. [Google Scholar] [CrossRef]
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. (1980–2015) 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, X.; Yang, C. Static and dynamic axial crushing of Al/CRFP hybrid tubes with single-cell and multi-cell sections. Compos. Struct. 2019, 226, 111023. [Google Scholar] [CrossRef]
- Chen, D.; Luo, Q.; Meng, M.; Li, Q.; Sun, G. Low velocity impact behavior of interlayer hybrid composite laminates with carbon/glass/basalt fibres. Compos. Part B Eng. 2019, 176, 107191. [Google Scholar] [CrossRef]
- Chang, P.Y.; Yeh, P.C.; Yang, J.M. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2008, 496, 273–280. [Google Scholar] [CrossRef]
- Soltani, P.; Keikhosravy, M.; Oskouei, R.H.; Soutis, C. Studying the tensile behaviour of GLARE laminates: A finite element modelling approach. Appl. Compos. Mater. 2011, 18, 271–282. [Google Scholar] [CrossRef]
- Muniyan, V.; Kumar, V.V.; Suyambulingam, I.; Priyadharshini, S.; Divakaran, D.; Rangappa, S.M.; Siengchin, S. A review of recent advancements in the impact response of fiber metal laminates. Heliyon 2025, 11, e41756. [Google Scholar] [CrossRef]
- Morinière, F.D.; Alderliesten, R.C.; Sadighi, M.; Benedictus, R. An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate. Compos. Struct. 2013, 100, 89–103. [Google Scholar] [CrossRef]
- Serubibi, A.; Hazell, P.J.; Escobedo, J.P.; Wang, H.; Oromiehie, E.; Prusty, G.B.; Phillips, A.W.; St John, N.A. Fibre-metal laminate structures: High-velocity impact, penetration, and blast loading—A review. Compos. Part A Appl. Sci. Manuf. 2023, 173, 107674. [Google Scholar] [CrossRef]
- Vijayan, M.; Selladurai, V.; Vijay Kumar, V.; Balaganesan, G.; Marimuthu, K. Low-velocity impact response of nano-silica reinforced aluminum/PU/GFRP laminates. In Proceedings of the International Symposium on Plasticity and Impact Mechanics, Chennai, India, 21–26 August 2022; Springer: Singapore, 2022; pp. 433–442. [Google Scholar]
- Wang, S.; Liu, M.; Araby, S.; Wang, X.; Abdelsalam, A.A.; Xue, H.; Meng, Q. Reinforcing interlaminar interface of carbon fiber reinforced metal laminates by graphene. Compos. Struct. 2023, 311, 116814. [Google Scholar] [CrossRef]
- Benzeggagh, M.L.; Kenane, M.J.C.S. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Davidson, B.D.; Sediles, F.O. Mixed-mode I–II–III delamination toughness determination via a shear–torsion-bending test. Compos. Part A Appl. Sci. Manuf. 2011, 42, 589–603. [Google Scholar] [CrossRef]
- Turon, A.; Davila, C.G.; Camanho, P.P.; Costa, J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 2007, 74, 1665–1682. [Google Scholar] [CrossRef]
- Camanho, P.P.; Davila, C.G.; de Moura, M.F. Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 2003, 37, 1415–1438. [Google Scholar] [CrossRef]
- Abdullah, S.S.; Bokti, S.K.; Wong, K.J.; Johar, M.; Chong, W.W.F.; Dong, Y. Mode II and mode III delamination of carbon fiber/epoxy composite laminates subjected to a four-point bending mechanism. Compos. Part B Eng. 2024, 270, 111110. [Google Scholar] [CrossRef]
- Brunner, A.J.; Blackman, B.R.K.; Davies, P. A status report on delamination resistance testing of polymer–matrix composites. Eng. Fract. Mech. 2008, 75, 2779–2794. [Google Scholar] [CrossRef]
- Wilk, J. Applicability of mode II interlaminar fracture toughness testing methods for characterization of thermoplastic laminates with woven fabric reinforcements. Eng. Fract. Mech. 2019, 216, 106533. [Google Scholar] [CrossRef]
- Lopes, R.M.; Campilho, R.D.S.G.; Da Silva, F.J.G.; Faneco, T.M.S. Comparative evaluation of the Double-Cantilever Beam and Tapered Double-Cantilever Beam tests for estimation of the tensile fracture toughness of adhesive joints. Int. J. Adhes. Adhes. 2016, 67, 103–111. [Google Scholar] [CrossRef]
- Ranz, D.; Cuartero, J.; Miravete, A.; Miralbes, R. Experimental research into interlaminar tensile strength of carbon/epoxy laminated curved beams. Compos. Struct. 2017, 164, 189–197. [Google Scholar] [CrossRef]
- Makeev, A.; Carpentier, P.; Shonkwiler, B. Methods to measure interlaminar tensile modulus of composites. Compos. Part A Appl. Sci. Manuf. 2014, 56, 256–261. [Google Scholar] [CrossRef]
- Fisher, J.; Czabaj, M.W. A new test for characterization of interlaminar tensile strength of tape-laminate composites. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107868. [Google Scholar] [CrossRef]
- Rosselli, F.; Santare, M.H. Comparison of the short beam shear (SBS) and interlaminar shear device (ISD) tests. Compos. Part A Appl. Sci. Manuf. 1997, 28, 587–594. [Google Scholar] [CrossRef]
- Selmy, A.I.; Elsesi, A.R.; Azab, N.A.; Abd El-baky, M.A. Interlaminar shear behavior of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composite laminates. Compos. Part B Eng. 2012, 43, 1714–1719. [Google Scholar] [CrossRef]
- Gagani, A.I.; Krauklis, A.E.; Sæter, E.; Vedvik, N.P.; Echtermeyer, A.T. A novel method for testing and determining ILSS for marine and offshore composites. Compos. Struct. 2019, 220, 431–440. [Google Scholar] [CrossRef]
- Škec, L.; Alfano, G.; Jelenić, G. Complete analytical solutions for double cantilever beam specimens with bi-linear quasi-brittle and brittle interfaces. Int. J. Fract. 2019, 215, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Guo, Z.Z. A simple method for determining the mode I interlaminar fracture toughness of composite without measuring the growing crack length. Eng. Fract. Mech. 2018, 191, 476–485. [Google Scholar] [CrossRef]
- De Moura, M.F.S.F.; Morais, J.J.L.; Dourado, N. A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test. Eng. Fract. Mech. 2008, 75, 3852–3865. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, X.; Li, W.; Zhao, L.; Tao, J.; Zhang, J.; Hu, N. Delamination in carbon fiber epoxy DCB laminates with different stacking sequences: R-curve behavior and bridging traction-separation relation. Compos. Struct. 2021, 262, 113605. [Google Scholar] [CrossRef]
- Blackman, B.R.K.; Brunner, A.J.; Williams, J.G. Mode II fracture testing of composites: A new look at an old problem. Eng. Fract. Mech. 2006, 73, 2443–2455. [Google Scholar] [CrossRef]
- Wang, W.X.; Nakata, M.; Takao, Y.; Matsubara, T. Experimental investigation on test methods for mode II interlaminar fracture testing of carbon fiber reinforced composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1447–1455. [Google Scholar] [CrossRef]
- Gliszczynski, A.; Wiącek, N. Experimental and numerical benchmark study of mode II interlaminar fracture toughness of unidirectional GFRP laminates under shear loading using the end-notched flexure (ENF) test. Compos. Struct. 2021, 258, 113190. [Google Scholar] [CrossRef]
- Greisel, M.; Jäger, J.; Moosburger-Will, J.; Sause, M.G.; Mueller, W.M.; Horn, S. Influence of residual thermal stress in carbon fiber-reinforced thermoplastic composites on interfacial fracture toughness evaluated by cyclic single-fiber push-out tests. Compos. Part A Appl. Sci. Manuf. 2014, 66, 117–127. [Google Scholar] [CrossRef]
- Yu, Y.; He, K.; Hang, Z.; Liu, W.; Zhao, W. Effects of adhesive layer thickness on the fracture properties of a concrete-epoxy resin interface. Theor. Appl. Fract. Mech. 2024, 130, 104239. [Google Scholar] [CrossRef]
- Bonhin, E.P.; Botelho, E.C.; Ribeiro, M.V. Interlaminar shear of FML produced with surface treatment by mechanical abrasion. Procedia CIRP 2022, 108, 555–559. [Google Scholar] [CrossRef]
- He, M.Y.; Evans, A.G.; Hutchinson, J.W. Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. Int. J. Solids Struct. 1994, 31, 3443–3455. [Google Scholar] [CrossRef]
- de Freitas, S.T.; Sinke, J. Test method to assess interface adhesion in composite bonding. Appl. Adhe. Sci. 2015, 3, 9. [Google Scholar] [CrossRef]
- Barbosa, N.G.C.; Campilho, R.D.S.G.; Silva, F.J.G.; Moreira, R.D.F. Comparison of different adhesively-bonded joint types for mechanical structures. Appl. Adhes. Sci. 2018, 6, 15. [Google Scholar] [CrossRef]
- Yu, T.; Fernando, D.; Teng, J.G.; Zhao, X.L. Experimental study on CFRP-to-steel bonded interfaces. Compos. Part B Eng. 2012, 43, 2279–2289. [Google Scholar] [CrossRef]
- Bennati, S.; Colleluori, M.; Corigliano, D.; Valvo, P.S. An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates. Compos. Sci. Technol. 2009, 69, 1735–1745. [Google Scholar] [CrossRef]
- Wang, W.; De Freitas, S.T.; Poulis, J.A.; Zarouchas, D. A review of experimental and theoretical fracture characterization of bi-material bonded joints. Compos. Part B Eng. 2021, 206, 108537. [Google Scholar] [CrossRef]
- Tsokanas, P. Fracture Toughness of Metal-to-Composite Adhesive Joints with Bending–Extension Coupling and Residual Thermal Stresses. In Fracture Analysis of Layered Beams with an Elastically Coupled Behavior and Hygrothermal Stresses: Application to Metal-to-Composite Adhesive Joints; Springer: Cham, Switzerland, 2023; pp. 65–99. [Google Scholar]
- Bakhbergen, U.; Abbassi, F.; Kalimuldina, G.; Montazami, R.; Shehab, E.; Araby, S. Recent approaches of interface strengthening in fibre metal laminates: Processes, measurements, properties and numerical analysis. Compos. Part B Eng. 2024, 285, 111744. [Google Scholar] [CrossRef]
- Laban, O.; Mahdi, E. Enhancing mode I inter-laminar fracture toughness of aluminum/fiberglass fiber-metal laminates by combining surface pre-treatments. Int. J. Adhes. Adhes. 2017, 78, 234–239. [Google Scholar] [CrossRef]
- Hua, X.; Li, H.; Lu, Y.; Chen, Y.; Qiu, L.; Tao, J. Interlaminar fracture toughness of GLARE laminates based on asymmetric double cantilever beam (ADCB). Compos. Part B Eng. 2019, 163, 175–184. [Google Scholar] [CrossRef]
- Liu, C.; Du, D.; Li, H.; Hu, Y.; Xu, Y.; Tian, J.; Tao, G.; Tao, J. Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load. Compos. Part B Eng. 2016, 97, 361–367. [Google Scholar] [CrossRef]
- ASTM D6415/D6415M-22; Standard Test Method for Measuring the Curved Beam Strength of a Fiber-Reinforced Polymer-Matrix Composite. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D2344/D2344M-22; Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D5528-21; Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D7905/D7905M-19; Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2019.










| Density | Young’s Modulus | Poisson’s Ratio | Yield Strength | Thickness |
|---|---|---|---|---|
| 2638 kg/m3 | 70.43 GPa | 0.286 | 117.56 MPa | 0.30 mm |
| Prepreg | Reinforcement | Matrix | Fiber Type | Weave Type | Surface Density |
|---|---|---|---|---|---|
| CFRP | Carbon | Epoxy | T300 | Plain woven fabric | 200 g/m2 |
| GFRP | Glass | Epoxy | E-glass | Plain woven fabric | 300 g/m2 |
| Viscosity at 70 °C | Viscosity at 80 °C | Gel Time at 120 °C | Glass Transition Temperature | Nominal Film Thickness |
|---|---|---|---|---|
| 16,500–22,500 mPa·s | 7000–9000 mPa·s | 760–960 s | 100 °C | 0.20 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Hao, H.; Liu, Q.; Miao, X.; Lai, Z.; Yuan, T.; Zhu, G.; Wang, Z. Characterization on Mode-I/II Interlaminar Strength and Fracture Toughness of Co-Cured Fiber–Metal Laminates. Polymers 2025, 17, 2937. https://doi.org/10.3390/polym17212937
Wang M, Hao H, Liu Q, Miao X, Lai Z, Yuan T, Zhu G, Wang Z. Characterization on Mode-I/II Interlaminar Strength and Fracture Toughness of Co-Cured Fiber–Metal Laminates. Polymers. 2025; 17(21):2937. https://doi.org/10.3390/polym17212937
Chicago/Turabian StyleWang, Mingjie, Hongyi Hao, Qinghao Liu, Xinyue Miao, Ziye Lai, Tianqi Yuan, Guohua Zhu, and Zhen Wang. 2025. "Characterization on Mode-I/II Interlaminar Strength and Fracture Toughness of Co-Cured Fiber–Metal Laminates" Polymers 17, no. 21: 2937. https://doi.org/10.3390/polym17212937
APA StyleWang, M., Hao, H., Liu, Q., Miao, X., Lai, Z., Yuan, T., Zhu, G., & Wang, Z. (2025). Characterization on Mode-I/II Interlaminar Strength and Fracture Toughness of Co-Cured Fiber–Metal Laminates. Polymers, 17(21), 2937. https://doi.org/10.3390/polym17212937

