Biodegradable Antioxidant Composites with Almond Skin Powder
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Obtaining Almond Skin (AS) Powder
2.3. Obtaining the Films
2.4. Characterisation of the Films
2.4.1. Oxygen and Water Vapour Barrier Properties
2.4.2. Optical Properties
2.4.3. UV-Protection Capacity
2.4.4. Mechanical Properties
2.4.5. Wettability
2.4.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.7. Microstructural Analysis
2.4.8. Thermal Analysis
2.4.9. Dynamic Mechanical Analyses (DMA)
2.4.10. Antioxidant Capacity of the Films
Inhibition Capacity of ABTS+
Prevention of Sunflower Oil Oxidation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Molecular and Structural Properties of the Films
3.2. Optical and UV Protection Properties
3.3. Mechanical and Barrier Properties of the Films
3.4. Glass Transition and Crystallisation Behaviour
3.5. Thermal Stability of the Films
3.6. Antioxidant Properties of Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Topuz, F.; Uyar, T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Res. Int. 2020, 130, 108927. [Google Scholar] [CrossRef] [PubMed]
- Turan, D.; Keukens, B.M.; Schifferstein, H.N. Food packaging technology considerations for designers: Attending to food, consumer, manufacturer, and environmental issues. Compr. Rev. Food Sci. Food Saf. 2024, 23, 70058. [Google Scholar] [CrossRef] [PubMed]
- Operato, L.; Panzeri, A.; Masoero, G.; Gallo, A.; Gomes, L.; Hamd, W. Food packaging use and post-consumer plastic waste management: A comprehensive review. Front. Food Sci. Technol. 2025, 5, 1520532. [Google Scholar] [CrossRef]
- Hemavathi, A.B.; Siddaramaiah, H. Food packaging: Polymers as packaging materials in food supply chains. Encycl. Polym. Appl. 2018, 1, 1374–1397. [Google Scholar]
- Rillig, M.C.; Kim, S.W.; Kim, T.Y.; Waldman, W.R. The global plastic toxicity debt. Environ. Sci. Technol. 2011, 55, 2717–2719. [Google Scholar] [CrossRef]
- Yao, Z.; Seong, H.J.; Jang, Y. Environmental toxicity and decomposition of polyethylene. Ecotoxicol. Environ. Saf. 2022, 242, 113933. [Google Scholar] [CrossRef]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1333–1380. [Google Scholar] [CrossRef]
- Weligama Thuppahige, V.T.; Karim, M.A. A comprehensive review on the properties and functionalities of biodegradable and semibiodegradable food packaging materials. Compr. Rev. Food Sci. Food Saf. 2022, 21, 689–718. [Google Scholar] [CrossRef]
- Thulasisingh, A.; Kumar, K.; Yamunadevi, B.; Poojitha, N.; SuhailMadharHanif, S.; Kannaiyan, S. Biodegradable packaging materials. Polym. Bull 2022, 79, 4467–4496. [Google Scholar] [CrossRef]
- Andrade, J.; González-Martínez, C.; Chiralt, A. The incorporation of carvacrol into poly (vinyl alcohol) films encapsulated in lecithin liposomes. Polymers 2020, 12, 497. [Google Scholar] [CrossRef]
- Andrade, J.; González-Martínez, C.; Chiralt, A. Antimicrobial PLA-PVA multilayer films containing phenolic compounds. Food Chem. 2022, 375, 131861. [Google Scholar] [CrossRef]
- Mohan, S.; Panneerselvam, K. A short review on mechanical and barrier properties of polylactic acid-based films. Mater. Today Proc. 2020, 56, 3241–3246. [Google Scholar] [CrossRef]
- Da Silva Pens, C.J.; Klug, T.V.; Stoll, L.; Izidoro, F.; Flores, S.H.; de Oliveira Rios, A. Poly (lactic acid) and its improved properties by some modifications for food packaging applications: A review. Food Packag. Shelf Life 2024, 41, 101230. [Google Scholar] [CrossRef]
- Mangaraj, S.; Thakur, R.R.; Yadav, A. Development and characterization of PLA and Cassava starch-based novel biodegradable film used for food packaging application. J. Food Process. Preserv. 2022, 46, e16314. [Google Scholar] [CrossRef]
- Cinelli, P.; Seggiani, M.; Coltelli, M.B.; Danti, S.; Righetti, M.C.; Gigante, V.; Sandroni, M.; Signori, F.; Lazzeri, A. Overview of agro-food waste and by-products valorization for polymer synthesis and modification for bio-composite production. Proceedings 2021, 69, 22. [Google Scholar]
- Priyadarshi, R.; Ghosh, T.; Purohit, S.D.; Prasannavenkadesan, V.; Rhim, J.W. Lignin as a sustainable and functional material for active food packaging applications: A review. J. Clean. Prod. 2024, 469, 143151. [Google Scholar] [CrossRef]
- Rojas, A.; Velásquez, E.; Patiño Vidal, C.; Guarda, A.; Galotto, M.J.; López de Dicastillo, C. Active PLA packaging films: Effect of processing and the addition of natural antimicrobials and antioxidants on physical properties, release kinetics, and compostability. Antioxidants 2021, 10, 1976. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Deng, Y. Latest advances in active materials for food packaging and their application. Foods 2023, 12, 4055. [Google Scholar] [CrossRef]
- Ganeson, K.; Mouriya, G.K.; Bhubalan, K.; Razifah, M.R.; Jasmine, R.; Sowmiya, S.; Amirul, A.A.; Vigneswari, S.; Ramakrishna, S. Smart packaging—A pragmatic solution to approach sustainable food waste management. Food Packag. Shelf Life 2023, 36, 101044. [Google Scholar] [CrossRef]
- Angellier-Coussy, H.; Gastaldi, E.; Gontard, N.; Guillaume, C.; Guillard, V.; Peyron, S. Converting Agro-industrial By-products into Biodegradable Composite Materials for Food Packaging: Presentation of an Eco-reasoned Approach. In Green Chemistry and Agro-Food Industry: Towards a Sustainable Bioeconomy; Springer: Berlin/Heidelberg, Germany, 2024; pp. 237–267. [Google Scholar]
- Varghese, S.A.; Pulikkalparambil, H.; Promhuad, K.; Srisa, A.; Laorenza, Y.; Jarupan, L.; Nampitch, T.; Chonhenchob, V.; Harnkarnsujarit, N. Renovation of agro-waste for sustainable food packaging: A review. Polymers 2023, 15, 648. [Google Scholar] [CrossRef]
- INC International Nut and Dried Fruit Council. Nut and Dried Fruit Statistical Yearbook 2022–23; INC International Nut and Dried Fruit Council: Tarragona, Spain, 2023. [Google Scholar]
- Freitas, P.A.; Martín-Pérez, L.; Gil-Guillén, I.; González-Martínez, C.; Chiralt, A. Subcritical water extraction for valorisation of almond skin from almond industrial processing. Foods 2023, 12, 3759. [Google Scholar] [CrossRef] [PubMed]
- Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A.I. Valorization challenges to almond residues: Phytochemical composition and functional application. Molecules 2017, 22, 1774. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Mandalari, G.; Bisignano, C.; Filocamo, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. DA Webb) skin and its industrial byproducts. Ind. Crops Prod. 2016, 83, 283–293. [Google Scholar] [CrossRef]
- Alalwan, T.A.; Mohammed, D.; Hasan, M.; Sergi, D.; Ferraris, C.; Gasparri, C.; Rondanlli, M.; Perna, S. Almond, hazelnut, and pistachio skin: An opportunity for nutraceuticals. Nutraceuticals 2022, 2, 300–310. [Google Scholar] [CrossRef]
- Özcan, M.M. A review on some properties of almond: Impact of processing, fatty acids, polyphenols, nutrients, bioactive properties, and health aspects. J. Food Sci. Technol 2023, 60, 1493–1504. [Google Scholar] [CrossRef]
- Ordoñez, R.; Atarés, L.; Chiralt, A. Multilayer antimicrobial films based on starch and PLA with superficially incorporated ferulic or cinnamic acids for active food packaging purposes. Food Chem. Adv. 2023, 2, 100250. [Google Scholar] [CrossRef]
- Timón, M.; Andrés, A.I.; Sorrentino, L.; Cardenia, V.; Petrón, M.J. Effect of phenolic compounds from almond skins obtained by water extraction on pork patty shelf life. Antioxidants 2022, 11, 2175. [Google Scholar] [CrossRef]
- García, A.V.; Santonja, M.R.; Sanahuja, A.B.; Selva, M.D.C.G. Characterization and degradation characteristics of poly (ε-caprolactone)-based composites reinforced with almond skin residues. Polym. Degrad. Stab. 2014, 108, 269–279. [Google Scholar] [CrossRef]
- Valdés, A.; Dominici, F.; Fortunati, E.; Kenny, J.M.; Jiménez, A.; Garrigós, M.C. Effect of almond skin waste and glycidyl methacrylate on mechanical and color properties of poly (ε-caprolactone)/poly (lactic acid) blends. Polymers 2023, 15, 1045. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, R.; Pawanpreet; Singh, M.; Singh, J. On mechanical, thermal and morphological investigations of almond skin powder-reinforced polylactic acid feedstock filament. J. Thermoplast. Compos. Mater. 2022, 35, 230–248. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, S.; Singh, R.; Kumar, R.; Kumar, V. On shear resistance of almond skin reinforced PLA composite matrix-based scaffold using cancellous screw. Adv. Mater. Process. Technol. 2022, 8, 2361–2384. [Google Scholar] [CrossRef]
- Mankotia, K.; Singh, I.; Singh, R. On effect of almond skin powder waste reinforcement in PA6: Rheological, thermal and wear properties. Mater. Today Proc. 2020, 33, 1546–1551. [Google Scholar] [CrossRef]
- E96/E96M; Standard Test Methods for Water Vapor Transmission of Materials. American Society for Testing Materials: West Conshohocken, PA, USA, 2005.
- D3985-025; Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using s Coulometric Sensor. American Society for Testing Materials: West Conshohocken, PA, USA, 2010; pp. 1–7.
- D882–12; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing Materials: West Conshohocken, PA, USA, 2012.
- Peixoto, A.M.; Petronilho, S.; Domingues, M.R.; Nunes, F.M.; Lopes, J.; Pettersen, M.K.; Grøvlen, M.S.; Wetterhus, E.M.; Gonçalves, I.; Coimbra, M.A. Potato chips byproducts as feedstocks for developing active starch-based films with potential for cheese packaging. Foods 2023, 12, 1167. [Google Scholar] [CrossRef]
- Nunes, C.; Maricato, É.; Cunha, Â.; Nunes, A.; da Silva, J.A.L.; Coimbra, M.A. Chitosan–caffeic acid–genipin films presenting enhanced antioxidant activity and stability in acidic media. Carbohydr. Polym. 2013, 91, 236–243. [Google Scholar] [CrossRef]
- Commission Regulation (EEC) No 2568/91. Relativo a las características de los aceites de oliva y de los aceites de orujo de oliva y sobre sus métodos de análisis. D. Of. L 1991, 248, 1–48. [Google Scholar]
- Wang, Q.; Ji, C.; Sun, J.; Zhu, Q.; Liu, J. Structure and properties of polylactic acid biocomposite films reinforced with cellulose nanofibrils. Molecules 2020, 25, 3306. [Google Scholar] [CrossRef]
- Popa, E.E.; Rapa, M.; Popa, O.; Mustatea, G.; Popa, V.I.; Mitelut, A.C.; Popa, M.E. Polylactic acid/cellulose fibres based composites for food packaging applications. Mater. Plast 2017, 54, 673–677. [Google Scholar] [CrossRef]
- Darie-Niţă, R.N.; Vasile, C.; Stoleru, E.; Pamfil, D.; Zaharescu, T.; Tarţău, L.; Tudorachi, N.; Brebu, M.A.; Pricope, G.M.; Dumitriu, R.P.; et al. Evaluation of the rosemary extract effect on the properties of polylactic acid-based materials. Materials 2018, 11, 1825. [Google Scholar] [CrossRef]
- Karagöz, İ. Production and characterization of sustainable biocompatible PLA/walnut shell composite materials. Polym. Bull. 2024, 81, 11517–11537. [Google Scholar] [CrossRef]
- Franca, T.; Goncalves, D.; Cena, C. ATR-FTIR spectroscopy combined with machine learning for classification of PVA/PVP blends in low concentration. Vibr. Spectrosc. 2022, 120, 103378. [Google Scholar] [CrossRef]
- Barbălată-Mândru, M.; Serbezeanu, D.; Butnaru, M.; Rîmbu, C.M.; Enache, A.A.; Aflori, M. Poly (vinyl alcohol)/plant extracts films: Preparation, surface characterization and antibacterial studies against gram positive and gram negative bacteria. Materials 2022, 15, 2493. [Google Scholar] [CrossRef]
- Kashid, S.M.; Bagchi, S. Experimental determination of the electrostatic nature of carbonyl hydrogen-bonding interactions using IR-NMR correlations. J. Phys. Chem. Lett. 2014, 5, 3211–3215. [Google Scholar] [CrossRef]
- Yu, H.; Qin, Z.; Yan, C.; Yao, J. Green nanocomposites based on functionalized cellulose nanocrystals: A study on the relationship between interfacial interaction and property enhancement. ACS Sustain. Chem. Eng. 2014, 2, 875–886. [Google Scholar] [CrossRef]
- Martin-Perez, L.; Contreras, C.; Chiralt, A.; Gonzalez-Martinez, C. Active Polylactic Acid (PLA) Films Incorporating Almond Peel Extracts for Food Preservation. Molecules 2025, 30, 1988. [Google Scholar] [CrossRef]
- Gil-Guillén, I.; González-Martínez, C.; Chiralt, A. Influence of the Cellulose Purification Method on the Properties of PVA Composites with Almond Shell Fibres. Molecules 2025, 30, 372. [Google Scholar] [CrossRef]
- Limpan, N.; Prodpran, T.; Benjakul, S.; Prasarpran, S. Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocoll. 2012, 29, 226–233. [Google Scholar] [CrossRef]
- Ordoñez, R.; Atarés, L.; Chiralt, A. Effect of ferulic and cinnamic acids on the functional and antimicrobial properties in thermo-processed PLA films. Food Packag. Shelf Life 2022, 33, 100882. [Google Scholar] [CrossRef]
- Li, L.; Xu, X.; Liu, L.; Song, P.; Cao, Q.; Xu, Z.; Fang, Z.; Wang, H. Water governs the mechanical properties of poly (vinyl alcohol). Polymer 2020, 213, 123330. [Google Scholar] [CrossRef]
- Vengadesan, E.; Morakul, S.; Muralidharan, S.; Pullela, P.K.; Alarifi, A.; Arunkumar, T. Enhancement of polylactic acid (PLA) with hybrid biomass-derived rice husk and biocarbon fillers: A comprehensive experimental study. Discov. Appl. Sci. 2025, 7, 161. [Google Scholar] [CrossRef]
- Li, L.; Ding, S.; Zhou, C. Preparation and degradation of PLA/chitosan composite materials. J. Appl. Polym. Sci. 2004, 91, 274–277. [Google Scholar] [CrossRef]
- Freitas, P.A.; Gil, N.J.B.; González-Martínez, C.; Chiralt, A. Antioxidant poly (lactic acid) films with rice straw extract for food packaging applications. Food Packag. Shelf Life 2022, 34, 101003. [Google Scholar] [CrossRef]
- Greco, A.; Ferrari, F. Thermal behavior of PLA plasticized by commercial and cardanol-derived plasticizers and the effect on the mechanical properties. J. Therm. Anal. Calorim. 2021, 146, 131–141. [Google Scholar] [CrossRef]
- Cristea, M.; Ionita, D.; Iftime, M.M. Dynamic mechanical analysis investigations of PLA-based renewable materials: How are they useful? Materials 2020, 13, 5302. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Heim, H.P.; Feldmann, M.; Mariatti, M. Simultaneous impact modified and chain extended glass fiber reinforced poly (lactic acid) composites: Mechanical, thermal, crystallization, and dynamic mechanical performance. J. Appl. Polym. Sci. 2021, 138, 49752. [Google Scholar] [CrossRef]
- Espinach, F.X.; Boufi, S.; Delgado-Aguilar, M.; Julián, F.; Mutjé, P.; Méndez, J.A. Composites from poly (lactic acid) and bleached chemical fibres: Thermal properties. Compos. B. Eng. 2018, 134, 169–176. [Google Scholar] [CrossRef]
- Frone, A.N.; Berlioz, S.; Chailan, J.F.; Panaitescu, D.M.; Donescu, D.J.P.C. Cellulose fiber-reinforced polylactic acid. Polym. Comp. 2011, 32, 976–985. [Google Scholar] [CrossRef]
- Li, N.; Xiao, C.; An, S.; Hu, X. Preparation and properties of PVDF/PVA hollow fiber membranes. Desalination 2010, 250, 530–537. [Google Scholar] [CrossRef]
- Lu, J.; Wang, T.; Drzal, L.T. Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos. Part A Appl. Sci. Manuf. 2008, 39, 738–746. [Google Scholar] [CrossRef]
- Thomas, D.; Cebe, P. Self-nucleation and crystallization of polyvinyl alcohol. J. Therm. Anal. Calorim. 2017, 127, 885–894. [Google Scholar] [CrossRef]
- Camarena-Bononad, P.; Freitas, P.A.; González-Martínez, C.; Chiralt, A.; Vargas, M. Influence of the Purification Degree of Cellulose from Posidonia oceanica on the Properties of Cellulose-PLA Composites. Polysaccharides 2024, 5, 807–822. [Google Scholar] [CrossRef]
- Mokhena, T.C.; Sefadi, J.S.; Sadiku, E.R.; John, M.J.; Mochane, M.J.; Mtibe, A. Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers 2018, 10, 1363. [Google Scholar] [CrossRef] [PubMed]
- Rowe, A.A.; Tajvidi, M.; Gardner, D.J. Thermal stability of cellulose nanomaterials and their composites with polyvinyl alcohol (PVA). J. Therm. Anal. Calorim 2016, 126, 1371–1386. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Esfahlan, A.J.; Jamei, R.; Esfahlan, R.J. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem. 2010, 120, 349–360. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Srinivasan, S.; Xiong, Y.L.; Decker, E.A. Inhibition of protein and lipid oxidation in beef heart surimi-like material by antioxidants and combinations of pH, NaCl, and buffer type in the washing media. J. Agric. Food Chem. 1996, 44, 119–125. [Google Scholar] [CrossRef]
Sample | PLA | PVA | Gly | AS |
---|---|---|---|---|
PLA | 1.00 | - | - | 0.00 |
PLA-5 | 0.95 | - | - | 0.05 |
PLA-10 | 0.90 | - | - | 0.10 |
PLA-15 | 0.85 | - | - | 0.15 |
PVA | - | 0.90 | 0.10 | 0.00 |
PVA-5 | - | 0.85 | 0.10 | 0.05 |
PVA-10 | - | 0.80 | 0.10 | 0.10 |
PVA-15 | - | 0.75 | 0.10 | 0.15 |
Sample | L* | Cab* | hue* | ΔE | |
---|---|---|---|---|---|
PLA | 75.5 ± 0.8 a1 | 35.0 ± 9.0 b1 | 56.0 ± 6.0 a1 | - | |
PLA-5 | 37.0 ± 4.0 b1 | 99.0 ± 8.0 a1 | 53.7 ± 0.9 ab1 | 42 ± 3 a1 | |
PLA-10 | 31.5 ± 1.7 b1 | 97.5 ± 1.7 a1 | 48.4 ± 1.3 ab1 | 44 ± 1 a1 | |
PLA-15 | 31.0 ± 2.0 b1 | 100.0 ± 20.0 a1 | 46.2 ± 1.5 b1 | 45 ± 0 a1 | |
PVA | 73.2 ± 0.9 a2 | 16.0 ± 3.0 c2 | 46.0 ± 11.0 a2 | - | |
PVA-5 | 29.5 ± 0.1 b2 | 45.0 ± 2.0 a2 | 49.3 ± 0.1 a2 | 44 ± 1 b2 | |
PVA-10 | 26.8 ± 0.2 c2 | 29.3 ± 0.2 b2 | 40.0 ± 0.7 a2 | 46 ± 1 ab2 | |
PVA-15 | 26.7 ± 0.1 c2 | 30.3 ± 0.8 b2 | 37.0 ± 0.5 a2 | 47 ± 1 a2 |
Sample | OP × 1014 (cm3/m s Pa) | WVP × 1011 (g/Pa s m) | EM (MPa) | TS (MPa) | E (%) |
---|---|---|---|---|---|
PLA | 196.0 ± 5.0 a1 | 4.9 ± 1.1 c1 | 1360 ± 60 ab1 | 49.0 ± 2.0 a1 | 5.0 ± 0.4 a1 |
PLA-5 | 175.0 ± 4.0 b1 | 9.8 ± 0.4 b1 | 1400 ± 90 a1 | 43.0 ± 3.0 ab1 | 3.3 ± 0.2 b1 |
PLA-10 | 164.0 ± 5.0 bc1 | 12.6 ± 0.5 ab1 | 1340 ± 40 ab1 | 35.4 ± 1.1 ab1 | 3.4 ± 0.6 ab1 |
PLA-15 | 149.0 ± 5.0 c1 | 14.3 ± 1.3 a1 | 1300 ± 70 b1 | 32.4 ± 0.9 b1 | 3.4 ± 0.4 ab1 |
PVA | 11.5 ± 0.8 a2 | 219.0 ± 5.0 a2 | 123 ± 7 a2 | 44.0 ± 7.0 a2 | 85.1 ± 0.6 a2 |
PVA-5 | 8.1 ± 1.6 bc2 | 178.0 ± 5.0 c2 | 85 ± 9 b2 | 33.0 ± 3.0 ab2 | 84.6 ± 0.9 a2 |
PVA-10 | 6.7 ± 0.7 c2 | 190.7 ± 0.5 bc2 | 95 ± 11 b2 | 30.0 ± 3.0 ab2 | 85.0 ± 4.0 a2 |
PVA-15 | 9.5 ± 0.1 ab2 | 202.0 ± 8.0 ab2 | 103 ± 20 b2 | 21.0 ± 4.0 b2 | 58.0 ± 11.0 b2 |
Sample | Thickness (mm) | Equilibrium Moisture Content (53% HR) | Contact Angle (°) |
---|---|---|---|
PLA | 0.14 ± 0.00 b1 | 0.2 ± 0.1 a1 | 92 ± 8 a1 |
PLA-5 | 0.15 ± 0.01 a1 | 0.3 ± 0.1 a1 | 68 ± 9 b1 |
PLA-10 | 0.14 ± 0.01 b1 | 0.4 ± 0.0 a1 | 64 ± 6 b1 |
PLA-15 | 0.14 ± 0.00 b1 | 0.4 ± 0.1 a1 | 64 ± 6 b1 |
PVA | 0.17 ± 0.00 c2 | 12.1 ± 1.1 a2 | 44 ± 11 a2 |
PVA-5 | 0.18 ± 0.02 b2 | 10.1 ± 1.4 a2 | 35 ± 8 b2 |
PVA-10 | 0.19 ± 0.03 a2 | 9.0 ± 3.0 a2 | 38 ± 7 b2 |
PVA-15 | 0.18 ± 0.00 b2 | 8.9 ± 0.5 a2 | 39 ± 7 b2 |
Sample | Tg (°C) | Sample | Tg (°C) | Tc (°C) | Tm (°C) | ΔHm (J/g) |
---|---|---|---|---|---|---|
PLA | 56.1 ± 0.0 a | PVA | 55.2 ± 1.6 a | 129.2 ± 0.5 d | 172.1 ± 0.7 c | 23.0 ± 0.3 b |
PLA-5 | 55.1 ± 0.2 a | PVA-5 | 50.3 ± 0.8 ab | 144.1 ± 0.9 c | 182.2 ± 0.9 b | 27.5 ± 1.0 b |
PLA-10 | 55.3 ± 0.7 a | PVA-10 | 46.1 ± 2.1 bc | 152.9 ± 0.3 b | 186.1 ± 0.4 a | 35.2 ± 2.7 a |
PLA-15 | 54.9 ± 0.3 a | PVA-15 | 44.7 ± 1.0 c | 159.4 ± 1.3 a | 185.8 ± 1.1 a | 37.5 ± 2.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Guillén, I.; Gonçalves, I.; Ferreira, P.; González-Martínez, C.; Chiralt, A. Biodegradable Antioxidant Composites with Almond Skin Powder. Polymers 2025, 17, 2201. https://doi.org/10.3390/polym17162201
Gil-Guillén I, Gonçalves I, Ferreira P, González-Martínez C, Chiralt A. Biodegradable Antioxidant Composites with Almond Skin Powder. Polymers. 2025; 17(16):2201. https://doi.org/10.3390/polym17162201
Chicago/Turabian StyleGil-Guillén, Irene, Idalina Gonçalves, Paula Ferreira, Chelo González-Martínez, and Amparo Chiralt. 2025. "Biodegradable Antioxidant Composites with Almond Skin Powder" Polymers 17, no. 16: 2201. https://doi.org/10.3390/polym17162201
APA StyleGil-Guillén, I., Gonçalves, I., Ferreira, P., González-Martínez, C., & Chiralt, A. (2025). Biodegradable Antioxidant Composites with Almond Skin Powder. Polymers, 17(16), 2201. https://doi.org/10.3390/polym17162201