Preparation of MoS2@PDA-Modified Polyimide Films with High Mechanical Performance and Improved Electrical Insulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of MoS2 Nanosheets
2.3. Synthesis of MoS2@PDA Nanosheets
2.4. Synthesis of MoS2/PI and MoS2@PDA/PI Films
2.5. Materials Characterization
3. Results
3.1. Morphology Analyses
3.2. Chemical Structure
3.3. Mechanical Properties
3.4. Dielectric Properties
3.5. Electrical and Aging Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dayarian, S.; Yang, L.; Far, H.M. Development of polyimide aerogel stock shapes through polyimide aerogel particles. J. Porous Mater. 2023, 30, 2101–2112. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Li, L.L.; Wang, Y.; Zhang, C.; Teng, C. Methods and strategies to decrease the dielectric properties of polyimide films: A review. J. Sol-Gel Sci. Technol. 2023, 108, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.K.; Wu, D.Y. Synthetic strategies for highly transparent and colorless polyimide film. J. Appl. Polym. Sci. 2022, 139, e52604. [Google Scholar] [CrossRef]
- Li, Z.H.; Xie, Z.Q.; Han, Y.X.; Ren, H.W.; Li, Q.M.; Huang, X.W.; Wang, Z.D. Impact of nano-Al2O3 coating on the dielectric properties and High-Frequency surface electrical strength of the polyimide films. Appl. Surf. Sci. 2023, 634, 157666. [Google Scholar] [CrossRef]
- Haq, S.U.; Jayaram, S.H.; Cherney, E.A. Evaluation of medium voltage enameled wire exposed to fast repetitive voltage pulses. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 194–203. [Google Scholar] [CrossRef]
- Pauli, F.; Kilper, M.; Driendl, N.; Hameyer, K. Modeling of the Partial Discharge Process Between the Winding and the Stator of Low Voltage Machines for Traction Applications. IEEE Trans. Energy Convers. 2021, 36, 2310–2318. [Google Scholar] [CrossRef]
- Li, H.G.; Yao, P.F.; Gao, Z.H.; Wang, F. Medium Voltage Converter Inductor Insulation Design Considering Grid Requirements. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 2339–2350. [Google Scholar] [CrossRef]
- Ojaghi, M.; Sabouri, M.; Faiz, J. Diagnosis methods for stator winding faults in three-phase squirrel-cage induction motors. Int. Trans. Electr. Energy Syst. 2014, 24, 891–912. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, J.X.; Zhang, S.Z.; Ren, K.L. 2D MoS2 Nanosheet-Based Polyimide Nanocomposite with High Energy Density for High Temperature Capacitor Applications. Macromol. Mater. Eng. 2021, 306, 2100079. [Google Scholar] [CrossRef]
- Chang, Z.J.; Sun, X.L.; Liao, Z.Z.; Liu, Q.; Han, J. Design and Preparation of Polyimide/TiO2@MoS2 Nanofibers by Hydrothermal Synthesis and Their Photocatalytic Performance. Polymers 2022, 14, 3230. [Google Scholar] [CrossRef]
- Wen, X.; He, C.; Hai, Y.Y.; Liu, X.F.; Ma, R.; Sun, J.Y.; Yang, X.; Qi, Y.L.; Chen, J.Y.; Wei, H. Fabrication of a hybrid ultrafiltration membrane based on MoS2 modified with dopamine and polyethyleneimine. RSC Adv. 2021, 11, 26391–26402. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Yan, H.X.; Xu, P.L.; Guo, L.L.; Yang, K.M.; Liu, R.; Feng, W.X. A novel POSS-containing polyimide: Synthesis and its composite coating with graphene-like MoS2 for outstanding tribological performance. Prog. Org. Coat. 2021, 151, 106013. [Google Scholar] [CrossRef]
- Pi, X.H.; Sun, X.X.; Wang, R.Q.; Chen, C.L.; Wu, S.B.; Zhan, F.R.; Zhong, J.B.; Wang, Q.; Ostrikov, K.K. MoS2 nanosheets on plasma-nitrogen-doped carbon cloth for high-performance flexible supercapacitors. J. Colloid Interface Sci. 2022, 629, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Liu, X.H.; Ma, L.M.; Yang, Z.G.; Wang, H.G.; Wang, J.Q.; Yang, S.R. Application of two-dimensional MoS2 nanosheets in the property improvement of polyimide matrix: Mechanical and thermal aspects. Compos. Part A Appl. Sci. Manuf. 2017, 95, 220–228. [Google Scholar] [CrossRef]
- Liu, S.T.; Dong, C.L.; Yuan, C.Q.; Bai, X.Q.; Tian, Y.; Zhang, G.L. A new polyimide matrix composite to improve friction-induced chatter performance through reducing fluctuation in friction force. Compos. Part B Eng. 2021, 217, 108887. [Google Scholar] [CrossRef]
- Guo, Y.G.; Fang, C.Y.; Wang, T.M.; Wang, Q.H.; Song, F.Z.; Wang, C. Tribological Behavior of Cotton Fabric/Phenolic Resin Laminated Composites Reinforced with Two-Dimensional Materials. Polymers 2023, 15, 4454. [Google Scholar] [CrossRef]
- Xianhai, P.; Boyan, J.; Zhiheng, S.; Yuyou, L.; Shixin, X.; Tao, L. Influence of Grease on Characteristics of Gas Decomposition Product After Breaking Current of SF6 Circuit Breaker. In Proceedings of the 2019 5th International Conference on Electric Power Equipment—Switching Technology (ICEPE-ST), Kitakyushu, Japan, 13–16 October 2019. [Google Scholar]
- Zhou, K.Q.; Liu, J.J.; Wen, P.Y.; Hu, Y.; Gui, Z. A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS2 composites. Appl. Surf. Sci. 2014, 316, 237–244. [Google Scholar] [CrossRef]
- Zhang, A.T.; Li, A.H.; Tian, W.X.; Li, Z.C.; Wei, C.; Sun, Y.; Zhao, W.; Liu, M.L.; Liu, J.Q. A Target-Directed Chemo-Photothermal System Based on Transferrin and Copolymer-Modified MoS2 Nanoplates with pH-Activated Drug Release. Chem.-Eur. J. 2017, 23, 11346–11356. [Google Scholar] [CrossRef]
- Xu, B.B.; Su, Y.Y.; Li, L.; Liu, R.; Lv, Y. Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sens. Actuators B Chem. 2017, 246, 380–388. [Google Scholar] [CrossRef]
- Gu, B.; Pu, G.H.; Ding, B.N.; Zhang, K.; He, R.; Fan, J.H.; Xing, T.; Wu, J.Y.; Yang, W.B. Improved interfacial bonding strength of silicone rubber/carbon fiber modified by dopamine. Polym. Compos. 2022, 43, 6975–6986. [Google Scholar] [CrossRef]
- Chen, Y.W.; Zhan, Y.Q.; Dong, H.Y.; Li, Y.L.; Yang, X.L.; Sun, A.; Chen, X.M.; Zhu, F.; Jia, H.S. Two-dimensional lamellar MXene nanosheets/waterborne epoxy composite coating: Dopamine triggered surface modification and long-term anticorrosion performance. Colloids Surf. A 2023, 674, 131865. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Lin, Y.L.; Kang, W.W.; Quan, H.Y.; Zhang, Y.Y.; Chang, M.L.; Wang, K.; Zhang, M.; Zhang, W.B.; Li, Z.Q.; et al. An aerogel adsorbent with bio-inspired interfacial adhesion between graphene and MoS2 sheets for water treatment. Appl. Surf. Sci. 2020, 512, 145717. [Google Scholar] [CrossRef]
- Dong, Y.J.; Wang, Z.Y.; Huo, S.C.; Lin, J.; He, S.J. Improved Dielectric Breakdown Strength of Polyimide by Incorporating Polydopamine-Coated Graphitic Carbon Nitride. Polymers 2022, 14, 385. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.N.; Ma, D.Y.; Chen, X.R.; Wang, P.; Lin, J. Enhanced dielectric properties of poly (arylene ether nitrile) composite films employing MoS2-based semiconductors for organic film capacitor applications. Mater. Sci. Semicond. Process. 2021, 136, 106127. [Google Scholar] [CrossRef]
- Sanusi Hamat, M.R.I.; Salit, M.S.; Yidris, N.; Ali, S.A.S.; Hussin, M.S.; Manan, M.S.A.; Suffin, M.Q.Z.A.; Ibrahim, M.; Khalil, A.N.M. The Effects of Self-Polymerized Polydopamine Coating on Mechanical Properties of Polylactic Acid (PLA)-Kenaf Fiber (KF) in Fused Deposition Modeling (FDM). Polymers 2023, 15, 2525. [Google Scholar]
- Liu, C.B.; Wang, L.L.; Tang, Y.H.; Luo, S.L.; Liu, Y.T.; Zhang, S.Q.; Zeng, X.Y.; Xu, Y.Z. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2015, 164, 1–9. [Google Scholar] [CrossRef]
- Egerton, R.F.; Hayashida, M.; Malac, M. Transmission electron microscopy of thick polymer and biological specimens. Micron 2023, 169, 103449. [Google Scholar] [CrossRef]
- He, J.Q.; Sun, J.L.; Meng, Y.N.; Pei, Y. Superior lubrication performance of MoS2-Al2O3 composite nanofluid in strips hot rolling. J. Manuf. Process. 2020, 57, 312–323. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Wang, J.; Wang, Z.; Xu, G.Y.; Jiang, Y.G.; Xiao, Y.Y.; Ding, F. Reusable Nanoporous Al2O3-Containing Polyimide Aerogels for Thermal Insulation of Aircraft. ACS Appl. Nano Mater. 2023, 6, 15925–15936. [Google Scholar] [CrossRef]
- Zhang, P.P.; Zhao, J.P.; Zhang, K.; Bai, R.; Wang, Y.M.; Hua, C.X.; Wu, Y.Y.; Liu, X.X.; Xu, H.B.; Li, Y. Fluorographene/polyimide composite films: Mechanical, electrical, hydrophobic, thermal and low dielectric properties. Compos. Part A Appl. Sci. Manuf. 2016, 84, 428–434. [Google Scholar] [CrossRef]
- Wan, B.Q.; Zheng, M.H.; Yang, X.; Dong, X.D.; Li, Y.C.; Mai, Y.W.; Chen, G.; Zha, J.W. Recyclability and Self-Healing of Dynamic Cross-Linked Polyimide with Mechanical/Electrical Damage. Energy Environ. Mater. 2023, 6, e12427. [Google Scholar] [CrossRef]
- Luo, J.W.; Wang, Y.; Qu, Z.J.; Wang, W.; Yu, D. Anisotropic, multifunctional and lightweight CNTs@CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation. Chem. Eng. J. 2022, 442, 136388. [Google Scholar] [CrossRef]
- Wang, C.X.; Liu, Y.; Jia, Z.R.; Zhao, W.R.; Wu, G.L. Multicomponent Nanoparticles Synergistic One-Dimensional Nanofibers as Heterostructure Absorbers for Tunable and Efficient Microwave Absorption. Nano-Micro Lett. 2023, 15, 2311–6706. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.Q.; Jia, Z.R.; Dong, Y.H.; Liu, X.H.; Wu, G.L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919. [Google Scholar] [CrossRef]
- Du, J.; Pu, C.Z.; Sun, X.Y.; Wang, Q.; Niu, H.Q.; Wu, D.Z. Preparation and Interfacial Properties of Hydroxyl-Containing Polyimide Fibers. Polymers 2023, 15, 1032. [Google Scholar] [CrossRef]
- Yang, L.; Xu, W.; Shi, X.L.; Wu, M.L.; Yan, Z.Y.; Zheng, Q.; Feng, G.N.; Zhang, L.; Shao, R. Investigating the thermal conductivity and flame-retardant properties of BN/MoS2/PCNF composite film containing low BN and MoS2 nanosheets loading. Carbohydr. Polym. 2023, 311, 120621. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.H.; Zhang, T.; Chen, H.S.; Liu, M. Experimental study on thermal conductivity and rectification of monolayer and multilayer MoS2. Int. J. Heat Mass Transf. 2021, 170, 121013. [Google Scholar] [CrossRef]
- Lv, S.Q.; Xu, W.; Huang, W.; Lv, G.C.; Wang, G.S. Microwave absorption enhancement by adjusting reactant ratios and filler contents based on 1D K–MnO2@PDA and poly(vinylidene fluoride) matrix. RSC Adv. 2019, 9, 13088–13095. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhu, T.; Chang, S.C.; Lu, Y.K.; Mi, W.B.; Wang, W. 3D Nest-like Architecture of Core–Shell CoFe2O4@1T/2H-MoS2 Composites with Tunable Microwave Absorption Performance. ACS Appl. Mater. Interfaces 2020, 12, 11252–11264. [Google Scholar] [CrossRef] [PubMed]
- Patra, K.K.; Ghosalya, M.K.; Bajpai, H.; Raj, S.; Gopinath, C.S. Oxidative Disproportionation of MoS2/GO to MoS2/MoO3–x/RGO: Integrated and Plasmonic 2D-Multifunctional Nanocomposites for Solar Hydrogen Generation from Near-Infrared and Visible Regions. J. Phys. Chem. C 2019, 123, 21685–21693. [Google Scholar] [CrossRef]
- Yuan, L.; Wen, T.P.; Jiang, L.Y.; Liu, Z.L.; Tian, C.; Yu, J.K. Modified superhydrophilic/underwater superoleophobic mullite fiber-based porous ceramic for oil-water separation. Mater. Res. Bull. 2021, 143, 111454. [Google Scholar] [CrossRef]
- Yu, L.L.; Lee, Y.H.; Ling, X.; Santos, E.J.G.; Shin, Y.C.; Lin, Y.X.; Dubey, M.; Kaxiras, E.; Palacios, T. Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics. Nano Lett. 2014, 14, 3055–3063. [Google Scholar] [CrossRef]
- Ma, S.S.; Li, H.J.; Li, C.; Tian, H.C.; Tao, M.X.; Fei, J.; Qi, L.H. Metal-organic frameworks/polydopamine synergistic interface enhancement of carbon fiber/phenolic composites for promoting mechanical and tribological performances. Nanoscale 2021, 13, 2234–2247. [Google Scholar] [CrossRef]
- Sun, S.X.; Jiao, T.F.; Xing, R.R.; Li, J.H.; Zhou, J.X.; Zhang, L.X.; Peng, Q.M. Preparation of MoS2-based polydopamine-modified core–shell nanocomposites with elevated adsorption performances. RSC Adv. 2018, 8, 21644–21650. [Google Scholar] [CrossRef]
- Sun, W.F.; Chern, W.K.; Chan, J.C.Y.; Chen, Z. A Reactive Molecular Dynamics Study on Crosslinked Epoxy Resin Decomposition under High Electric Field and Thermal Aging Conditions. Polymers 2023, 15, 765. [Google Scholar] [CrossRef]
- Lv, Y.; Jin, Y.H.; Li, Z.Z.; Zhang, S.A.; Wu, H.Y.; Xiong, G.T.; Ju, G.F.; Chen, L.; Hu, Y.H. Reversible photoluminescence switching in photochromic material Sr6Ca4(PO4)6F2:Eu2+ and the modified performance by trap engineering via Ln3+ (Ln = La, Y, Gd, Lu) co-doping for erasable optical data storage. J. Phys. Chem. C 2020, 8, 6403–6412. [Google Scholar] [CrossRef]
- Luque, A.; González, M.; Gordillo-Vázquez, F.J. Streamer discharges as advancing imperfect conductors: Inhomogeneities in long ionized channels. Plasma Sources Sci. Technol. 2017, 26, 125006. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Yi, J.; Yin, Y.A.; Song, Y.H.; Xiong, C.X. Thermal conductivity and electrical insulation properties of h-BN@PDA/silicone rubber composites. Diam. Relat. Mater. 2021, 117, 108485. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Wang, C.; Chen, S.; Zhang, L.; Liu, Z.; Zhang, W. Preparation of MoS2@PDA-Modified Polyimide Films with High Mechanical Performance and Improved Electrical Insulation. Polymers 2024, 16, 546. https://doi.org/10.3390/polym16040546
Cheng X, Wang C, Chen S, Zhang L, Liu Z, Zhang W. Preparation of MoS2@PDA-Modified Polyimide Films with High Mechanical Performance and Improved Electrical Insulation. Polymers. 2024; 16(4):546. https://doi.org/10.3390/polym16040546
Chicago/Turabian StyleCheng, Xian, Chenxi Wang, Shuo Chen, Leyuan Zhang, Zihao Liu, and Wenhao Zhang. 2024. "Preparation of MoS2@PDA-Modified Polyimide Films with High Mechanical Performance and Improved Electrical Insulation" Polymers 16, no. 4: 546. https://doi.org/10.3390/polym16040546
APA StyleCheng, X., Wang, C., Chen, S., Zhang, L., Liu, Z., & Zhang, W. (2024). Preparation of MoS2@PDA-Modified Polyimide Films with High Mechanical Performance and Improved Electrical Insulation. Polymers, 16(4), 546. https://doi.org/10.3390/polym16040546