Investigation of Electrical and Wearing Properties of Wool Fabric Coated with PEDOT:PSS
Abstract
:1. Introduction
2. Materials and Methods
2.1. SEM Analysis
2.2. Fourier Transform Infrared Spectroscopy with Attenuated Total Internal Reflectance (FTIR-ATR)
2.3. Evaluation of the Durability of Conductive PEDOT:PSS Coating after Washing
2.4. Color Fastness to Rubbing in the Conditioning Atmosphere
2.5. Evaluation of Color Change
2.6. Color Intensity Measurements
2.7. Evaluation of Electrical Properties
3. Results
3.1. SEM Analysis
3.2. Evaluation of Conductive PEDOT: PSS Coating Durability after Washing Cycles
3.3. Color Fastness to Dry Rubbing Analysis
3.4. Measurements of Electrical Resistance
3.5. Spectrophotometric Determination of Color Differences
3.6. Fourier Transform Infrared Spectroscopy with Attenuated Total Internal Reflectance (FTIR-ATR) Mode Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Langenhove, L.; Puers, R.; Matthys, D. Intelligent textiles for protection. In Textiles for Protection; Woodhead Publishing in Textiles: Cambridge, UK, 2005; pp. 176–195. [Google Scholar]
- Cherenack, K.; Van Pieterson, L. Smart textiles: Challenges and opportunities. J. Appl. Phys. 2012, 112, 091301. [Google Scholar] [CrossRef]
- Van Langenhove, L. Smart textiles for protection: An overview. In Smart Textiles for Protection; Woodhead Publishing in Textiles: Cambridge, UK, 2013; pp. 3–33. [Google Scholar]
- Koncar, V. Introduction to smart textiles and their applications. In Smart Textiles and Their Applications; Woodhead Publishing Series in Textiles: Cambridge, UK, 2016; pp. 1–8. [Google Scholar]
- Kongahage, D.; Foroughi, J. Actuator materials: Review on recent advances and future outlook for smart textiles. Fibers 2019, 7, 21. [Google Scholar] [CrossRef]
- Köhler, A.R. Challenges for eco-design of emerging technologies: The case of electronic textiles. Mater. Des. 2013, 51, 51–60. [Google Scholar] [CrossRef]
- Shawl, R.K.; Long, B.R.; Werner, D.H.; Gavrin, A. The Characterization of Conductive Textile Materials Intended for Radio Frequency Applications. IEEE Antennas Propag. Mag. 2007, 49, 28–40. [Google Scholar] [CrossRef]
- El Gharbi, M.; Fernández-García, R.; Ahyoud, S.; Gil, I. A review of flexible wearable antenna sensors: Design, fabrication methods, and applications. Materials 2020, 13, 3781. [Google Scholar] [CrossRef]
- Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Polyaniline nanofibers: Facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125, 314–315. [Google Scholar] [CrossRef]
- Nambiar, S.; Yeow, J.T. Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 2011, 26, 1825–1832. [Google Scholar] [CrossRef]
- Devaux, E.; Aubry, C.; Campagne, C.; Rochery, M. PLA/carbon nanotubes multifilament yarns for relative humidity textile sensor. J. Eng. Fibers Fabr. 2011, 6, 155892501100600302. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Zhang, K. Textile-Based Strain Sensor for Human Motion Detection. Energy Environ. Mater. 2020, 3, 80–100. [Google Scholar] [CrossRef]
- Bayram, Y.; Zhou, Y.; Shim, B.S.; Xu, S.; Zhu, J.; Kotov, N.; Volakis, J.L. E-Textile Conductors and Polymer Composites for Conformal Lightweight Antennas. IEEE Trans. Antennas Propag. 2010, 58, 2732–2736. [Google Scholar] [CrossRef]
- Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, Porous, and Conductive Energy Textiles. Nano Lett. 2010, 10, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Meng, J.; Zhang, J.; Chen, X.; Du, M.; Chen, Y.; Hou, C.; Wang, J.; Ju, A.; Wang, X.; et al. Three-Dimensional Hierarchically Porous Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability. ACS Appl. Mater. Interfaces 2019, 11, 25205–25217. [Google Scholar] [CrossRef]
- Xu, Q.; Lu, C.; Sun, S.; Zhang, K. Electrochemical properties of PEDOT:PSS/V2O5 hybrid fiber based supercapacitors. J. Phys. Chem. Solids 2019, 129, 234–241. [Google Scholar] [CrossRef]
- Krifa, M. Electrically conductive textile materials—Application in flexible sensors and antennas. Textiles 2021, 1, 239–257. [Google Scholar] [CrossRef]
- Cheng, K.B.; Ueng, T.H.; Dixon, G. Electrostatic Discharge Properties of Stainless Steel/Polyester Woven Fabrics. Text. Res. J. 2001, 71, 732–738. [Google Scholar] [CrossRef]
- Hebeish, A.A.; El-Gamal, M.A.; Said, T.S.; El-Hady, R.A.A. Major factors affecting the performance of ESD-protective fabrics. J. Text. Inst. 2010, 101, 389–398. [Google Scholar] [CrossRef]
- Zhang, X. 2—Antistatic and conductive textiles. In Functional Textiles for Improved Performance, Protection and Health; Pan, N., Sun, G., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 27–44. [Google Scholar]
- Electrostatic Discharge Association ESD Association Advisory for Electrostatic Discharge Terminology-Glossary. ESD ADV1.0–2009. Available online: www.esda.org/assets/Documents/c23d92d4ab/Fundamentals-of-ESD-Part-1-An-Introduction-to-ESD.pdf (accessed on 25 April 2023).
- Tseghai, G.B.; Mengistie, D.A.; Malengier, B.; Fante, K.A.; Van Langenhove, L. PEDOT: PSS-based conductive textiles and their applications. Sensors 2020, 20, 1881. [Google Scholar] [CrossRef]
- Rubeziene, V.; Baltusnikaite-Guzaitiene, J.; Abraitiene, A.; Sankauskaite, A.; Ragulis, P.; Santos, G.; Pimenta, J. Development and investigation of PEDOT: PSS composition coated fabrics intended for microwave shielding and absorption. Polymer 2021, 13, 1191. [Google Scholar] [CrossRef]
- Guo, Y.; Otley, M.T.; Li, M.; Zhang, X.; Sinha, S.K.; Treich, G.M.; Sotzing, G.A. PEDOT: PSS “wires” printed on textile for wearable electronics. ACS Appl. Mater. Interfaces 2016, 8, 26998–27005. [Google Scholar] [CrossRef]
- Lund, A.; van der Velden, N.M.; Persson, N.K.; Hamedi, M.M.; Müller, C. Electrically conducting fibres for e-textiles: An open playground for conjugated polymers and carbon nanomaterials. Mater. Sci. Eng. R Rep. 2018, 126, 1–29. [Google Scholar] [CrossRef]
- Kaynak, A. Conductive polymer coatings. In Active Coatings for Smart Textiles; Hu, J., Ed.; Woodhead: Sydney, Australia, 2016; Volume 176, pp. 113–136. [Google Scholar]
- Ding, Y.; Invernale, M.A.; Sotzing, G.A. Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. ACS Appl. Mater. Interfaces 2010, 2, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Otley, M.T.; Alamer, F.A.; Guo, Y.; Santana, J.; Eren, E.; Li, M.; Lombardi, J.; Sotzing, G.A. Phase segregation of PEDOT: PSS on textile to produce materials of >10 A mm−2 current carrying capacity. Macromol. Mater. Eng. 2017, 302, 1600348. [Google Scholar] [CrossRef]
- Elschner, A.; Loevenich, W.; Eiling, A.; Bayley, J. ITO Alternative: Solution Deposited Clevios TM PEDOT: PSS for Transparent Conductive Applications. Heraeus Trade Artic. 2012. Available online: https://www.yumpu.com/en/document/read/10545247/english-cleviostm-conductive-transparent-and-flexible-polymers (accessed on 20 April 2023).
- Alhashmi Alamer, F.; Althagafy, K.; Alsalmi, O.; Aldeih, A.; Alotaiby, H.; Althebaiti, M.; Alnefaie, M.A. Review on PEDOT: PSS-Based Conductive Fabric. ACS Omega 2022, 7, 35371–35386. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.D.; Mengistie, D.A.; Gabrielsson, R.; Lund, A.; Müller, C. Machine-washable PEDOT: PSS dyed silk yarns for electronic textiles. ACS Appl. Mater. Interfaces 2017, 9, 9045–9050. [Google Scholar] [CrossRef] [PubMed]
- Ankhili, A.; Tao, X.; Cochrane, C.; Koncar, V.; Coulon, D.; Tarlet, J.M. Ambulatory evaluation of ECG signals obtained using washable textile-based electrodes made with chemically modified PEDOT: PSS. Sensors 2019, 19, 416. [Google Scholar] [CrossRef]
- Tao, X.; Huang, T.H.; Shen, C.L.; Ko, Y.C.; Jou, G.T.; Koncar, V. Bluetooth Low Energy-Based Washable Wearable Activity Motion and Electrocardiogram Textronic Monitoring and Communicating System. Adv. Mater. Technol. 2018, 3, 1700309. [Google Scholar] [CrossRef]
- Tao, X.; Koncar, V.; Huang, T.-H.; Shen, C.-L.; Ko, Y.-C.; Jou, G.-T. How to Make Reliable, Washable, and Wearable Textronic Devices. Sensors 2017, 17, 673. [Google Scholar] [CrossRef]
- Tian, M.; Hu, X.; Qu, L.; Zhu, S.; Sun, Y.; Han, G. Versatile and ductile cotton fabric achieved via layer-by-layer self-assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan. Carbon 2016, 96, 1166–1174. [Google Scholar] [CrossRef]
- Jang, Y.; Park, Y.D.; Lim, J.A.; Lee, H.S.; Lee, W.H.; Cho, K. Patterning the organic electrodes of all-organic thin film transistors with a simple spray printing technique. Appl. Phys. Lett. 2006, 89, 183501. [Google Scholar] [CrossRef]
- Kale, K.H.; Desai, A.N. Atmospheric pressure plasma treatment of textiles using non-polymerising gases. Indian J. Fibre Text. Res. 2011, 36, 289–299. [Google Scholar]
- Haji, A. Natural dyeing of wool with henna and yarrow enhanced by plasma treatment and optimized with response sur-face methodology. J. Text. Inst. 2020, 111, 467–475. [Google Scholar] [CrossRef]
- Udakhe, J.; Honade, S.; Shrivastava, N. Plasma induced physicochemical changes and reactive dyeing of wool fabrics. J. Mater. 2015, 2015, 620370. [Google Scholar] [CrossRef]
- Mori, M.; Inagaki, N. Relationship between anti-felting properties and physicochemical properties of wool treated with low-temperature plasma. Res. J. Text. Appar. 2006, 10, 33–45. [Google Scholar] [CrossRef]
- Varnaitė-Žuravliova, S.; Sankauskaitė, A.; Stygienė, L.; Krauledas, S.; Bekampienė, P.; Milčienė, I. The investigation of barrier and comfort properties of multifunctional coated conductive knitted fabrics. J. Ind. Text. 2016, 45, 585–610. [Google Scholar] [CrossRef]
- Dorieh, A.; Pour, M.F.; Movahed, S.G.; Pizzi, A.; Selakjani, P.P.; Kiamahalleh, M.V.; Aghaei, R. A review of recent progress in melamine-formaldehyde resin based nanocomposites as coating materials. Prog. Org. Coat. 2022, 165, 106768. [Google Scholar] [CrossRef]
- Manasoglu, G.; Kanik, M.; Yildirim, K. Effect of fixation conditions on yellowing behavior of cellulose powder–coated fabrics. J. Eng. Fibers Fabr. 2019, 14, 1558925019829049. [Google Scholar] [CrossRef]
- Merline, D.J.; Vukusic, S.; Abdala, A.A. Melamine formaldehyde: Curing studies and reaction mechanism. Polym. J. 2013, 45, 413–419. [Google Scholar] [CrossRef]
- Funda, S.; Ohki, T.; Liu, Q.; Hossain, J.; Ishimaru, Y.; Ueno, K.; Shirai, H. Correlation between the fine structure of spin-coated PEDOT: PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells. J. Appl. Phys. 2016, 120, 033103. [Google Scholar] [CrossRef]
- Mantione, D.; Del Agua, I.; Schaafsma, W.; ElMahmoudy, M.; Uguz, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Low-temperature cross-linking of PEDOT: PSS films using divinylsulfone. ACS Appl. Mater. Interfaces 2017, 9, 18254–18262. [Google Scholar] [CrossRef]
- ISO 13688:2012; Protective Clothing—General Requirements. ISO—International Organization for Standardization: Geneva, Switzerland, 2012.
- LST EN ISO 105-C06:2010; Textiles—Tests for Colour Fastness—Part C06: Colour Fastness to Domestic and Commercial Laundering (ISO 105-C06:2010). Lithuanian Standards Board: Vilnius, Lithuania, 2010.
- LST EN ISO 139:2006; Textiles—Standard Atmospheres for Conditioning and Testing (ISO 139:2005). Lithuanian Standards Board: Vilnius, Lithuania, 2006.
- LST EN ISO 105-X12:2016; Textiles—Tests for Colour Fastness—Part X12: Colour Fastness to Rubbing (ISO 105-X12:2016). Lithuanian Standards Board: Vilnius, Lithuania, 2016.
- LST EN ISO 105-A01:2010; Textiles—Tests for Colour Fastness—Part A01: General Principles of Testing (ISO 105-A01:2010). Lithuanian Standards Board: Vilnius, Lithuania, 2010.
- LST EN ISO 105-A02:1993; Textiles. Tests for Colour Fastness. Part A02: Grey Scale for Assessing Change in Colour (ISO 105-A02:1993). Lithuanian Standards Board: Vilnius, Lithuania, 1993.
- LST EN ISO 105-J03:2010; Textiles—Tests for Colour Fastness—Part J03: Calculation of Colour Differences (ISO 105-J03:2009). Lithuanian Standards Board: Vilnius, Lithuania, 2010.
- LST EN ISO 16812:2019; Petroleum, Petrochemical and Natural Gas Industries—Shell-and-Tube Heat Exchangers (ISO 16812:2019). Lithuanian Standards Board: Vilnius, Lithuania, 2019.
- Alemu, D.; Wei, H.Y.; Ho, K.C.; Chu, C.W. Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 2012, 5, 9662–9671. [Google Scholar] [CrossRef]
- Kim, B.; Koncar, V.; Devaux, E.; Dufour, C.; Viallier, P. Electrical and morphological properties of PP and PET conductive polymer fibers. Synth. Met. 2004, 146, 167–174. [Google Scholar] [CrossRef]
- Lv, J.; Zhou, P.; Zhang, L.; Zhong, Y.; Sui, X.; Wang, B.; Mao, Z. High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method. Chem. Eng. J. 2019, 361, 897–907. [Google Scholar] [CrossRef]
- Kumpikaitė, E.; Varnaitė-Žuravliova, S.; Tautkutė-Stankuvienė, I.; Laureckienė, G. Comparison of mechanical and end-use properties of grey and dyed cellulose and cellulose/protein woven fabrics. Materials 2021, 14, 2860. [Google Scholar] [CrossRef] [PubMed]
- Åkerfeldt, M.; Strååt, M.; Walkenström, P. Electrically conductive textile coating with a PEDOT-PSS dispersion and a polyurethane binder. Text. Res. J. 2013, 83, 618–627. [Google Scholar] [CrossRef]
- Zhou, X.; Rajeev, A.; Subramanian, A.; Li, Y.; Rossetti, N.; Natale, G.; Cicoira, F. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Acta Biomater. 2022, 139, 296–306. [Google Scholar] [CrossRef]
- Xu, Y.; Patsis, P.A.; Hauser, S.; Voigt, D.; Rothe, R.; Günther, M.; Zhang, Y. Cytocompatible, injectable, and electroconductive soft adhesives with hybrid covalent/noncovalent dynamic network. Adv. Sci. 2019, 6, 1802077. [Google Scholar] [CrossRef]
- Panigrahy, S.; Kandasubramanian, B. Polymeric thermoelectric PEDOT: PSS & composites: Synthesis, progress, and applications. Eur. Polym. J. 2020, 132, 109726. [Google Scholar]
- Bumbac, M.; Zaharescu, T.; Nicolescu, C.M. Thermal and radiation stability of alkyd based coatings used as insulators in the electrical rotating machines. J. Sci. Arts 2017, 1, 119–130. [Google Scholar]
- Chang, H.C.; Sun, T.; Sultana, N.; Lim, M.M.; Khan, T.H.; Ismail, A.F. Conductive PEDOT: PSS coated polylactide (PLA) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: Fabrication and characterization. Mater. Sci. Eng. C 2016, 61, 396–410. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; Luo, S.; Li, S. Preparation and property analysis of melamine formaldehyde foam. Adv. Mater. Phys. Chem. 2012, 2, 63–67. [Google Scholar] [CrossRef]
- Petkevičiūtė, J.; Sankauskaitė, A.; Jasulaitienė, V.; Varnaitė-Žuravliova, S.; Abraitienė, A. Impact of Low-Pressure Plasma Treatment of Wool Fabric for Dyeing with PEDOT: PSS. Materials 2022, 15, 4797. [Google Scholar] [CrossRef] [PubMed]
- Kan, C.W.; Chan, K.; Yuen, C.W.M. Surface characterization of low temperature plasma treated wool fiber-the effect of the nature of gas. Fibers Polym. 2004, 5, 52–58. [Google Scholar] [CrossRef]
Code of Sample | F | PF | S | PS | FS | PFS | SH | PSH | FSH | PFSH |
---|---|---|---|---|---|---|---|---|---|---|
Modifications | Clevios F ET | Plasma/Clevios F ET | Clevios S V3 | Plasma/ Clevios S V3 | Clevios F ET/ Clevios S V3 | Plasma/Clevios F ET/ Clevios S V3 | Clevios S V3 + Tubicoat fixing agent HT | Plasma/Clevios S V3 + Tubicoat fixing agent HT | Clevios F ET/ Clevios S V3 + Tubicoat fixing agent HT | Plasma/ Clevios F ET/Clevios S V3 + Tubicoat fixing agent HT |
Code of Sample | F | PF | S | PS | FS | PFS | SH | FSH | PFSH |
---|---|---|---|---|---|---|---|---|---|
Before washing | |||||||||
After 5 washing cycles |
Code of Sample | F | PF | S | PS | FS | PFS |
---|---|---|---|---|---|---|
Rubbing cloth |
Code of Sample | SH | PSH | FSH | PFSH |
---|---|---|---|---|
Rubbing cloth |
Code of Sample | Reference | After 5 Washes | After Rubbing Test | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | C* | h | K/S | L* | a* | b* | C* | h | K/S | L* | a* | b* | C* | h | K/S | |
S | 43 | −3 | −7 | 7 | 246 | 50 | 46 | −2 | −5 | 5 | 243 | 0.065 | 45 | −3 | −5 | 5 | 244 | 65 |
PS | 38 | −2 | −7 | 7 | 251 | 36 | 44 | −2 | −5 | 5 | 245 | 0.071 | 41 | −2 | −6 | 6 | 250 | 51 |
FS | 40 | −3 | −6 | 7 | 242 | 44 | 35 | −2 | −3 | 3 | 232 | 0.038 | 41 | −3 | −5 | 6 | 242 | 55 |
PFS | 37 | −4 | −6 | 7 | 240 | 33 | 36 | −2 | −5 | 5 | 242 | 0.035 | 38 | −3 | −5 | 6 | 239 | 40 |
SH | 40 | −2 | −6 | 7 | 250 | 43 | 48 | −2 | −5 | 5 | 245 | 0.079 | 46 | −3 | −4 | 5 | 239 | 73 |
PSH | 38 | −2 | −7 | 7 | 252 | 39 | 45 | −2 | −5 | 6 | 247 | 0.065 | 38 | −2 | −7 | 7 | 252 | 34 |
PFSH | 36 | −4 | −6 | 7 | 240 | 35 | 34 | 2 | 4 | 5 | 240 | 0.036 | 38 | −3 | −6 | 7 | 239 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pupeikė, J.; Sankauskaitė, A.; Varnaitė-Žuravliova, S.; Rubežienė, V.; Abraitienė, A. Investigation of Electrical and Wearing Properties of Wool Fabric Coated with PEDOT:PSS. Polymers 2023, 15, 2539. https://doi.org/10.3390/polym15112539
Pupeikė J, Sankauskaitė A, Varnaitė-Žuravliova S, Rubežienė V, Abraitienė A. Investigation of Electrical and Wearing Properties of Wool Fabric Coated with PEDOT:PSS. Polymers. 2023; 15(11):2539. https://doi.org/10.3390/polym15112539
Chicago/Turabian StylePupeikė, Julija, Audronė Sankauskaitė, Sandra Varnaitė-Žuravliova, Vitalija Rubežienė, and Aušra Abraitienė. 2023. "Investigation of Electrical and Wearing Properties of Wool Fabric Coated with PEDOT:PSS" Polymers 15, no. 11: 2539. https://doi.org/10.3390/polym15112539
APA StylePupeikė, J., Sankauskaitė, A., Varnaitė-Žuravliova, S., Rubežienė, V., & Abraitienė, A. (2023). Investigation of Electrical and Wearing Properties of Wool Fabric Coated with PEDOT:PSS. Polymers, 15(11), 2539. https://doi.org/10.3390/polym15112539