Calculation and Simulation of the Mechanical Properties and Surface Structures for η′ Precipitate in Al-Zn-Mg-Cu Alloys
Abstract
1. Introduction
2. Calculation Methods
3. Results and Discussion
3.1. Elastic Properties for (Al4Mg2Zn3) with Solubilized Cu Atom
3.2. Surface Properties of (0001) Surface for (Al4Mg2Zn3) Crystal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Song, B.; Wei, Q.; Bourell, D.; Shi, Y. A review of selective laser melting of aluminum alloys: Processing, microstructure property and developing trends. J. Mater. Sci. Technol. 2019, 35, 270–284. [Google Scholar] [CrossRef]
- Imran, M.; Khan, A.A. Characterization of Al-7075 metal matrix composites: A review. J. Mater. Res. Technol. 2019, 8, 3347–3356. [Google Scholar] [CrossRef]
- Umamrao, A.C.; Vasu, V.; Govindarajum, M.; Srinadh, K.S. Stress corrosion cracking behavior of 7xxx aluminum alloys. A literature review. Trans. Nonferrous Met. Soc. China 2016, 26, 1447–1471. [Google Scholar]
- Jia, H.; Liu, Y.; Zha, M.; Jin, S.; Wang, H. Research progress on 7xxx series wrought aluminum alloys. J. Mater. Heat Treat. 2025, 46, 1–15. [Google Scholar]
- Kvvssn, V.; Butt, M.; Laieghi, H.; Uddin, Z.; Salamci, E.; Kim, D.B.; Kizil, H. Recent progress in additive manufacturing of 7XXX aluminum alloys. Int. J. Adv. Manuf. Technol. 2025, 137, 4353–4399. [Google Scholar] [CrossRef]
- Hou, Y.; Liang, C.; Li, Z.; Zhao, G.; Zhang, C. Effects of artificial aging on microstructure, mechanical properties and stress corrosion cracking of a novel high strength 7A99 Al alloy. Mater. Sci. Eng. A 2020, 780, 139–217. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, K.; Chen, S.; Ding, Y.; Fan, S. Correlation between stress corrosion cracking resistance and grain-boundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment. J. Alloys Compd. 2021, 850, 156717. [Google Scholar] [CrossRef]
- Zang, J.; Xing, Q.; Chen, J.; Dai, S. Aging precipitation behavior of 800 MPa grade ultrahigh strength aluminum alloy. J. Mater. Eng. 2021, 49, 71–77. [Google Scholar]
- Guo, X.; Li, H.; Xue, P.; Pan, Z.; Xu, R.; Ni, D.; Ma, Z. Microstructure and mechanical properties of 600 MPa grade ultra-high strength aluminum alloy fabricated by wire-arc additive manufacturing. J. Mater. Sci. Technol. 2023, 149, 56–66. [Google Scholar] [CrossRef]
- Azarniya, A.; Taheri, A.K.; Taheri, K.K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective. J. Alloys Compd. 2019, 781, 945–983. [Google Scholar] [CrossRef]
- Mondolfo, L.F.; Gjostein, N.A.; Levinson, D.W. Structural changes during the aging in an Al-Mg-Zn alloy. JOM 1956, 8, 1378–1385. [Google Scholar] [CrossRef]
- GjØnnes, J.; Simensens, C.J. An electron microscope investigation of the microstructure in an aluminum-zinc-magnesium alloy. Acta Metall. 1970, 18, 881–890. [Google Scholar] [CrossRef]
- Kverneland, A.; Hansen, V.; Vincent, R.; Gjonnes, K.; Gjonnes, J. Structure analysis of embedded nano-sized particles by precession electron diffraction: H′-precipitate in an Al-Zn-Mg alloy as example. Ultramicroscopy 2006, 106, 492–502. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, J.; Li, Z.; Luo, R.; Chen, B. Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: Atomic-scale HAADF-STEM investigation. Mater. Sci. Eng. A 2017, 691, 60–70. [Google Scholar] [CrossRef]
- Li, X.Z.; Hansen, V.; Jennes, J.G.; Wallenberg, L.R. HREM study and structure modeling of the h′ phase the hardening precipitate in commercial Al-Zn-Mg alloys. Acta Mater. 1999, 47, 2651–2659. [Google Scholar] [CrossRef]
- Larsen, H.B.; Thorkilden, G.; Natland, S.; Pattison, P. Average crystal structure(s) of the embedded metastable η′-phase in the Al-Mg-Zn system. Philos. Mag. 2014, 94, 1719–1743. [Google Scholar] [CrossRef]
- Auld, J.H.; Cousland, S.M. The structure of the metastable η′ phase in aluminium-zinc-magnesium alloys. J. Aust. Inst. Met. 1974, 19, 194–199. [Google Scholar]
- Cao, F.; Liu, Z.; Jiang, Y.; Chen, B.; Wang, Y.; Hu, T. Experimental and DFT characterization of η′ nano-phase and its interfaces in Al-Zn-Mg-Cu alloys. Acta Mater. 2019, 164, 207–219. [Google Scholar] [CrossRef]
- Cao, F. Stabilizing Design of η′ Nano-Precipitates in 7XXX Al Alloys Based on Interfacial Control. Ph.D. Thesis, Central South University, Changsha, China, 2019. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, J. From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.M.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Jang, S.H.; Chichibu, S.F. Impacts of point defect distributions on the surface morphology of GaN films. J. Appl. Phys. 2012, 112, 073503. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Chen, K.Y.; Zhao, L.R.; John, R.; Zbroja, R.C.; Sham, T.K.; Wong, P.C.; Mitlin, D.; Weatherly, G.C. Oxidative degradation of a Ni–16Mo–7Cr–4Fe alloy: Stress and temperature effects. J. Phys. D Appl. Phys. 2003, 36, 2725–2732. [Google Scholar] [CrossRef]
- Pugh, S.F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Anderson, O.L. A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 1963, 24, 909–917. [Google Scholar] [CrossRef]
- Yan, S.; Wang, Y.; Tao, F.; Ren, J. Comprehensive investigation of structural, electronic, elastic and thermodynamic properties for Ti-Mo alloys: A first-principles study. J. Phys. Chem. A 2022, 126, 8771–8781. [Google Scholar] [CrossRef]
- Hu, W.C.; Liu, Y.; Li, D.J.; Zeng, X.Q.; Xu, C.S. First-principles study of the structural, electronic, and optical properties of orthorhombic Bi2GeO5. Comput. Mater. Sci. 2014, 83, 27–33. [Google Scholar] [CrossRef]
- Brik, M.G.; Ma, C.G.; Krasnenko, V. First-principles calculations of the structural, electronic and optical properties of CuGaS2 and CuInS2 after the substitution of Zn for Cu. Surf. Sci. 2013, 608, 146–151. [Google Scholar] [CrossRef]
- Heifets, E.; Eglitis, R.I.; Kotomin, E.A.; Maier, J.; Borstel, G. Ab initio modeling of the (001) surface of cubic and tetragonal barium titanate. Phys. Rev. B 2001, 64, 235417. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The Electron Localization Function. Angew. Chem. Int. Ed. Engl. 1997, 36, 1808–1832. [Google Scholar] [CrossRef]
- Tsirelson, V.; Stash, A. Determination of the electron localization function from electron density. Chem. Phys. Lett. 2002, 351, 142–148. [Google Scholar] [CrossRef]



| Compounds | C11 | C12 | C13 | C14 | C33 | C44 |
| pure | 95.39 | 27.30 | 44.78 | 76.09 | 18.62 | |
| Cu-dissolved | 107.48 | 32.05 | 43.99 | −2.039 | 94.78 | 20.11 |
| Compounds | B | G | E | G/B | ν |
| Pure | 55.62 | 23.05 | 60.77 | 0.41 | 0.32 |
| Cu-dissolved | 61.15 | 27.24 | 71.15 | 0.45 | 0.31 |
| Al1 | Al2 | Mg1 | Mg2 | Zn | |
|---|---|---|---|---|---|
| d12 | 0.03 | 0.06 | 0.04 | 0.009 | 0.04 |
| Esurf | 0.82 | 0.37 | 0.70 | 0.76 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yao, J.-G.; Zhao, M.-C.; Yin, D.-F. Calculation and Simulation of the Mechanical Properties and Surface Structures for η′ Precipitate in Al-Zn-Mg-Cu Alloys. Crystals 2026, 16, 33. https://doi.org/10.3390/cryst16010033
Yao J-G, Zhao M-C, Yin D-F. Calculation and Simulation of the Mechanical Properties and Surface Structures for η′ Precipitate in Al-Zn-Mg-Cu Alloys. Crystals. 2026; 16(1):33. https://doi.org/10.3390/cryst16010033
Chicago/Turabian StyleYao, Jian-Gang, Ming-Chun Zhao, and Deng-Feng Yin. 2026. "Calculation and Simulation of the Mechanical Properties and Surface Structures for η′ Precipitate in Al-Zn-Mg-Cu Alloys" Crystals 16, no. 1: 33. https://doi.org/10.3390/cryst16010033
APA StyleYao, J.-G., Zhao, M.-C., & Yin, D.-F. (2026). Calculation and Simulation of the Mechanical Properties and Surface Structures for η′ Precipitate in Al-Zn-Mg-Cu Alloys. Crystals, 16(1), 33. https://doi.org/10.3390/cryst16010033

