X-Ray Structures of Some Heterocyclic Sulfones
Abstract
1. Introduction
2. Materials and Methods
2.1. Instrumentation and General Details
2.2. Synthesis of Sulfones 1–4
2.2.1. Preparation of cis- and trans-2,6-diethoxy-1,4-oxathiolane 4,4-dioxide 2 and 3
cis-2,6-diethoxy-1,4-oxathiolane 4,4-dioxide 2
trans-2,6-diethoxy-1,4-oxathiolane 4,4-dioxide 3
2.2.2. Preparation of 4H-1,4-Thiazine 1,1-dioxide 1
2.2.3. Preparation of diethyl 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylate 1,1-dioxide 4
2.3. Crystallography
3. Results and Discussion
3.1. Synthesis
3.2. NMR Characterisation of Compounds 1–4
3.3. Molecular and Crystal Structures of 1–4 from X-Ray Diffraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rudolph, F.A.M.; Fuller, A.L.; Slawin, A.M.Z.; Bühl, M.; Aitken, R.A.; Woollins, J.D. The X-ray structures of sulfones. J. Chem. Crystallogr. 2010, 40, 253–265. [Google Scholar] [CrossRef]
- Aitken, R.A.; Slawin, A.M.Z.; Sonecha, D.K. The X-ray structures of 2- and 3-sulfolene and two halogenated derivatives. J. Chem. Crystallogr. 2023, 53, 431–437. [Google Scholar] [CrossRef]
- Aitken, R.A.; Lightfoot, P.; Thomas, A.W. Synthesis, structure and reactivity of some chiral benzylthio alcohols, 1,3-oxathiolanes and their S-oxides. J. Sulfur Chem. 2020, 41, 369–387. [Google Scholar] [CrossRef]
- Aitken, R.A.; Henderson, S.; Slawin, A.M.Z. Structure and thermal reactivity of some 2-substituted 1,3-oxathiolane S-oxides. J. Sulfur Chem. 2018, 39, 422–434. [Google Scholar] [CrossRef]
- Barkenbus, C.; Landis, P.S. The Preparation of 1,4-Thiazine. J. Am. Chem. Soc. 1947, 70, 684–685. [Google Scholar] [CrossRef]
- Noland, W.E.; DeMaster, R.D. 4H-1,4-Thiazine 1,1-dioxide. Org. Synth. 1972, 52, 135–138. [Google Scholar] [CrossRef]
- Lopez Aparicio, F.J.; Zorrilla Benitez, F.; Santoyo Gonzalez, F. Acetals and thioacetals from thioglycolaldehyde: Some oxidation products. Carbohydr. Res. 1982, 110, 195–205. [Google Scholar] [CrossRef]
- Berges, D.A.; Taggart, J.J. A spontaneous sulfoxide dehydration. J. Org. Chem. 1985, 50, 413–415. [Google Scholar] [CrossRef]
- CrysAlisPro; v1.171.42.94a & 96a; Rigaku Oxford Diffraction; Rigaku Corporation: Tokyo, Japan, 2023.
- CrystalClear-SM Expert; v2.1.; Rigaku Americas: The Woodlands, TX, USA; Rigaku Corporation: Tokyo, Japan, 2015.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A: Found. Adv. 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal structure determination. Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- CrystalStructure; v4.3.0.; Rigaku Americas: The Woodlands, TX, USA; Rigaku Corporation: Tokyo, Japan, 2018.
- McCormick, J.E.; McElhinny, R.S. 3-Heteraglutaraldehydes. Part II. Tetrahydrothiophen-3,4-diol 1,1-dioxides and the chemistry of their oxidation product, 3-thiaglutaraldehyde 3,3-dioxide, and its derivatives. J. Chem. Soc. Perkin Trans. 1 1972, 1335–1342. [Google Scholar] [CrossRef]
- Fraenkel, G.; Kolp, C.J.; Chow, A. Theoretical and experimental studies of cycloconjugation involving second-row elements. J. Am. Chem. Soc. 1992, 114, 4307–4314. [Google Scholar] [CrossRef]
- Chang, M.-Y.; Lin, C.-Y. Construction of diaryl oxacyclic sulfones via Bi(OTf)3-catalyzed intramolecular cyclocondensation of 1,3-diaroylsulfones. Org. Bimol. Chem. 2025, 23, 1662–1672. [Google Scholar] [CrossRef]
- Ogurok, V.M.; Siry, S.A.; Rusanov, E.B.; Vlasenko, Y.G.; Shermolovich, Y.G. Synthesis of symmetrical 3,5-bis(difluoromethyl)-1,4-thiazine 1,1-dioxides. J. Fluor. Chem. 2016, 182, 47–52. [Google Scholar] [CrossRef]
- Ladouceur, S.; Donato, L.; Romain, M.; Mudraboyina, B.P.; Johansen, M.B.; Wisner, J.A.; Zysman-Colman, E. A rare case of dual emission in a neutral heteroleptic iridium(III) complex. Dalton Trans. 2013, 42, 8838–8847. [Google Scholar] [CrossRef] [PubMed]
- Fraenkel, G.; Chow, A.; Gallucci, J.; Rizvi, S.Q.A.; Wong, S.C.; Finkelstein, H. Demonstration of heteroaromaticity via d-orbital overlap in a cyclic conjugated sulfone: NMR, crystallography, and ab initio calculation. J. Am. Chem. Soc. 1986, 108, 5339–5341. [Google Scholar] [CrossRef]
- Roversi, E.; Monnat, F.; Schenk, K.; Vogel, P.; Braña, P.; Sordo, J.A. 17O NMR spectroscopy of sulfolenes (2,5-dihydrothiophene 1,1-dioxides) and sultines (3,6-dihydro-1,2-oxathiin 2-oxides)—Experiment and quantum calculations: Synthesis of 4,9-dioxo-1,2-oxathiacyclodecane 2-oxide, a new heterocycle. Chem. Eur. J. 2000, 6, 1858–1864. [Google Scholar] [CrossRef]
- Estrada, M.D.; López-Castro, A. Structure of 2,6-dimethoxy-1,4-oxathiane 4,4-dioxide. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1991, 47, 1030–1032. [Google Scholar] [CrossRef]
- Morris, B.D.; Prinsep, M.R. Euthyroideones, novel brominated quinone methides from the bryozoan Eurythroides episcopalis. J. Org. Chem. 1998, 63, 9545–9547. [Google Scholar] [CrossRef]
- Pearce, A.N.; Chia, E.W.; Berridge, M.V.; Clark, G.R.; Harper, J.L.; Larsen, L.; Maas, E.W.; Page, M.J.; Perry, N.B.; Webb, V.L.; et al. Anti-inflammatory thiazine alkaloids isolated from the New Zealand ascidian Aplidium sp.: Inhibitors of the neutrophil respiratory burst in a model of gouty arthritis. J. Nat. Prod. 2007, 70, 936–940. [Google Scholar] [CrossRef]
- Chia, E.W.; Pearce, A.N.; Berridge, M.V.; Larsen, L.; Perry, N.B.; Sansom, C.E.; Godfrey, C.A.; Hanton, L.R.; Lu, G.-L.; Walton, M.; et al. Synthesis and anti-inflammatory structure-activity relationships of thiazine-quinoline-quinones: Inhibitors of the neutrophil respiratory burst in a model of acute gouty arthritis. Bioorg. Med. Chem. 2007, 16, 9432–9442. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Ji, Y.; Xin, K.; Gao, S. Total synthesis of (–)-xestosaprol N and O. Org. Lett. 2018, 20, 732–735. [Google Scholar] [CrossRef]
- Schwartz, B.D.; Coster, M.J.; Skinner-Adams, T.S.; Andrews, K.T.; White, J.M.; Davis, R.A. Synthesis and antiplasmodial evaluation of analogues based on the tricyclic core of thiaplakortones A–D. Mar. Drugs 2015, 13, 5784–5795. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.D.; Coster, M.J.; Davis, R.A.; Healy, P.C. CSD Communication; Cambridge Crystallographic Data Centre: Cambridge, UK, 2017; MARNIF. [Google Scholar]
- Mao, R.; Yuan, Z.; Li, Y.; Wu, J. N-Radical-initiated cyclization through insertion of sulfur dioxide under photoinduced catalyst-free conditions. Chem. Eur. J. 2017, 23, 8176–8179. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 | 2 | 3 | 4 |
---|---|---|---|---|
CCDC deposit no. | 2449906 | 2449907 | 2449908 | 2449909 |
Empirical formula | C4H5NO2S | C8H16O5S | C8H16O5S | C10H15NO6S |
Crystal system | monoclinic | monoclinic | monoclinic | monoclinic |
Space group | P21/n (No. 14) | P21/c (No. 14) | I2/a (No. 15) | P21/n (No. 14) |
Temperature (K) | 125 | 125 | 125 | 173 |
Crystal form | colourless plate | colourless plate | colourless plate | colourless prism |
Size (mm) | 0.08 × 0.04 × 0.008 | 0.30 × 0.16 × 0.03 | 0.18 × 0.12 × 0.02 | 0.17 × 0.07 × 0.07 |
a (Å) | 6.8189(2) | 9.26086(15) | 9.05992(12) | 5.5089(3) |
b (Å) | 9.9891(3) | 13.2940(2) | 12.75336(18) | 19.7489(13) |
c (Å) | 8.3841(3) | 8.58184(14) | 19.5748(3) | 11.5347(8) |
β (°) | 110.087(4) | 96.5134(15) | 95.2016(13) | 100.1790(10) |
Volume (Å3) | 536.34(3) | 1049.72(3) | 2252.44(6) | 1235.16(14) |
Z | 4 | 4 | 8 | 4 |
Dc (g cm–3) | 1.624 | 1.419 | 1.323 | 1.491 |
Absorption coefficient (mm–1) | 4.560 | 0.304 | 0.283 | 0.282 |
Radiation type, wavelength (Å) | Cu Kα, 1.54187 | Mo Kα, 1.71073 | Mo Kα, 1.71073 | Mo Kα, 1.71073 |
F(000) | 272.00 | 480.00 | 960.00 | 584.00 |
θ range (°) | 7.161–75.646 | 2.213–29.151 | 1.908–29.214 | 2.069–27.479 |
Limiting indices | –8 ≤ h ≤ 8, –12 ≤ k ≤ 12, –10 ≤ l ≤ 10 | –12 ≤ h ≤ 12, –17 ≤ k ≤ 18, –11 ≤ l ≤ 11 | –12 ≤ h ≤ 12, –17 ≤ k ≤ 16, –26 ≤ l ≤ 26 | –7 ≤ h ≤ 7, –25 ≤ k ≤ 25, –14 ≤ l ≤ 14 |
Reflns collected/unique | 8448/1098 | 44,431/2673 | 46,039/2858 | 12,586/2822 |
Rint | 0.0565 | 0.0343 | 0.0547 | 0.1003 |
Restraints/parameters | 1/77 | 0/129 | 19/152 | 1/169 |
Data with I > 2σ(I) | 926 | 2422 | 2486 | 1747 |
Goodness of fit on F2 | 1.100 | 1.062 | 1.069 | 1.021 |
R1, wR2 (data I > 2σ(I)) | 0.0459, 0.1111 | 0.0286, 0.0750 | 0.0410, 0.1023 | 0.0497, 0.0946 |
R1, wR2 (all data) | 0.0572, 0.1200 | 0.0322, 0.0769 | 0.0512, 0.1054 | 0.1060, 0.1160 |
Largest diff. peak/hole (e Å2) | 0.39 and −0.44 | 0.40 and −0.36 | 0.75 and −0.21 | 0.38 and −0.40 |
Compound | 2JH-H | 3JH-H | 4JH-H |
---|---|---|---|
1 * | — | H2-H3 = H5-H6 = 10.0 H3-H4 = H4-H5 = 6.6 | H2-H6 = 1.8 H3-H5 = 4.4 H2-H4 = H4-H6 = 1.2 |
2 | H3a-H3b = H5a-H5b = 13.5 H7a-H7b = 9.5 | H2-H3a = H5a-H6 = 9.5 H2-H3b = H5b-H6 = 2.0 H7a-CH3 = H7b-CH3 = 7.0 | H3a-H5a = 2.0 |
3 | H3a-H3b = H5a-H5b = 14.0 H7a-H7b = 9.5 | H2-H3a = H5a-H6 = 5.5 H2-H3b = H5b-H6 = 3.0 H7a-CH3 = H7b-CH3 = 7.0 | H3a-H5b = H3b-H5a = 2.0 |
4 | H2a-H2b = 13.2 | H2a-H3 = 12.3 H2b-H3 = 3.3 H3-H4 = 1.7 CH2-CH3 = 7.0 | H2a-H4 = 2.4 H2a-H6 = 1.0 |
D—H···A | D—H | H···A | D···A | D—H···A | |
---|---|---|---|---|---|
1 | N(1)–H(1)···O(3)#1 | 0.952(18) | 2.11(3) | 2.851(3) | 134(3) |
C(3)-H(3)···O(3)#2 | 0.95 | 2.551(3) | 3.408(4) | 150.1(2) | |
C(5)-H(5)···O(3)#3 | 0.95 | 2.5029(18) | 3.260(4) | 136.61(19) | |
4 | N(1)–H(1)···O(3)#4 | 0.98(3) | 2.10(3) | 2.887(3) | 136(2) |
Bond Length | 1 | 2 | 3 | 4 |
---|---|---|---|---|
N/O(1)–C(2) | 1.352(4) | 1.4307(12) | 1.4379(16) | 1.348(3) |
C(2)–C(3) | 1.351(4) | 1.5265(14) | 1.518(2) | 1.350(4) |
C(3)–S(4) | 1.711(3) | 1.7761(11) | 1.7670(15) | 1.718(3) |
S(4)–C(5) | 1.713(3) | 1.7799(11) | 1.7734(14) | 1.770(3) |
C(5)–C(6) | 1.342(4) | 1.5256(14) | 1.526(2) | 1.531(3) |
C(6)–N/O(1) | 1.361(4) | 1.4297(12) | 1.4283(16) | 1.448(3) |
S(4)–O(3) | 1.453(2) | 1.4402(9) | 1.4382(12) | 1.4439(19) |
S(4)–O(4) | 1.442(2) | 1.4455(9) | 1.4433(11) | 1.439(2) |
Angle | ||||
C(6)–N/O(1)–C(2) | 122.5(2) | 113.22(8) | 115.38(10) | 123.5(2) |
N/O(1)–C(2)–C(3) | 124.3(3) | 110.86(8) | 110.56(11) | 126.3(2) |
C(2)–C(3)–S(4) | 123.3(2) | 110.71(7) | 110.06(10) | 121.0(2) |
C(3)–S(4)–C(5) | 101.58(15) | 102.29(5) | 101.00(7) | 101.13(13) |
S(4)–C(5)–C(6) | 123.1(3) | 109.00(7) | 113.86(9) | 110.51(18) |
C(5)–C(6)–N/O(1) | 124.7(3) | 109.40(8) | 112.55(11) | 111.6(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aitken, R.A.; Cordes, D.B.; McKay, A.P.; Slawin, A.M.Z.; Sonecha, D.K. X-Ray Structures of Some Heterocyclic Sulfones. Crystals 2025, 15, 750. https://doi.org/10.3390/cryst15090750
Aitken RA, Cordes DB, McKay AP, Slawin AMZ, Sonecha DK. X-Ray Structures of Some Heterocyclic Sulfones. Crystals. 2025; 15(9):750. https://doi.org/10.3390/cryst15090750
Chicago/Turabian StyleAitken, R. Alan, David B. Cordes, Aidan P. McKay, Alexandra M. Z. Slawin, and Dheirya K. Sonecha. 2025. "X-Ray Structures of Some Heterocyclic Sulfones" Crystals 15, no. 9: 750. https://doi.org/10.3390/cryst15090750
APA StyleAitken, R. A., Cordes, D. B., McKay, A. P., Slawin, A. M. Z., & Sonecha, D. K. (2025). X-Ray Structures of Some Heterocyclic Sulfones. Crystals, 15(9), 750. https://doi.org/10.3390/cryst15090750