Chemical–Mechanical Super-Polishing of Al2O3 (0001) Wafer for Epitaxial Purposes
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Polishing Result
3.2. Surface Characterization
3.3. Epitaxial Thin Film Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, J.M.; Shaffer, J.J.; Shibano, Y.; Namba, Y. Float polishing of optical materials. Appl. Opt. 1987, 26, 696–703. [Google Scholar] [CrossRef]
- Hader, B.; Weis, O. Superpolishing sapphire: A method to produce atomically flat and damage free surfaces. Surf. Sci. 1989, 220, 118–130. [Google Scholar] [CrossRef]
- Weis, O. Direct contact superpolishing of sapphire. Appl. Opt. 1992, 31, 4355–4362. [Google Scholar] [CrossRef]
- Gutsche, H.W.; Moody, J.W. Polishing of Sapphire with Colloidal Silica. J. Electrchem. Soc. 1978, 125, 136–138. [Google Scholar] [CrossRef]
- Li, Z.; Deng, Z.; Ge, J.; Liu, T.; Wan, L. Experimental and theoretical analysis of single-sided and double-sided chemical mechanical polishing of sapphire wafers. Int. J. Adv. Manuf. Technol. 2022, 119, 5095–5106. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Hu, W.; Zhang, L.; Xie, W.; Liao, L. Chemical mechanical polishing for sapphire wafers using a developed slurry. J. Manuf. Process 2021, 62, 762–770. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, W.; Song, Z.; Hu, X. Two-step chemical mechanical polishing of sapphire substrates. J. Electrochem. Soc. 2020, 157, H688–H691. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, Z.; Liao, L.; Liu, J.; Su, H.; Wang, S.; Guo, D. Green chemical mechanical polishing of sapphire wafers using a novel slurry. Nanoscale 2020, 12, 22518–22526. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Cheng, Y.; Zhong, M. Effects of process parameters on chemical-mechanical interactions during sapphire polishing. Microelectron. Eng. 2019, 216, 111029. [Google Scholar] [CrossRef]
- Li, S.; Fu, J.; He, Z.; Luo, Y.; Wu, S. Nanomaterials and Equipment for Chemical–Mechanical Polishing of Single-Crystal Sapphire Wafers. Coatings 2023, 13, 2081. [Google Scholar] [CrossRef]
- Lee, C.H.; Pen, W.Y.; Lin, M.Z.; Yu, K.L.; Hsueh, J.C. A comparison between the atomic force microscopy and X-ray reflec tivity on the characterization of surface roughness. Inter. J. Nano-Sci. 2023, 2, 343–348. [Google Scholar] [CrossRef]
- Su, H.C.; Lee, C.H.; Lin, M.Z.; Huang, T.Z. A comparison between X-ray reflectivity and atomic force microscopy on the characterization of a surface roughness. Chin. J. Phys. 2012, 50, 291–300. [Google Scholar]
- Tsang, K.L.; Lee, C.H.; Jean, Y.C.; Dann, T.E.; Chen, J.R.; D’Amico, K.L.; Oversluizen, T. The Wiggler X-ray Beamlines at SRRC. Rev. Sci. Instrum. 1995, 66, 1812–1814. [Google Scholar] [CrossRef]
- Certified Scientific Software. Spec Manual: X-Ray Diffraction Software, Version 3; Certified Scientific Software: Cambridge, MA, USA, 2017. [Google Scholar]
- Glavic, A.; Björck, M. Gen-X reflectivity program. J. Appl. Crystallogr. 2022, 55, 1063. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Harada, Y.; Seno, M. Novel metalorganic chemical vapor deposition system for GaN growth. Appl. Phys. Lett. 1991, 58, 2021–2023. [Google Scholar] [CrossRef]
- Yang, C.C.; Koh, P.L.; Wu, M.C.; Lee, C.H.; Chi, G.C. Effects of H2/NH3 Flow-Rate Ratio on the luminescent, structural, and electrical properties of GaN epitaxial layers grown by MOCVD. J. Electron. Mater. 1999, 28, 1096–1100. [Google Scholar] [CrossRef]
- Kurita, T.; Uchida, K.; Oshiyama, A. Atomic and electronic structures of α-Al2O3 surfaces. Phys. Rev. B 2010, 82, 155319. [Google Scholar] [CrossRef]
- Bakholdin, S.I.; Maslov, V.N. Simulation of surface energies of sapphire crystals. Phys. Solid State 2015, 57, 1236–1243. [Google Scholar] [CrossRef]
- Razia; Chugh, M.; Ranganathan, M. Surface energy and surface stress of polar GaN (0001). Appl. Surf. Sci. 2021, 566, 150627. [Google Scholar] [CrossRef]
- Dreyer, C.E.; Janotti, A.; Van de Walle, C.G. Absolute surface energies of polar and nonpolar planes of GaN. Phys. Rev. B 2014, 89, 081005(R). [Google Scholar] [CrossRef]
- Miceli, P.F.; Palmstrgm, C.J. X-ray scattering from rotational disorder in epitaxial films: An unconventional mosaic crystal. Phys. Rev. 1995, 51, 5506–5509. [Google Scholar] [CrossRef] [PubMed]
- Miceli, P.F.; Weatherwax, J.; Krentse, T.; Palmstrom, C.J. Specular and diffuse reflectivity from thin films containing misfit dislocations. Phys. B 1996, 221, 230–234. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-H.; Lee, C.-H. Chemical–Mechanical Super-Polishing of Al2O3 (0001) Wafer for Epitaxial Purposes. Crystals 2025, 15, 694. https://doi.org/10.3390/cryst15080694
Lee C-H, Lee C-H. Chemical–Mechanical Super-Polishing of Al2O3 (0001) Wafer for Epitaxial Purposes. Crystals. 2025; 15(8):694. https://doi.org/10.3390/cryst15080694
Chicago/Turabian StyleLee, Chih-Hao, and Chih-Hong Lee. 2025. "Chemical–Mechanical Super-Polishing of Al2O3 (0001) Wafer for Epitaxial Purposes" Crystals 15, no. 8: 694. https://doi.org/10.3390/cryst15080694
APA StyleLee, C.-H., & Lee, C.-H. (2025). Chemical–Mechanical Super-Polishing of Al2O3 (0001) Wafer for Epitaxial Purposes. Crystals, 15(8), 694. https://doi.org/10.3390/cryst15080694