Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Properties—“Composition and Structural Analysis: XRD, RBS, SEM and TEM Measurements”
3.2. Luminescence Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Institute for Solar Energy Research in Hamelin (ISFH). Available online: https://isfh.de/26-1-record-efficiency-for-p-type-crystalline-si-solar-cells/?lang=en (accessed on 13 December 2022).
- The National Renewable Energy Laboratory (NREL). Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 13 December 2022).
- Klampaftis, E.; Ross, D.; McIntosh, K.R.; Richards, B.S. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review. Sol. Energy Mater. Sol. Cells 2009, 93, 1182–1194. [Google Scholar] [CrossRef]
- Ghazy, A.; Safdar, M.; Lastusaari, M.; Savin, H.; Karppinen, M. Advances in upconversion enhanced solar cell performance. Sol. Energy Mater. Sol. Cells 2021, 230, 111234. [Google Scholar] [CrossRef]
- Trupke, T.; Würfel, P.; Green, M.A. Up-and down-conversion as new means to improve solar cell efficiencies. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003. [Google Scholar]
- Wegh, R.T.; Donker, H.; van Loef, E.V.D.; Oskam, K.D.; Meijerink, A. Quantum cutting through downconversion in rare-earth compounds. J. Lumin. 2000, 87–89, 1017–1019. [Google Scholar] [CrossRef]
- Lian, H.; Hou, Z.; Shang, M.; Geng, D.; Zhang, Y.; Lin, J. Rare earth ions doped phosphors for improving efficiencies of solar cells. Energy 2013, 57, 270–283. [Google Scholar] [CrossRef]
- Gupta, I.; Singh, S.; Bhangwan, S.; Singh, D. Rare earth (RE) doped phosphors and their emerging applications: A review. Ceram. Int. 2021, 47, 19282–19303. [Google Scholar] [CrossRef]
- Shalav, A.; Richards, B.S.; Trupke, T. Application of NaYF4:Eu3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 2005, 86, 013505. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, J.; Liu, X.; Du, H. Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors. Mater. Res. Bull. 2013, 48, 2175–2179. [Google Scholar] [CrossRef]
- Verma, T.; Agrawal, S. Photoluminescence characteristics of Sm3+ and Eu3+ doped yttrium oxide phosphors. J. Mater. Sci. Mater. Electron. 2018, 29, 13397–13406. [Google Scholar] [CrossRef]
- Chen, K.; Yin, S.; Xue, D. Active La–Nb–O compounds for fast lithium-ion energy storage. Tungsten 2019, 1, 287–296. [Google Scholar] [CrossRef]
- Egaña, A.; Cantelar, E.; Tardío, M.; Muñoz Santiuste, J.E. Synthesis and luminescence properties of Er3+ doped La3NbO7 ceramic powder. Opt. Mater. 2019, 97, 109393. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, H.; Zhou, J.; Wang, T.; Huang, D.; Wu, Y.; Sun, L.; Zhou, G.; Zhan, J.; Hu, J. Enhanced anti-stocks luminescence in LaNbO4:Ln3+ (Ln3+ = Yb3+, Er3+/Ho3+/Tm3+) with abundant color. RSC Adv. 2017, 7, 16777–16786. [Google Scholar] [CrossRef]
- Zhang, D.L.; Hua, P.R.; Cui, Y.M.; Chen, C.H.; Pun, E.Y.B. Absorption and emission characteristics of Er3NbO7 phosphor: A comparison with ErNbO4 phosphor and Er:LiNbO3 single crystal. J. Lumin. 2007, 127, 453–460. [Google Scholar] [CrossRef]
- Silver, J.; Martínez-rubio, M.I.; Ireland, T.G.; Fern, G.R.; Withnall, R. The Effect of Particle Morphology and Crystallite Size on the Upconversion Luminescence Properties of Erbium and Ytterbium co-doped Yttrium Oxide Phosphors. J. Phys. Chem. B 2001, 105, 948–953. [Google Scholar] [CrossRef]
- Zhou, P.Q.; Wang, X.J.; He, Y.D.; Wu, Z.F.; Du, J.L.; Fu, E.G. Effect of deposition mechanisms on the infrared photoluminescence of erbium-ytterbium silicate films under different sputtering methods. J. Appl. Phys. 2019, 125, 175114. [Google Scholar] [CrossRef]
- Cabello-Guzmán, G.; González, D.; Caro-Díaz, C.; Lillo-Arroyo, L.; Valenzuela-Malgarejo, F.; Cárdenas Triviño, G.; Buono-Core, G.E.; Chornik, B.; Huentupil, Y. Preliminary evaluation of the up-conversion emission of Y2O3:Er-Yb thin films prepared by a solid state photochemical deposition method. J. Lumen. 2018, 204, 401–409. [Google Scholar] [CrossRef]
- Jakeš, V.; Rubešová, K.; Hlásek, T.; Polák, V.; Oswald, J.; Nádherný, L. Thin films of ErNbO4 and YbNbO4 prepared by sol–gel. J. Sol-Gel Sci. Technol. 2016, 78, 600–605. [Google Scholar] [CrossRef]
- Trabelsi, F.; Mercier, F.; Blanquet, E.; Crisci, A.; Salhi, R. Synthesis of upconversion TiO2:Er3+-Yb3+ nanoparticles and deposition of thin films by spin coating technique. Ceram. Int. 2020, 46, 28183–28192. [Google Scholar] [CrossRef]
- Park, S.I.; Kim, S.I.; Chang, S.K.; Kim, Y.H. Fabrication and characterization of Bi-doped Y2O3 phosphor thin films by RF magnetron sputtering. Thin Solid Films 2016, 600, 83–89. [Google Scholar] [CrossRef]
- Cai, L.; Nino, J.C. Structure and dielectric properties of Ln3NbO7 (Ln = Nd, Gd, Dy, Er, Yb and Y). J. Eur. Ceram. Soc. 2007, 27, 3971–3976. [Google Scholar] [CrossRef]
- Rossell, H.J. Fluorite-related phases Ln3MO7, Ln = Rare-earth, Y or Sc, M = Nb, Sb or Ta. III. Structure of the non-stoichiometric Y3TaO7 phase. J. Solid State Chem. 1979, 27, 287–292. [Google Scholar] [CrossRef]
- Francis, L.T.; Rao, P.P.; Thomas, M.; Mahesh, S.K.; Reshmi, V.R.; Thampi, V.D.S. New orange-red emitting phosphor La3NbO7:Eu3+ under blue excitation. Mater. Lett. 2012, 81, 142–144. [Google Scholar] [CrossRef]
- Aarts, L.; van der Ende, B.M.; Meijerink, A. Downconversion for solar cells in NaYF4:Er,Yb. J. Appl. Phys. 2009, 106, 023522. [Google Scholar] [CrossRef]
- Gómez, L.A.; Menezes, L.S.; de Araújo, C.B.; Gonçalves, R.R.; Ribeiro, S.J.L.; Messaddeq, Y. Upconversion luminescence in Er3+ doped and Er3+/Yb3+ codoped zirconia and hafnia nanocrystals excited at 980 nm. J. Appl. Phys. 2010, 107, 113508. [Google Scholar] [CrossRef]
- Abe, R.; Higashi, M.; Sayama, K.; Abe, Y.; Sugihara, H. Photocatalytic Activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for Water Splitting into H2 and O2. J. Phys. Chem. 2006, 110, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Hinatsu, Y.; Wakeshima, M.; Kawabuchi, N.; Taira, N. Structures and magnetic properties of rare earth rhenium oxides Ln3ReO7 (Ln = Gd, Tb, and Dy). J. Alloy Compd. 2004, 374, 79–83. [Google Scholar] [CrossRef]
- Preux, N.; Rolle, A.; Merlin, C.; Benamira, M.; Malys, M.; Estournes, C.; Rubbens, A.; Vannier, R.N. La3TaO7 derivatives with Weberite structure type: Possible electrolytes for solid oxide fuel cells and high temperature electrolysers. C. R. Chim. 2010, 13, 1351–1358. [Google Scholar] [CrossRef]
- Kato, K.; Toyoura, K.; Nakamura, A.; Matsunaga, K. First-principles analysis on proton diffusivity in La3NbO7. Solid States Ionics 2014, 262, 472–475. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Sriubas, M.; Bockute, K.; Laukaitis, G. Dynamics of the formation of thin LaNbO4 films using magnetron sputtering. J. Vibroeng. 2015, 17, 3313–3322. [Google Scholar]
- Subramani, T.; Voskanyan, A.; Jayanthi, K.; Abramchuk, M.; Navrotsky, A. A Comparison of Order-Disorder in Several Families of Cubic Oxides. Front. Chem. 2021, 1, 719169. [Google Scholar] [CrossRef]
- Cai, L.; Nino, J.C. Synchrotron and neutron powder diffraction study of phase transition in weberite-type Nd3NbO7 and La3NbO7. J. Solid State Chem. 2011, 184, 2263–2271. [Google Scholar] [CrossRef]
- Mielewczyck-Gryn, A.; Navrotsky, A. Enthalpies of formation of rare earth niobates, RE3NbO7. Am. Mineral. 2015, 100, 1578–1583. [Google Scholar] [CrossRef]
- Dai, L.; Xu, Q.; Zhu, S.Z.; Liu, L. Preparation of Ultra–Fine La3NbO7 Powder by Solid State Reaction. Key Eng. Mat. 2012, 512–515, 158–161. [Google Scholar] [CrossRef]
- Redondo-Cubero, A.; Borge, M.J.G.; Gordillo, N.; Gutiérrez, P.C.; Olivares, J.; Pérez Casero, R.; Ynsa, M.D. Current status and future developments of the ion beam facility at the Centre of Micro-Analysis of Materials in Madrid. Eur. Phys. J. Plus. 2021, 136, 175. [Google Scholar] [CrossRef]
- Chu, W.K.; Mayer, J.W.; Nicolet, M.A. Backscattering Spectrometry, 1st ed.; Academic Press Inc.: San Diego, CA, USA, 1978. [Google Scholar]
- Mayer, M. SIMNRA User’s Guide; Report IPP 9/113; Max-Planck-Institut für Plasmaphysik: Garching, Germany, 1997. [Google Scholar]
- Huang, J.; Zhou, L.; Liang, Z.; Gong, F.; Han, J.; Wang, R. Promising red phosphors LaNbO4:Eu3+, Bi3+ for LED solid-state lighting application. J. Rare Earths 2010, 28, 356–360. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Li, J.F.; Zhu, Z.J.; You, Z.Y.; Tu, C.Y. Spectroscopic analyses and laser properties simulation of Er/Yb, Er/Nd, Er/Dy: BaLaGa3O7 crystals. J. Lumen. 2019, 208, 259–266. [Google Scholar] [CrossRef]
Sample | Sputtering Condition | ||
---|---|---|---|
Power (W) | Deposition Time (min) | Thickness (nm) | |
LT—LP | 50 | 30 | 115 |
LT—HP | 80 | 30 | 250 |
HT—LP | 50 | 240 | 800 |
HT—HP | 80 | 240 | 1040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salas-Colera, E.; Tardío, M.; García-Tabarés, E.; Perea, B.; Crespillo, M.L.; Muñoz-Santiuste, J.E.; Galiana, B. Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells. Crystals 2023, 13, 159. https://doi.org/10.3390/cryst13020159
Salas-Colera E, Tardío M, García-Tabarés E, Perea B, Crespillo ML, Muñoz-Santiuste JE, Galiana B. Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells. Crystals. 2023; 13(2):159. https://doi.org/10.3390/cryst13020159
Chicago/Turabian StyleSalas-Colera, Eduardo, Miguel Tardío, Elisa García-Tabarés, Belén Perea, Miguel L. Crespillo, Juan Enrique Muñoz-Santiuste, and Beatriz Galiana. 2023. "Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells" Crystals 13, no. 2: 159. https://doi.org/10.3390/cryst13020159
APA StyleSalas-Colera, E., Tardío, M., García-Tabarés, E., Perea, B., Crespillo, M. L., Muñoz-Santiuste, J. E., & Galiana, B. (2023). Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells. Crystals, 13(2), 159. https://doi.org/10.3390/cryst13020159