Enhancing Photoluminescence and Stability of CsPbI3 Perovskite Quantum Dots via Cysteine Post-Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cs-Oleate
Synthesis of Cs-Oleate
2.3. Synthesis of CQDs
Post-Processing of CQDs
3. Characterizations
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Grotevent, M.J.; Kovalenko, M.V. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Yong, T.; Yan, C.; Li, J.; Zhong, G.; Tang, K.; Yu, B.; Li, Z.; Zhang, J.Z. Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly (lactic acid)—Assisted anion-exchange reactions. J. Mater. Chem. C 2018, 6, 5375–5383. [Google Scholar] [CrossRef]
- Brown, A.A.; Damodaran, B.; Jiang, L.; Tey, J.N.; Pu, S.H.; Mathews, N.; Mhaisalkar, S.G. Lead Halide Perovskite Nanocrystals: Room Temperature Syntheses toward Commercial Viability. Adv. Energy Mater. 2020, 10, 2001349. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Shan, Q.; Shang, Y.; Song, J.; Zeng, H.; Ning, Z.; Gong, J. Perovskite nanocrystals: Synthesis, properties and applications. Sci. Bull. 2017, 62, 369–380. [Google Scholar] [CrossRef]
- Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. (Deerfield Beach Fla.) 2015, 27, 7162–7167. [Google Scholar] [CrossRef] [PubMed]
- Sanehira, E.M.; Marshall, A.R.; Christians, J.A.; Harvey, S.P.; Luther, J.M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 2017, 3, eaao4204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, K.; Xing, J.; Quan, L.N.; Arquer, F.P.G.D.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef]
- Lu, M.; Guo, J.; Sun, S.; Lu, P.; Zhang, X.; Shi, Z.; Yu, W.W.; Zhang, Y. Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure. Chem. Eng. J. 2021, 404, 126563. [Google Scholar] [CrossRef]
- Xing, K.; Cao, S.; Yuan, X.; Zeng, R.; Li, H.; Zou, B.; Zhao, J. Thermal and photo stability of all inorganic lead halide perovskite nanocrystals. Phys. Chem. Chem. Phys. 2021, 23, 17113–17128. [Google Scholar] [CrossRef]
- Leijtens, T.; Bush, K.; Cheacharoen, R.; Beal, R.; Bowring, A.; Mcgehee, M. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 2017, 5, 11483–11500. [Google Scholar] [CrossRef]
- Shen, X.; Wang, S.; Zhang, X.; Wang, H.; Zhang, X.; Wang, C.; Gao, Y.; Shi, Z.; Yu, W.W.; Zhang, Y. Enhancing the efficiency of CsPbX3 (X = Cl, Br, I) nanocrystals via simultaneous surface peeling and surface passivation. Nanoscale 2019, 11, 11464–11469. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zhao, W.; Liu, S.F. Stability of the CsPbI3 perovskite: From fundamentals to improvements. J. Mater. Chem. A 2021, 9, 11124–11144. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, M.; Yang, Z.; Qiu, H.; Gaponenko, N.V. Highly Stable Na: CsPb(Br,I)3@Al2O3 Nanocomposites Prepared by Pre-protection Strategy. Nanoscale 2020, 12, 6403–6410. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Wang, S.; Wen, W.; Yuan, J.; Cao, G.; Tian, J. Room-Temperature Construction of Mixed-Halide Perovskite Quantum Dots with High Photoluminescence Quantum Yield. J. Phys. Chem. C Nanomater. Interfaces 2018, 122, 5151–5160. [Google Scholar] [CrossRef]
- Chen, K.; Zhong, Q.; Chen, W.; Sang, B.; Wang, Y.; Yang, T.; Liu, Y.; Zhang, Y.; Zhang, H. Short-Chain Ligand-Passivated Stable α-CsPbI3 Quantum Dot for All-Inorganic Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1900991. [Google Scholar] [CrossRef]
- Xu, T.; Liu, B.; Liu, Z.; Li, J. Stability of CsPbX3 (X=Br, Cl, I) perovskite nanocrystalline. J. Solid State Chem. 2022, 316, 123536. [Google Scholar] [CrossRef]
- Kajal, S.; Kim, J.; Yun, S.S.; Singh, A.N.; Kim, K.S. Unfolding the Influence of Metal Doping on Properties of CsPbI3 Perovskite. Small Methods 2020, 4, 2000296. [Google Scholar] [CrossRef]
- Yao, Z.; Zhao, W.; Chen, S.; Jin, Z.; Liu, S.F. Mn Doping of CsPbI3 Film Towards High-Efficiency Solar Cell. ACS Appl. Energy Mater. 2020, 3, 5190–5197. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, J.; Dong, R.; Chen, Y.; Yang, L.; Chen, S.; Su, Z.; Dai, Y.; Cao, K.; Liu, L. Stable and Efficient Red Perovskite Light-Emitting Diodes Based on Ca2+-Doped CsPbI3 Nanocrystals. Research 2021, 2021, 9829374. [Google Scholar] [CrossRef]
- Chen, C.; Xuan, T.; Bai, W.; Zhou, T.; Xie, R.J. Highly Stable CsPbI3:Sr2+ Nanocrystals with Near-Unity Quantum Yield enabling Perovskite Light-Emitting Diodes with an External Quantum Efficiency of 17.1%. Nano Energy 2021, 85, 106033. [Google Scholar] [CrossRef]
- Wang, C.; Song, Z.; Li, C.; Zhao, D.; Yan, Y. Low-Bandgap Mixed Tin-Lead Perovskites and Their Applications in All-Perovskite Tandem Solar Cells. Adv. Funct. Mater. 2019, 29, 1808801. [Google Scholar] [CrossRef]
- Liu, D.; Shao, Z.; Li, C.; Pang, S.; Yan, Y.; Cui, G. Structural Properties and Stability of Inorganic CsPbI3 Perovskites. Small Struct. 2020, 2, 2000089. [Google Scholar]
- Zhang, J.; Yang, L.; Zhong, Y.; Hao, H.; Yang, M.; Liu, R. Improved phase stability of the CsPbI3 perovskite via organic cation doping. Phys. Chem. Chem. Phys. 2019, 21, 11175–11180. [Google Scholar] [CrossRef]
- Yong, W.; Zhang, T.; Feng, X.; Li, Y.; Zhao, Y. A Facile Low Temperature Fabrication of High Performance CsPbI2Br All-Inorganic Perovskite Solar Cells. Sol. RRL 2018, 2, 1700180. [Google Scholar]
- Yao, Z.; Jin, Z.; Zhang, X.; Wang, Q.; Liu, S. Pseudohalide (SCN)-doped CsPbI3 for high-performance solar cells. J. Mater. Chem. C 2019, 7, 13736–13742. [Google Scholar] [CrossRef]
- Qi, W.; Li, J.; Li, Y.; Sohail, K.; Zhang, X. Manipulated Crystallization and Passivated Defects for Efficient Perovskite Solar Cells via Addition of Ammonium Iodide. ACS Appl. Mater. Interfaces 2021, 13, 34053–34063. [Google Scholar] [CrossRef]
- Yao, J.S.; Ge, J.; Wang, K.H.; Zhang, G.; Zhu, B.S.; Chen, C.; Zhang, Q.; Luo, Y.; Yu, S.H.; Yao, H.B. Few-Nanometer-Sized α-CsPbI3 Quantum Dots Enabled by Strontium Substitution and Iodide Passivation for Efficient Red-Light Emitting Diodes. J. Am. Chem. Soc. 2019, 141, 2069–2079. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, X.; Zhang, Y.; Guo, J.; Shen, X.; Yu, W.W.; Rogach, A.L. Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI3 Nanocrystals Enabling Efficient Light-Emitting Devices. Adv. Mater. 2018, 30, 1804691. [Google Scholar] [CrossRef]
- Baek, S.; Kim, Y.; Kim, S.W. Highly photo-stable CsPbI3 perovskite quantum dots via thiol ligand exchange and their polymer film application. J. Ind. Eng. Chem. 2020, 83, 279–284. [Google Scholar] [CrossRef]
- Jka, B.; Bk, B.; Whk, A.; Jc, C.; Cc, A.; Sjl, D.; Jsl, C.; Dhk, A.; Min, J.; Yk, A. Alkali acetate-assisted enhanced electronic coupling in CsPbI3 perovskite quantum dot solids for improved photovoltaics—ScienceDirect. Nano Energy 2019, 66, 104130. [Google Scholar]
- Pan, J.; Shang, Y.; Yin, J.; Bastiani, M.; Wei, P.; Dursun, I.; Sinatra, L.; El-Zohry, A.M.; Hedhili, M.N.; Emwas, A.H. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes. J. Am. Chem. Soc. 2017, 140, 562–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, K.A.; Bae, S.-R.; Nguyen, T.V.; Do, H.H.; Heo, D.Y.; Park, J.; Lee, T.-W.; Le, Q.V.; Ahn, S.H.; Kim, S.Y. Ligand-Assisted Sulfide Surface Treatment of CsPbI3 Perovskite Quantum Dots to Increase Photoluminescence and Recovery. ACS Photonics 2021, 8, 1979–1987. [Google Scholar] [CrossRef]
- Bi, C.; Kershaw, S.V.; Rogach, A.L.; Tian, J. Improved Stability and Photodetector Performance of CsPbI3 Perovskite Quantum Dots by Ligand Exchange with Aminoethanethiol. Adv. Funct. Mater. 2019, 29, 1902446. [Google Scholar] [CrossRef]
- Shi, J.; Li, F.; Jin, Y.; Liu, C.; Ma, W. In Situ Ligand Bonding Management of CsPbI3 Perovskite Quantum Dots Enables High Performance Photovoltaics and Red Light-Emitting Diodes. Angew. Chem. Int. Ed. 2020, 59, 22230–22237. [Google Scholar] [CrossRef]
- Jia, D.; Chen, J.; Yu, M.; Liu, J.; Johansson, E.; Hagfeldt, A.; Zhang, X. Dual Passivation of CsPbI3 Perovskite Nanocrystals with Amino Acid Ligands for Efficient Quantum Dot Solar Cells. Small 2020, 16, 2001772. [Google Scholar] [CrossRef]
- Kurihara, T.; Matano, A.; Noda, Y.; Takegoshi, K. Rotational Motion of Ligand-Cysteine on CdSe Magic-Sized Clusters. J. Phys. Chem. C 2019, 123, 14993–14998. [Google Scholar] [CrossRef]
- Kurihara, T.; Noda, Y.; Takegoshi, K. Capping Structure of Ligand-Cysteine on CdSe Magic-Sized Clusters. ACS Omega 2019, 4, 3476–3483. [Google Scholar] [CrossRef]
- Kurihara, T.; Noda, Y.; Takegoshi, K. Quantitative Solid-State NMR Study on Ligand-Surface Interaction in Cysteine-Capped CdSe Magic-Sized Clusters. J. Phys. Chem. Lett. 2017, 8, 2555–2559. [Google Scholar] [CrossRef]
- Cui, Y.; Lou, Z.; Wang, X.; Yu, S.; Yang, M. A study of optical absorption of cysteine-capped CdSe nanoclusters using first-principles calculations. Phys. Chem. Chem. Phys. 2015, 17, 9222–9230. [Google Scholar] [CrossRef]
- Pan, A.; He, B.; Fan, X.; Liu, Z.; Urban, J.J.; Alivisatos, A.P.; He, L.; Liu, Y. Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano 2016, 10, 7943–7954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Huang, H.; Maung, Y.M.; Yuan, J.; Ma, W. Aromatic amine-assisted pseudo-solution-phase ligand exchange in CsPbI(3) perovskite quantum dot solar cells. Chem. Commun. (Camb) 2021, 57, 7906–7909. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, V.A.; Mates-Torres, E.; Prochukhan, N.; Marcastel, M.; Purcell-Milton, F.; O’Brien, J.; Visheratina, A.K.; Martinez-Carmona, M.; Gromova, Y.; Garcia-Melchor, M.; et al. Effect of Chiral Ligand Concentration and Binding Mode on Chiroptical Activity of CdSe/CdS Quantum Dots. ACS Nano 2019, 13, 13560–13572. [Google Scholar] [CrossRef] [PubMed]
Samples | τ1 | τ2 | B1 | B2 | τave |
---|---|---|---|---|---|
Pristine | 3.84 | 32.67 | 2455.10 | 6521.97 | 31.45 |
0.025 M cys | 4.87 | 41.40 | 1965.49 | 6462.34 | 40.14 |
0.050 M cys | 7.32 | 46.11 | 1204.40 | 7724.70 | 45.17 |
0.075 M cys | 4.60 | 37.00 | 2116.05 | 6613.22 | 35.76 |
0.100 M cys | 4.26 | 36.14 | 2239.13 | 6621.54 | 34.92 |
Samples | PLQY (%) | kr (ns−1) | knr (ns−1) |
---|---|---|---|
Pristine | 38.61 | 0.0108 | 0.0108 |
0.050 M cys | 70.77 | 0.0157 | 0.0064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wei, J.; Pang, Q. Enhancing Photoluminescence and Stability of CsPbI3 Perovskite Quantum Dots via Cysteine Post-Processing. Crystals 2023, 13, 45. https://doi.org/10.3390/cryst13010045
Chen S, Wei J, Pang Q. Enhancing Photoluminescence and Stability of CsPbI3 Perovskite Quantum Dots via Cysteine Post-Processing. Crystals. 2023; 13(1):45. https://doi.org/10.3390/cryst13010045
Chicago/Turabian StyleChen, Sijie, Jianwu Wei, and Qi Pang. 2023. "Enhancing Photoluminescence and Stability of CsPbI3 Perovskite Quantum Dots via Cysteine Post-Processing" Crystals 13, no. 1: 45. https://doi.org/10.3390/cryst13010045
APA StyleChen, S., Wei, J., & Pang, Q. (2023). Enhancing Photoluminescence and Stability of CsPbI3 Perovskite Quantum Dots via Cysteine Post-Processing. Crystals, 13(1), 45. https://doi.org/10.3390/cryst13010045